1
|
Sugiyama Y, Konishi H, Dokoshi T, Tanaka H, Kobayashi Y, Sasaki T, Yamamoto K, Sakatani A, Takahashi K, Ando K, Ueno N, Kashima S, Moriichi K, Tanabe H, Okumura T, Fujiya M. hsa_circ_0015388 Reduces Macrophage Derived Reactive Oxygen Species in Crohn's Disease. Inflamm Bowel Dis 2025; 31:1355-1365. [PMID: 39807080 DOI: 10.1093/ibd/izae317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Indexed: 01/16/2025]
Abstract
BACKGROUND Crohn's disease (CD) is a refractory inflammatory bowel disease with an unclear etiology. CircularRNA (circRNA) has been highlighted as a novel class of functional noncoding RNAs associated with the pathogenesis of various diseases. However, the functions of circRNA in CD remain unclear. METHODS Biopsies were obtained from noninflammatory sites in the terminal ileum of the CD group (n = 4) and non-CD group (n = 4) and analyzed for circRNA expression using RNA sequencing. The significantly altered circRNAs were validated in the CD group (n = 45) and non-CD group (n = 15) using quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR). Transcriptome analysis was conducted using circRNA-downregulated macrophage-like THP-1 cells. Reactive oxygen species (ROS) levels, cytokine mRNA expression, phagocytosis, and migration were evaluated in circRNA-downregulated THP-1 cells. RESULTS CircularRNA sequencing analysis revealed significant differences in 31 circRNAs between the CD group and non-CD group. Quantitative reverse transcriptase-polymerase chain reaction analysis for each circRNA demonstrated significant upregulation of hsa_circ_0015388 in the CD group. Hsa_circ_0015388 was expressed in THP-1 cells, but not in HCEC-1CT and Caco-2/bbe. Transcriptome analysis in THP-1 cells transfected with scramble or hsa_circ_0015388 siRNA (small interfering RNA) showed a significant alteration in innate immune response related pathway. Reactive oxygen species production was significantly increased in the hsa_circ_0015388 downregulated THP-1 cells. Reactive oxygen species induction in the hsa_circ_0015388 knocked down THP-1 was diminished by the inhibition of TNFSF10. CONCLUSION A comprehensive analysis of circRNA expression revealed that 31 circRNAs were dysregulated in the CD group. Hsa_circ_0015388 is expressed in macrophages and negatively regulates ROS function inhibiting the TNFSF10 pathway. This study first revealed that hsa_circ_0015388 plays a role in the pathogenesis of CD by suppressing ROS production in macrophages.
Collapse
Affiliation(s)
- Yuya Sugiyama
- Division of Metabolism and Biosystemic Science, Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1-1, Asahikawa Hokkaido, 078-8510, Japan
| | - Hiroaki Konishi
- Department of Gastroenterology and Advanced Medical Sciences, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1-1, Asahikawa Hokkaido, 078-8510, Japan
| | - Tatsuya Dokoshi
- Department of Dermatology, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA
| | - Hiroki Tanaka
- Division of Tumor Pathology, Department of Pathology, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1-1, Asahikawa Hokkaido, 078-8510, Japan
| | - Yu Kobayashi
- Division of Metabolism and Biosystemic Science, Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1-1, Asahikawa Hokkaido, 078-8510, Japan
| | - Takahiro Sasaki
- Division of Metabolism and Biosystemic Science, Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1-1, Asahikawa Hokkaido, 078-8510, Japan
| | - Koji Yamamoto
- Department of Gastroenterology and Advanced Medical Sciences, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1-1, Asahikawa Hokkaido, 078-8510, Japan
| | - Aki Sakatani
- Division of Metabolism and Biosystemic Science, Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1-1, Asahikawa Hokkaido, 078-8510, Japan
| | - Keitaro Takahashi
- Division of Metabolism and Biosystemic Science, Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1-1, Asahikawa Hokkaido, 078-8510, Japan
| | - Katsuyoshi Ando
- Division of Metabolism and Biosystemic Science, Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1-1, Asahikawa Hokkaido, 078-8510, Japan
| | - Nobuhiro Ueno
- Division of Metabolism and Biosystemic Science, Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1-1, Asahikawa Hokkaido, 078-8510, Japan
| | - Shin Kashima
- Division of Metabolism and Biosystemic Science, Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1-1, Asahikawa Hokkaido, 078-8510, Japan
| | - Kentaro Moriichi
- Division of Metabolism and Biosystemic Science, Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1-1, Asahikawa Hokkaido, 078-8510, Japan
| | - Hiroki Tanabe
- Division of Metabolism and Biosystemic Science, Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1-1, Asahikawa Hokkaido, 078-8510, Japan
| | - Toshikatsu Okumura
