1
|
Zhang S, Jin Y, Han Q, Zhao X, Xue L. FOXA3: A Novel Tumor Suppressor in Esophageal Squamous Cell Carcinoma. J Gene Med 2025; 27:e700009. [PMID: 39965898 DOI: 10.1002/jgm.70009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/13/2024] [Accepted: 12/14/2024] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND The forkhead box A (FOXA) family has been extensively studied in cancer research; however, the role of FOXA3 in malignant tumors, particularly esophageal squamous cell carcinoma (ESCC), is not well understood. This study explores the expression and function of FOXA3 in ESCC, assessing its potential as a prognostic marker and therapeutic target. METHODS This study analyzed FOXA3 expression in ESCC tissues and its correlation with patient prognosis. The effects of FOXA3 overexpression on ESCC cell proliferation, migration, and invasion were examined in ESCC cell lines in vitro. Additionally, an in vivo tumorigenesis assay was performed using subcutaneous injection to assess the impact of FOXA3 overexpression on tumor growth. Statistical analyses were conducted to determine the significance of the results. RESULTS FOXA3 expression was significantly reduced in ESCC tissues compared with it in paired adjacent normal tissues, and low FOXA3 expression was significantly associated with poor prognosis in ESCC patients. FOXA3 overexpression markedly inhibited ESCC cell proliferation, migration, and invasion. In addition, overexpression of FOXA3 repressed tumor growth in mice. CONCLUSIONS These findings indicate that FOXA3 acts as a tumor suppressor in ESCC, and its low expression is linked to poor outcomes. FOXA3 may serve as a potential diagnostic and therapeutic target for ESCC.
Collapse
Affiliation(s)
- Siang Zhang
- Department of Thoracic Surgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Yuxiang Jin
- Department of Thoracic Surgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Qianyu Han
- Department of Thoracic Surgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Xuewei Zhao
- Department of Thoracic Surgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Lei Xue
- Department of Thoracic Surgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
2
|
Yang W, Lin R, Guan S, Dang Y, He H, Huang X, Yang C. HNF1ɑ promotes colorectal cancer progression via HKDC1-mediated activation of AKT/AMPK signaling pathway. Gene 2024; 928:148752. [PMID: 38986750 DOI: 10.1016/j.gene.2024.148752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 06/24/2024] [Accepted: 07/04/2024] [Indexed: 07/12/2024]
Abstract
The hepatocyte nuclear factor-1 (HNF1ɑ) is a transcription factor that contributes to several kinds of cancer progression. However, very little is known regarding the mechanisms underlying the activity of HNF1ɑ. We aimed to explore the role of HNF1ɑ in the progress of colorectal cancer (CRC) and elucidate its molecular mechanism. HNF1ɑ expression was upregulated in CRC samples and high expression of HNF1ɑ was associated with poor prognosis of CRC patients. HNF1α knockdown and overexpression inhibited and promoted proliferation, migration and invasion of CRC cells both in vitro and in vivo respectively. Mechanistically, HNF1ɑ increased the transcriptional activity of hexokinase domain component 1(HKDC1)promoter, thus activated AKT/AMPK signaling. Meanwhile, HKDC1 upregulation was important for the proliferation, migration and invasion of CRC cells and knockdown of HKDC1 significantly reversed the proliferation, migration and invasion induced by HNF1α overexpression. Taken together, HNF1ɑ contributes to CRC progression and metastasis through binding to HKDC1 and activating AKT/AMPK signaling. Targeting HNF1ɑ could be a potential therapeutic strategy for CRC patients.
Collapse
Affiliation(s)
- Weijin Yang
- Department of Colorectal Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian 350014, China; Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Ruirong Lin
- Department of Colorectal Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian 350014, China; Fujian Provincial Key Laboratory of Tumor Biotherapy, Fujian Cancer Hospital, Fujian Medical University Cancer Hospital, Fuzhou 350014, China
| | - Shen Guan
- Department of Colorectal Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian 350014, China
| | - Yuan Dang
- Innovation Center for Cancer Research, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian 350014, China; Fujian Key Laboratory of Advanced Technology for Cancer Screening and Early Diagnosis, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, 350014, China
| | - Hongxin He
- Department of Colorectal Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian 350014, China
| | - Xinxiang Huang
- Department of Colorectal Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian 350014, China
| | - Chunkang Yang
- Department of Colorectal Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian 350014, China; Fujian Medical University, Fuzhou, Fujian 350122, China; Fujian Provincial Key Laboratory of Tumor Biotherapy, Fujian Cancer Hospital, Fujian Medical University Cancer Hospital, Fuzhou 350014, China.