- Division of Metabolism and Biosystemic Science, Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1-1, Asahikawa Hokkaido, 078-8510, Japan
| | - Mikihiro Fujiya
- Division of Metabolism and Biosystemic Science, Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1-1, Asahikawa Hokkaido, 078-8510, Japan
- Department of Gastroenterology and Advanced Medical Sciences, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1-1, Asahikawa Hokkaido, 078-8510, Japan
| |
Collapse
|
2
|
Yang L, Li H, Tang M, He L, Yang L. Circular RNAs in inflammatory bowel disease: a review of mechanisms, biomarkers and therapeutic potential. Front Immunol 2025; 16:1540768. [PMID: 40342413 PMCID: PMC12058709 DOI: 10.3389/fimmu.2025.1540768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 04/02/2025] [Indexed: 05/11/2025] Open
Abstract
Inflammatory bowel disease (IBD) is an autoimmune disease of unknown etiology characterized by recurrent chronic inflammation of the gastrointestinal tract. The incidence of IBD is increasing and has become a focus of research on digestive diseases. Despite advances in understanding its multifactorial etiology, including genetic predisposition, microbiome dysbiosis, and immune dysregulation. However, the molecular mechanisms driving IBD pathogenesis remain incompletely elucidated. Circular RNA (circRNA) is a stable single-stranded RNA with a closed-loop structure and conserved nature. circRNA possesses multiple functions, such as adsorption of microRNAs and RNA-binding proteins, and is involved in the regulation of gene splicing and transcription, as well as protein translation. However, circRNAs in IBD progression and their clinical potential as biomarkers or therapeutic targets are yet to be systematically explored. In this review, we comprehensively synthesize recent advancements in circRNA research related to IBD, integrating evidence from in vitro, in vivo, and clinical studies. We systematically analyze aberrant circRNA expression profiles in IBD tissues (e.g., intestinal mucosa, peripheral blood, and exosomes) and discuss their mechanism of action contributions to inflammation, intestinal epithelial barrier dysfunction, autophagy, intestinal fibrosis, and colitis-associated cancer (CAC). Furthermore, we evaluate methodologies for circRNA detection and therapeutic modulation, including RNA interference, viral vector delivery, and PLGA MSs delivery system strategies. This review highlights the potential of circRNA-focused strategies in the diagnosis and treatment of IBD, offering a scientific foundation for advancing precision medicine in IBD management.
Collapse
Affiliation(s)
- Le Yang
- Department of Gastroenterology, Yiyang Central Hospital, Yiyang, China
| | - Huahui Li
- Institute of Biomedical and Health Engineering, Chinese Academy of Sciences Shenzhen Institutes of Advanced Technology, Shenzhen, China
| | - Min Tang
- Department of Pharmacy, Yiyang Medical College, Yiyang, China
| | - Lingnan He
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Lijun Yang
- Department of Pharmacy, Yiyang Medical College, Yiyang, China
| |
Collapse
|
3
|
Kong X, Wu T, Cai H, Chen Z, Wang Y, He P, Liu P, Li L, Peng S, Xu F, Wang J, Zhang H, Wang L. Construction of ceRNA network mediated by circRNAs screening from microarray and identification of novel biomarkers for myasthenia gravis. Gene 2024; 918:148463. [PMID: 38631652 DOI: 10.1016/j.gene.2024.148463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/03/2024] [Accepted: 04/10/2024] [Indexed: 04/19/2024]
Abstract
BACKGROUND Recent studies have revealed that circRNA can serve as ceRNA to participate in multiple autoimmune diseases. Our study aims to explore the key circRNA as ceRNA and biomarker for MG. METHODS We used circRNA microarray to explore differentially expressed circRNAs (DECs) from MG and compare with control. Then, we predicted the target miRNA associated with DECs and screened miRNAs by the algorithm of random walk with restart (RWR). Next, we constructed the circRNA-miRNA-mRNA ceRNA regulated network (CMMC) to identify the hub objects. Following, we detected the expression of hub-circRNAs by RT-PCR. We verify has_circ_0004183 (circFRMD4) sponging miR-145-5p regulate cells proliferation using luciferase assay and CCK-8. RESULTS We found that the expression level of circFRMD4 and has_circ_0035381 (circPIGB) were upregulated and has_circ_0089153(circ NUP214) had the lowest expression level in MG. Finally, we proved circFRMD4 sponging miR-145-5p regulate Jurkat cells proliferation. CircFRMD4 take part in the genesis and development of MG via circFRMD4/miR145-5p axis. CONCLUSIONS We found that circFRMD4, circPIGB and circNUP214 can be considered as valuable potential novel biomarkers for AchR + MG. CircFRMD4 participate in the development of AchR + MG via targeting binding with miR-145-5p.
Collapse
Affiliation(s)
- Xiaotong Kong
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Tao Wu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Hanlu Cai
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Zhimin Chen
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang Province, China; Department of Neurology, The Second Hospital of Harbin, Harbin, Heilongjiang Province, China
| | - Yu Wang
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Ping He
- Department of Neurology, The First Hospital of Harbin, Harbin, Heilongjiang Province, China
| | - Peifang Liu
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Lei Li
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Shanshan Peng
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Fanfan Xu
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Jianjian Wang
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang Province, China.
| | - Huixue Zhang
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang Province, China.
| | - Lihua Wang
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang Province, China.
| |
Collapse
|
4
|
Yuan YY, Wu H, Chen QY, Fan H, Shuai B. Construction of the underlying circRNA-miRNA-mRNA regulatory network and a new diagnostic model in ulcerative colitis by bioinformatics analysis. World J Clin Cases 2024; 12:1606-1621. [PMID: 38576737 PMCID: PMC10989427 DOI: 10.12998/wjcc.v12.i9.1606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/02/2024] [Accepted: 03/04/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) are involved in the pathogenesis of many diseases through competing endogenous RNA (ceRNA) regulatory mechanisms. AIM To investigate a circRNA-related ceRNA regulatory network and a new predictive model by circRNA to understand the diagnostic mechanism of circRNAs in ulcerative colitis (UC). METHODS We obtained gene expression profiles of circRNAs, miRNAs, and mRNAs in UC from the Gene Expression Omnibus dataset. The circRNA-miRNA-mRNA network was constructed based on circRNA-miRNA and miRNA-mRNA interactions. Functional enrichment analysis was performed to identify the biological mechanisms involved in circRNAs. We identified the most relevant differential circRNAs for diagnosing UC and constructed a new predictive nomogram, whose efficacy was tested with the C-index, receiver operating characteristic curve (ROC), and decision curve analysis (DCA). RESULTS A circRNA-miRNA-mRNA regulatory network was obtained, containing 12 circRNAs, three miRNAs, and 38 mRNAs. Two optimal prognostic-related differentially expressed circRNAs, hsa_circ_0085323 and hsa_circ_0036906, were included to construct a predictive nomogram. The model showed good discrimination, with a C-index of 1(> 0.9, high accuracy). ROC and DCA suggested that the nomogram had a beneficial diagnostic ability. CONCLUSION This novel predictive nomogram incorporating hsa_circ_0085323 and hsa_circ_0036906 can be conveniently used to predict the risk of UC. The circRNa-miRNA-mRNA network in UC could be more clinically significant.
Collapse
Affiliation(s)
- Yu-Yi Yuan
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Hui Wu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Qian-Yun Chen
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Heng Fan
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Bo Shuai
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| |
Collapse
|
5
|
Belete MA, Tadesse S, Tilahun M, Gedefie A, Shibabaw A, Mulatie Z, Wudu MA, Gebremichael S, Debash H, Alebachew M, Alemayehu E. Long noncoding RNAs and circular RNAs as potential diagnostic biomarkers of inflammatory bowel diseases: a systematic review and meta-analysis. Front Immunol 2024; 15:1362437. [PMID: 38524131 PMCID: PMC10957631 DOI: 10.3389/fimmu.2024.1362437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 02/27/2024] [Indexed: 03/26/2024] Open
Abstract
Introduction Inflammatory bowel disease (IBD) poses a growing global burden, necessitating the discovery of reliable biomarkers for early diagnosis. The clinical significance of dysregulated expression of long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs) in diagnosing IBD has not been well established. Thus, our study aimed to investigate the diagnostic value of lncRNAs and circRNAs for IBD based on currently available studies. Methods A comprehensive search was carried out in diverse electronic databases, such as PubMed, Embase, Scopus, Science Direct and Wiley Online Library to retrieve articles published until October 30, 2023. Stata 17.0 software was employed to determine pooled sensitivity, specificity, positive likelihood ratio (PLR), negative likelihood ratio (NLR), diagnostic ratio (DOR), and area under the curve (AUC). Heterogeneity, subgroup analysis, and meta-regression were explored, and publication bias was assessed using Deeks' funnel plot. Fagan's nomogram and likelihood ratio scattergram were employed to evaluate the clinical validity. Result A total of 11 articles encompassing 21 studies which involved 1239 IBD patients and 985 healthy controls were investigated. The findings revealed lncRNAs exhibit high level of pooled sensitivity 0.94 (95% CI: 0.87-0.97) and specificity 0.99 (95% CI: 0.89-1.00), along with PLR, NLR, DOR, and AUC values of 64.25 (95% CI: 7.39-558.66), 0.06 (95% CI: 0.03-0.13), 1055.25 (95% CI: 70.61-15770.77), and 0.99 (95% CI: 0.97-0.99), respectively. Conversely, CircRNAs showed moderate accuracy in IBD diagnosis, with sensitivity of 0.68 (95% CI: 0.61-0.73), specificity of 0.73 (95% CI: 0.65-0.79), PLR of 2.47 (95% CI: 1.94-3.16), NLR of 0.45 (95% CI: 0.38-0.53), DOR of 5.54 (95% CI: 3.88-7.93), and AUC value of 0.75 (95% CI: 0.71-0.79). Moreover, findings from subgroup analysis depicted heightened diagnostic efficacy when employing lncRNA H19 and a large sample size (≥100), with notable efficacy in diagnosing both ulcerative colitis (UC) and Crohn's disease (CD). Conclusion LncRNAs exhibit high diagnostic accuracy in distinguishing patients with IBD from healthy controls signifying their possible use as potential biomarkers, while circRNAs showed moderate diagnostic accuracy. Nevertheless, to validate our findings and confirm the clinical utility of lncRNAs and circRNAs in IBD diagnosis, a large pool of prospective and multi-center studies should be undertaken. Systematic review registration https://www.crd.york.ac.uk/PROSPERO, identifier CRD42023491840.