| |
Collapse
|
3
|
Simpson SG, Park KE, Yeddula SGR, Waters J, Scimeca E, Poonooru RR, Etches R, Telugu BP. Blastocyst complementation generates exogenous donor-derived liver in ahepatic pigs. FASEB J 2024; 38:e70161. [PMID: 39530535 DOI: 10.1096/fj.202401244r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/04/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
Liver diseases are one of the leading causes of morbidity and mortality worldwide. Globally, liver diseases are responsible for approximately 2 million deaths annually (1 of every 25 deaths). Many of the patients with chronic liver diseases can benefit from organ transplantation. However, stringent criteria for placement on organ transplantation waitlist and chronic shortage of organs preclude access to patients. To bridge the shortfall, generation of chimeric human organs in pigs has long been considered as an alternative. Here, we report feasibility of the approach by generating chimeric livers in pigs using a conditional blastocyst complementation approach that creates a vacant niche in chimeric hosts, enabling the initiation of organogenesis through donor-derived pluripotent cells. Porcine fetal fibroblasts were sequentially targeted for knockin of CRE into the endogenous FOXA3 locus (FOXA3CRE) followed by floxing of exon 1 of HHEX (FOXA3CREHHEXloxP/loxP) locus. The conditional HHEX knockout and constitutive GFP donor (COL1ACAG:LACZ 2A EGFP) were used as nuclear donors to generate host embryos by somatic cell nuclear transfer, and complemented and transferred into estrus synchronized surrogates. In the resulting fetuses, donor EGFP blastomeres reconstituted hepatocytes as confirmed by immunohistochemistry. These results potentially pave the way for exogenous donor-derived hepatogenesis in large animal models.
Collapse
Affiliation(s)
- Sean G Simpson
- RenOVAte Biosciences Inc, Reisterstown, Maryland, USA
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Ki-Eun Park
- RenOVAte Biosciences Inc, Reisterstown, Maryland, USA
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | | | - Jerel Waters
- RenOVAte Biosciences Inc, Reisterstown, Maryland, USA
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Erin Scimeca
- RenOVAte Biosciences Inc, Reisterstown, Maryland, USA
| | | | - Rob Etches
- RenOVAte Biosciences Inc, Reisterstown, Maryland, USA
| | - Bhanu P Telugu
- RenOVAte Biosciences Inc, Reisterstown, Maryland, USA
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
4
|
Pan Q, Li B, Lin D, Miao YR, Luo T, Yue T, Luo Q, Guo AY, Zhang Z. scLiverDB: a Database of Human and Mouse Liver Transcriptome Landscapes at Single-Cell Resolution. SMALL METHODS 2023; 7:e2201421. [PMID: 37259264 DOI: 10.1002/smtd.202201421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 04/17/2023] [Indexed: 06/02/2023]
Abstract
The liver is critical for the digestive and immune systems. Although the physiology and pathology of liver have been well studied and many scRNA-seq data are generated, a database and landscape for characterizing cell types and gene expression in different liver diseases or developmental stages at single-cell resolution are lacking. Hence, scLiverDB is developed, a specialized database for human and mouse liver transcriptomes to unravel the landscape of liver cell types, cell heterogeneity and gene expression at single-cell resolution across various liver diseases/cell types/developmental stages. To date, 62 datasets including 9,050 samples and 1,741,734 cells is curated. A uniform workflow is used, which included quality control, dimensional reduction, clustering, and cell-type annotation to analyze datasets on the same platform; integrated manual and automatic methods for accurate cell-type identification and provided a user-friendly web interface with multiscale functions. There are two case studies to show the usefulness of scLiverDB, which identified the LTB (lymphotoxin Beta) gene as a potential biomarker of lymphoid cells differentiation and showed the expression changes of Foxa3 (forkhead box A3) in liver chronic progressive diseases. This work provides a crucial resource to resolve molecular and cellular information in normal, diseased, and developing human and mouse livers.
Collapse
Affiliation(s)
- Qi Pan
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Borui Li
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Dong Lin
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Ya-Ru Miao
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Tao Luo
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Tao Yue
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Qingming Luo
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, Hainan, 570228, China
| | - An-Yuan Guo
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zhihong Zhang
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, Hainan, 570228, China
| |
Collapse
|
5
|
Gundelia tournefortii inhibits hepatocellular carcinoma progression by lowering gene expression of the cell cycle and hepatocyte proliferation in immunodeficient mice. Biomed Pharmacother 2022; 156:113885. [DOI: 10.1016/j.biopha.2022.113885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/19/2022] Open
|
6
|
Identification and External Validation of a Transcription Factor-Related Prognostic Signature in Pediatric Neuroblastoma. JOURNAL OF ONCOLOGY 2022; 2021:1370451. [PMID: 34992653 PMCID: PMC8727167 DOI: 10.1155/2021/1370451] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/12/2021] [Accepted: 12/17/2021] [Indexed: 11/19/2022]
Abstract
Background Neuroblastoma is a common solid tumor originating from the sympathetic nervous system, commonly found in children, and it is one of the leading causes of tumor-related deaths in children. In addition to pathological features, molecular-level features, such as how much gene expression is present and the mutational profile, may provide useful information for the precise treatment of neuroblastoma. Transcription factors (TFs) play an important regulatory role in all aspects of cellular life activities. But there are currently no studies on transcription factor-based biomarkers of neuroblastoma prognosis, and this study is much needed. Methods We downloaded RNA transcriptome data and clinical data from the TARGET database to construct a prognostic model. The prognostic model was constructed by using univariate Cox analysis, LASSO, and multivariate Cox regression. We divided the patients into low-risk and high-risk groups using the median value of the risk score as the cut-off. Then, we validated the prognostic model with the dataset GSE49710. Results We constructed a prognostic model consisting of eight genes (SATB1, ZNF564, SOX14, EN1, IKZF2, SLC2A4RG, FOXJ2, and ZNF521). Patients in the high-risk group had a lower survival rate than those in the low-risk group. The area under the 3-year ROC curve of the model reached 0.825, suggesting a good predictive efficacy. We performed target gene prediction for the eight transcription factors in the model using six online databases and found that TUT1 may be a target gene for transcription factor EN1 and is associated with immune infiltration. Conclusion This prognostic model consisting of eight transcription factor-associated genes demonstrated reliable predictive efficacy. This prediction model may provide new potential targets for the treatment of neuroblastoma and personalized monitoring of neuroblastoma patients with high and low risk.