Collapse
Affiliation(s)
- Melaku Ashagrie Belete
- Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Wollo University, Dessie, Ethiopia
| | - Selamyhun Tadesse
- Department of Medical Laboratory Science, College of Health Sciences, Woldia University, Woldia, Ethiopia
| | - Mihret Tilahun
- Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Wollo University, Dessie, Ethiopia
| | - Alemu Gedefie
- Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Wollo University, Dessie, Ethiopia
| | - Agumas Shibabaw
- Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Wollo University, Dessie, Ethiopia
| | - Zewudu Mulatie
- Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Wollo University, Dessie, Ethiopia
| | - Muluken Amare Wudu
- Department of Pediatric and Child Health Nursing, School of Nursing and Midwifery, College of Medicine and Health Sciences, Wollo University, Dessie, Ethiopia
| | - Saba Gebremichael
- Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Wollo University, Dessie, Ethiopia
| | - Habtu Debash
- Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Wollo University, Dessie, Ethiopia
| | - Mihreteab Alebachew
- Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Wollo University, Dessie, Ethiopia
| | - Ermiyas Alemayehu
- Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Wollo University, Dessie, Ethiopia
| |
Collapse
|
6
|
Lun J, Guo J, Yu M, Zhang H, Fang J. Circular RNAs in inflammatory bowel disease. Front Immunol 2023; 14:1307985. [PMID: 38187401 PMCID: PMC10771839 DOI: 10.3389/fimmu.2023.1307985] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/07/2023] [Indexed: 01/09/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a term encompassing a few chronic inflammatory disorders that leads to damage of the intestinal tract. Although much progress has been made in understanding the pathology of IBD, the precise pathogenesis is not completely understood. Circular RNAs (circRNAs) are single-stranded, covalently closed, endogenous molecules in eukaryotes with a variety of biological functions. CircRNAs have been shown to have regulatory effects in many diseases, such as cancer, cardiovascular disease, and neurological disorders. CircRNAs have also been found to play important roles in IBD, and although they are not sufficiently investigated in the context of IBD, a few circRNAs have been identified as potential biomarkers for the diagnosis and prognosis of IBD and as potential therapeutic targets for IBD. Herein, we survey recent progress in understanding the functions and roles of circRNAs in IBD and discuss their potential clinical applications.
Collapse
Affiliation(s)
- Jie Lun
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao Cancer Institute, Qingdao, China
| | - Jing Guo
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao Cancer Institute, Qingdao, China
| | - Mengchao Yu
- Central Laboratories, Qingdao Municipal Hospital, Qingdao, China
| | - Hongwei Zhang
- Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
| | - Jing Fang
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao Cancer Institute, Qingdao, China
| |
Collapse
|
7
|
Ma T, Wu J, Chen Z. Regulatory networks of circRNA- centred ceRNAs in sepsis-induced acute kidney injury. Epigenetics 2023; 18:2278960. [PMID: 37979155 PMCID: PMC10768734 DOI: 10.1080/15592294.2023.2278960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 10/27/2023] [Indexed: 11/20/2023] Open
Abstract
Sepsis is the primary cause of acute kidney injury (AKI) and is associated with high mortality rates. Growing evidence suggests that noncoding RNAs are vitally involved in kidney illnesses, whereas the role of circular RNAs (circRNAs) in sepsis-induced AKI (SAKI) remains largely unknown. In this present study, caecal ligation and puncture (CLP) in mice was performed to establish an SAKI model. The expression of circRNAs and mRNAs was analysed using circRNA microarray or next-generation sequencing. The results revealed that the expressions of 197 circRNAs and 2509 mRNAs were dysregulated. Validation of the selected circRNAs was performed by qRT-PCR. Bioinformatics analyses and chromatin immunoprecipitation demonstrated that NF-κB/p65 signalling induced the upregulation of circC3, circZbtb16, and circFkbp5 and their linear counterparts by p65 transcription in mouse tubular epithelial cells (mTECs). Furthermore, competitive endogenous RNA (ceRNA) networks demonstrated that some components of NF-κB signalling were potential targets of these dysregulated circRNAs. Among them, Tnf-α was increased by circFkbp5 through the downregulation of miR-760-3p in lipopolysaccharide (LPS)-stimulated mTECs. Knocking down circFkbp5 inhibited the p65 phosphorylation and apoptosis in injured mTECs. These findings suggest that the selected circRNAs and the related ceRNA networks provide new knowledge into the fundamental mechanism of SAKI and circFkbp5/miR-760-3p/Tnf-α axis might be therapeutic targets.
Collapse
Affiliation(s)
- Tongtong Ma
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Junjie Wu
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhongqing Chen
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
8
|
Li J, Xu JZ, Dou B, Huang TF, Chen J, Wang TM, Ouyang HJ. Circ_0001666 upregulation promotes intestinal epithelial cell fibrosis in pediatric Crohn's disease via the SRSF1/BMP7 axis. Kaohsiung J Med Sci 2023; 39:966-977. [PMID: 37530654 DOI: 10.1002/kjm2.12734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/15/2023] [Accepted: 06/26/2023] [Indexed: 08/03/2023] Open
Abstract
The epithelial-mesenchymal transition (EMT) is closely associated with Crohn's disease (CD) related intestinal fibrosis, a condition whose prevalence is increasing annually among children. Recently, the CD marker gene microarray screening revealed an upregulation of circ_0001666 in the colon tissues of CD patients, but its underlying mechanisms remain unclear. In this study, we explored the molecular mechanism of circ_0001666 in regulating EMT-mediated fibrosis in CD in vitro. The levels of circ_0001666 and EMT-associated proteins were assessed in CD clinical samples, and a CD cell model was established using TGF-β1 to induce human intestinal epithelial cells (HIECs). Additionally, the expression levels of genes and proteins related to EMT and fibrosis were analyzed by quantitative real-time PCR and western blot, cell migration, and invasion were assessed via wound healing assay and transwell, respectively, and RNA pull-down and RNA immunoprecipitation assays were performed to verify the relationship between SRSF1 and BMP7 or circ_0001666. Circ_0001666 was overexpressed in the intestinal mucosal tissues of CD patients and was positively correlated with EMT. Silencing circ_0001666 inhibited the migration, invasion, EMT, and fibrosis of HIECs induced by TGF-β1. Mechanistically, circ_0001666 regulated BMP7 expression by interacting with SRSF1. Furthermore, the effects of inhibiting circ_0001666 on HIECs could be partially reversed by overexpressing SRSF1 or silencing BMP7. Collectively, circ_0001666 regulates TGF-β1-induced HIEC migration, invasion, EMT, and fibrosis. Circ_0001666 also promoted EMT-mediated fibrosis by interacting with SRSF1 to accelerate BMP7 mRNA decay. These findings provide new insights into the pathogenesis of CD and suggest that circ_0001666 might be a potential therapeutic target for CD.