Collapse
|
7
|
Lin J, Cao Z, Yu D, Cai W. Identification of Transcription Factor-Related Gene Signature and Risk Score Model for Colon Adenocarcinoma. Front Genet 2021; 12:709133. [PMID: 34603375 PMCID: PMC8485095 DOI: 10.3389/fgene.2021.709133] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 09/03/2021] [Indexed: 01/10/2023] Open
Abstract
The prognosis of colon adenocarcinoma (COAD) remains poor. However, the specific and sensitive biomarkers for diagnosis and prognosis of COAD are absent. Transcription factors (TFs) are involved in many biological processes in cells. As the molecule of the signal pathway of the terminal effectors, TFs play important roles in tumorigenesis and development. A growing body of research suggests that aberrant TFs contribute to the development of COAD, as well as to its clinicopathological features and prognosis. In consequence, a few studies have investigated the relationship between the TF-related risk model and the prognosis of COAD. Therefore, in this article, we hope to develop a prognostic risk model based on TFs to predict the prognosis of patients with COAD. The mRNA transcription data and corresponding clinical data were downloaded from TCGA and GEO. Then, 141 differentially expressed genes, validated by the GEPIA2 database, were identified by differential expression analysis between normal and tumor samples. Univariate, multivariate and Lasso Cox regression analysis were performed to identify seven prognostic genes (E2F3, ETS2, HLF, HSF4, KLF4, MEIS2, and TCF7L1). The Kaplan-Meier curve and the receiver operating characteristic curve (ROC, 1-year AUC: 0.723, 3-year AUC: 0.775, 5-year AUC: 0.786) showed that our model could be used to predict the prognosis of patients with COAD. Multivariate Cox analysis also reported that the risk model is an independent prognostic factor of COAD. The external cohort (GSE17536 and GSE39582) was used to validate our risk model, which indicated that our risk model may be a reliable predictive model for COAD patients. Finally, based on the model and the clinicopathological factors, we constructed a nomogram with a C-index of 0.802. In conclusion, we emphasize the clinical significance of TFs in COAD and construct a prognostic model of TFs, which could provide a novel and reliable model for the prognosis of COAD.
Collapse
Affiliation(s)
- Jianwei Lin
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zichao Cao
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dingye Yu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Cai
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
8
|
Zhan X, Zhao A. Transcription factor FOXA3 promotes the development of Hepatoblastoma via regulating HNF1A, AFP, and ZFHX3 expression. J Clin Lab Anal 2020; 35:e23686. [PMID: 33368532 PMCID: PMC7957975 DOI: 10.1002/jcla.23686] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/19/2020] [Accepted: 12/01/2020] [Indexed: 12/15/2022] Open
Abstract
Objective In this research paper, we aimed to study the role of FOXA3 in hepatoblastoma (HB) and the molecular mechanism. Methods Immunohistochemistry was applied to determine the expression situation of FOXA3 and AFP in HB tissues and the adjacent normal tissues. FOXA3, HNF1A, and ZFHX3 expressions in HB tissues and the normal tissues were measured by Western blot. HB cell lines were randomly divided into 4 groups: Model, si‐NC, si‐FOXA3‐1, and si‐FOXA3‐2 group. The HB cell viability and colony formation characteristics in the 4 groups were explored by CCK‐8 and cell cloning formation assay, respectively. The expression of FOXA3, AFP, HNF1A, ZFHX3, and MYC in HB cells after knockdown of FOXA3 was measured. Results FOXA3, AFP, and HNF1A expressions were significantly up‐regulated in HB tissues, while ZFHX3 expression was down‐regulated. Knockdown of FOXA3 markedly inhibited HB cell viability and cloning formation ability. Knockdown of FOXA3 decreased FOXA3, AFP, and HNF1A/MYC expression, while increased ZFHX3 expression. Conclusion FOXA3 promotes the occurrence and development of HB by up‐regulating AFP and HNF1A/MYC expression, and down‐regulating ZFHX3 expression.
Collapse
Affiliation(s)
- Xiaoyun Zhan
- Department of Childhood Hematology, Maternal and Child Hospital of Hubei province, Tongji Medical College Huazhong University of Science and Technology, Wuhan, China
| | - Alan Zhao
- Department of Childhood Hematology, Maternal and Child Hospital of Hubei province, Tongji Medical College Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|