Collapse
Affiliation(s)
- Jun Li
- Department of Pediatrics, Changsha Maternal and Child Health Hospital, Changsha, Hunan Province, China
| | - Ji-Zhi Xu
- Department of Pediatrics, Changsha Maternal and Child Health Hospital, Changsha, Hunan Province, China
| | - Bo Dou
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Teng-Fei Huang
- Department of Pediatrics, Changsha Maternal and Child Health Hospital, Changsha, Hunan Province, China
| | - Jie Chen
- Department of Pediatrics, Changsha Maternal and Child Health Hospital, Changsha, Hunan Province, China
| | - Tuan-Mei Wang
- Department of Pediatrics, Changsha Maternal and Child Health Hospital, Changsha, Hunan Province, China
| | - Hong-Juan Ouyang
- Department of Digestive Nutrition, Hunan Children's Hospital, Changsha, Hunan Province, China
| |
Collapse
|
9
|
Yin J, Hu T, Xu L, Zhang L, Zhu J, Ye Y, Pang Z. Hsa_circRNA_103124 upregulation in Crohn's disease promoted macrophage M1 polarization to maintain an inflammatory microenvironment via activation of the AKT2 and TLR4/NF-κB pathways. Int Immunopharmacol 2023; 123:110763. [PMID: 37567009 DOI: 10.1016/j.intimp.2023.110763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/01/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023]
Abstract
An accumulating body of research indicates that circular RNAs participate in the pathogenesis of Crohn's disease (CD). Hsa_circRNA_103124, which was upregulated in the peripheral blood mononuclear cells of patients with CD, was reported to inhibit autophagy in our previous studies. However, how hsa_circRNA_103124 participates in CD progression remains unclear. In this study, TLR4 was found to be upregulated in THP1 cells overexpressing hsa_circRNA_103124. Bioinformatic analysis indicated that overexpressed hsa_circRNA_103124 was associated with the PI3K/AKT signaling pathway and TLR4-associated innate immunity in inflammatory bowel disease. Therefore, we inferred a possible role for hsa_circRNA_103124 in macrophage polarization. Hsa_circRNA_103124, AKT2 and TLR4 were significantly upregulated in the PBMCs of patients with CD. Further analysis revealed a positive correlation between hsa_circRNA_103124 and AKT2 (r = 0.8029, p < 0.0001), TLR4 (r = 0.2529, p = 0.0089) and the Crohn's disease activity index (r = 0.4535, p < 0.0001) in patients with CD. Notably, hsa_circRNA_103124 promoted macrophage M1 polarization with increased expression of CD80 and CD86, while it inhibited macrophage M2 polarization with decreased expression of CD206 and CD163. Hsa_circRNA_103124 promoted an inflammatory microenvironment by activating the AKT2 and TLR4/NF-κB signaling pathways in M1 polarized THP1 cells. Nevertheless, hsa-miR-650 reversed the role of hsa_circRNA_103124 in M1 polarization. Hsa_circRNA_103124 promoted the formation of neutrophil extracellular traps and reduced the expression of ZO-1. In summary, the results of this study indicated that hsa_circRNA_103124 promoted macrophage M1 polarization to maintain an inflammatory microenvironment via activation of the TLR4/NF-κB pathway in a hsa-miR-650/AKT2 dependent manner. Hsa_circRNA_103124 could serve as a potential biomarker and a novel therapeutic target in CD progression.
Collapse
Affiliation(s)
- Juan Yin
- Department of Digestive Disease and Nutrition Research Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu Province, PR China
| | - Tong Hu
- Department of Gastroenterology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu Province, PR China
| | - Lijuan Xu
- Department of Gastroenterology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu Province, PR China
| | - Liping Zhang
- Department of Gastroenterology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu Province, PR China
| | - Jianyun Zhu
- Department of Digestive Disease and Nutrition Research Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu Province, PR China
| | - Yulan Ye
- Department of Gastroenterology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu Province, PR China.
| | - Zhi Pang
- Department of Digestive Disease and Nutrition Research Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu Province, PR China; Department of Gastroenterology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu Province, PR China.
| |
Collapse
|
10
|
Zhou L, Wang Q, Hou J, Wu X, Wang L, Chen X. Upregulation of hsa_circ_0002003 promotes hepatocellular carcinoma progression. BMC Cancer 2023; 23:611. [PMID: 37400785 PMCID: PMC10316602 DOI: 10.1186/s12885-023-11086-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 06/19/2023] [Indexed: 07/05/2023] Open
Abstract
BACKGROUND Circular RNAs (circRNAs), which are involved in various human malignancies, have emerged as promising biomarkers. The present study aimed to investigate unique expression profiles of circRNAs in hepatocellular carcinoma (HCC) and identify novel biomarkers associated with HCC development and progression. METHODS CircRNA expression profiles of HCC tissues were jointly analyzed to identify differentially expressed circRNAs. Overexpression plasmid and siRNA targeting candidate circRNAs were used in functional assays in vitro. CircRNA-miRNA interactions were predicted using miRNAs expressed in the miRNA-seq dataset GSE76903. To further screen downstream genes targeted by the miRNAs, survival analysis and qRT-PCR were conducted to evaluate their prognostic role in HCC and construct a ceRNA regulatory network. RESULTS Three significantly upregulated circRNAs, hsa_circ_0002003, hsa_circ_0002454, and hsa_circ_0001394, and one significantly downregulated circRNA, hsa_circ_0003239, were identified and validated by qRT-PCR. Our in vitro data indicated that upregulation of hsa_circ_0002003 accelerated cell growth and metastasis. Mechanistically, DTYMK, DAP3, and STMN1, which were targeted by hsa-miR-1343-3p, were significantly downregulated in HCC cells when hsa_circ_0002003 was silenced and were significantly correlated with poor prognosis in patients with HCC. CONCLUSION Hsa_circ_0002003 may play critical roles in HCC pathogenesis and serve as a potential prognostic biomarker for HCC. Targeting the hsa_circ_0002003/hsa-miR-1343-3p/STMN1 regulatory axis could be an effective therapeutic strategy in patients with HCC.
Collapse
Affiliation(s)
- Lisha Zhou
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, China
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
- Department of Immunology, Shihezi University School of Medicine, Shihezi, Xinjiang, China
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center, Department of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, Nanjing, China
| | - Qianwen Wang
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, China
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
- Department of Immunology, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Jun Hou
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, China
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
- Department of Immunology, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Xiangwei Wu
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, China
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Lianghai Wang
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, China.
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China.
- Department of Pathology, the First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, China.
| | - Xueling Chen
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, China.
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China.
- Department of Immunology, Shihezi University School of Medicine, Shihezi, Xinjiang, China.
| |
Collapse
|
11
|
Abbas AA, Abdulkader HA, Giordo R, Ashour HM, Erre GL, Pintus G, Zayed H. Implications and theragnostic potentials of circular RNAs in rheumatic diseases. Int J Biol Macromol 2023; 235:123783. [PMID: 36822282 DOI: 10.1016/j.ijbiomac.2023.123783] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 02/16/2023] [Indexed: 02/25/2023]
Abstract
Circular RNAs (circRNAs), a class of non-coding RNAs (ncRNAs), are highly stable and ubiquitous molecules that exhibit tissue-specific expression. Accumulating evidence has shown that aberrant expression of circRNAs can play a role in the pathogenesis of several diseases. Rheumatic diseases are a varied group of autoimmune and inflammatory disorders affecting mainly the musculoskeletal system. Notably, circRNAs, which are essential immune system gene modulators, are strongly linked to the occurrence and progression of autoimmune disorders. Here, we present and discuss the current findings concerning the roles, implications and theragnostic potentials of circRNAs in common rheumatic diseases, including ankylosing spondylitis (AS), osteoarthritis (OA), osteoporosis (OP), rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), Crohn's disease (CD), and gout. This review aims to provide new insights to support the development of novel diagnostic and therapeutic strategies for these disabling diseases.
Collapse
Affiliation(s)
- Alaa Ahmed Abbas
- Department of Biomedical Science, College of Health Sciences, Member of QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Hadil Adnan Abdulkader
- Department of Biomedical Science, College of Health Sciences, Member of QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Roberta Giordo
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, 505055 Dubai, United Arab Emirates
| | - Hossam M Ashour
- Department of Integrative Biology, College of Arts and Sciences, University of South Florida, St. Petersburg, FL 33701, USA
| | - Gian Luca Erre
- Rheumatology Unit, Department of Clinical and Experimental Medicine, University Hospital (AOUSS) and University of Sassari, 07100 Sassari, Italy
| | - Gianfranco Pintus
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43B, 07100 Sassari, Italy; Department of Medical Laboratory Sciences, College of Health Sciences and Sharjah Institute for Medical Research, University of Sharjah, University City Rd, Sharjah 27272, United Arab Emirates.
| | - Hatem Zayed
- Department of Biomedical Science, College of Health Sciences, Member of QU Health, Qatar University, P.O. Box 2713, Doha, Qatar.
| |
Collapse
|
12
|
Liu H, Qin S, Zhao Y, Gao L, Zhang C. Construction of the ceRNA network in the progression of acute myocardial infarction. AMERICAN JOURNAL OF CARDIOVASCULAR DISEASE 2022; 12:283-297. [PMID: 36743510 PMCID: PMC9890199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/11/2022] [Indexed: 02/07/2023]
Abstract
Acute myocardial infarction (AMI) is a common disease that induced by sudden occlusion of a coronary artery and myocardial necrosis, which causes a great medical burden worldwide. Noncoding RNAs, such as circRNA, lncRNA and miRNA, play crucial roles in the progression of cardiovascular diseases. However, the circRNA-miRNA-mRNA network in the occurrence and development of AMI needs further investigation. In this study, we downloaded three AMI datasets, including circRNA (GSE160717), miRNA (GSE24591), and mRNA (GSE66360) from GEO database. The differentially expressed candidates, and GO and KEGG functions were analyzed by RStudio, and subsequently import to PPI and Cytoscape to obtain the hub genes. By using the starbase target prediction database, we further screen the ceRNA network of circRNA-miRNA-mRNA based on the selected differentially expressed candidates. We found 46 differential expressed mRNAs, 65 miRNAs, and five circRNAs. GO functions and KEGG enrichment of the 46 mRNAs focused on immune response and functions, involving IL-17 signaling pathway, Toll-like receptor signaling pathway, cytokine-cytokine receptor interaction, TNF signaling pathway, chemokine signaling pathway, and NF-kappaB signaling pathway, which may aggravate the pathologies of AMI. PPI and Cytoscape analysis showed 10 hub genes, including TLR2, IL1B, CCL4, CCL3, CCR5, TREM1, CXCL2, NLRP3, CSF3, and CCL20. By using starbase and circinteractome databases, ceRNA network construction showed that circRNA_023461 and circRNA_400027 regulate several miRNA-mRNA axes in AMI. In summary, this study uncovered the circRNA-miRNA-mRNA network based on three AMI datasets. The differentially expressed genes, including CCL20, CCL4, CSF3, and IL1B, focus on immune functions and pathways. Furthermore, circRNA_023461 and circRNA_400027 regulate several miRNA-mRNA axes, exerting important roles in AMI progression. Our founding provides new insights into AMI and improve the therapeutic strategies for AMI.
Collapse
|
13
|
Sun Y, Cai D, Hu W, Fang T. Identifying hub genes and miRNAs in Crohn’s disease by bioinformatics analysis. Front Genet 2022; 13:950136. [PMID: 36118873 PMCID: PMC9471261 DOI: 10.3389/fgene.2022.950136] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/08/2022] [Indexed: 12/04/2022] Open
Abstract
Introduction: Crohn’s disease (CD) is a disease that manifests mainly as chronic inflammation of the gastrointestinal tract, which is still not well understood in terms of its pathogenesis. The aim of this study was to use bioinformatics analysis to identify differentially expressed genes (DEGs) and miRNAs with diagnostic and therapeutic potential in CD. Materials and methods: Three CD datasets (GSE179285, GSE102133, GSE75214) were downloaded from the Gene Expression Omnibus (GEO) database. DEGs between normal and CD tissues were identified using the GEO2R online tool. The Gene Ontology (GO) term and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses of the DEGs were conducted using the clusterProfiler function in the R package. Protein-protein interaction network (PPI) analysis and visualization were performed with STRING and Cytoscape. Ten hub genes were identified using cytoHubba’s MCC algorithm and validated with datasets GSE6731 and GSE52746. Finally, the miRNA gene regulatory network was constructed by Cytoscape and NetworkAnalyst to predict potential microRNAs (miRNAs) associated with DEGs. Results: A total of 97 DEGs were identified, consisting of 88 downregulated genes and 9 upregulated genes. The enriched functions and pathways of the DEGs include immune system process, response to stress, response to cytokine and extracellular region. KEGG pathway analysis indicates that the genes were significantly enriched in Cytokine-cytokine receptor interaction, IL-17 signaling pathway, Rheumatoid arthritis and TNF signaling pathway. In combination with the results of the protein-protein interaction (PPI) network and CytoHubba, 10 hub genes including IL1B, CXCL8, CXCL10, CXCL1, CXCL2, CXCL5, ICAM1, IL1RN, TIMP1 and MMP3 were selected. Based on the DEG-miRNAs network construction, 5 miRNAs including hsa-mir-21-5p, hsa-mir-93-5p, hsa-mir-98-5p, hsa-mir-1-3p and hsa-mir-335-5p were identified as potential critical miRNAs. Conclusion: In conclusion, a total of 97 DEGs, 10 hub genes and 5 miRNAs that may be involved in the progression or occurrence of CD were identified in this study, which could be regarded as biomarkers of CD.
Collapse
Affiliation(s)
- Yuxin Sun
- Department of Gastroenterology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Daxing Cai
- Department of Gastroenterology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Weitao Hu
- Department of Rheumatology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Taiyong Fang
- Department of Gastroenterology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
- *Correspondence: Taiyong Fang,
| |
Collapse
|
14
|
Zhou J, Wang L, Sun Q, Chen R, Zhang C, Yang P, Tan Y, Peng C, Wang T, Jin C, Ji J, Jin K, Sun Y. Hsa_circ_0001666 suppresses the progression of colorectal cancer through the miR-576-5p/PCDH10 axis. Clin Transl Med 2021; 11:e565. [PMID: 34841662 PMCID: PMC8567033 DOI: 10.1002/ctm2.565] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/18/2021] [Accepted: 08/23/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Though circular RNAs, new non-coding RNA classes have demonstrated that they have an essential role in the initiation as well as development of CRC (colorectal cancer), whereas in CRC the function and mechanism of hsa_circ_0001666 are less known. METHODS Hsa_circ_0001666 was identified by bioinformatics analysis of a circRNA microarray from the GEO database, and its expression in both CRC cell lines and tissues was analysed. A series of in vitro along with in vivo experiments were carried out for exploring the hsa_circ_0001666 functions, including transwell, wound healing, flow cytometry, colony formation, Edu, CCK-8, soft agar colony formation, tumor xenografts and lung/liver metastasis in mice. RNA pull-down, RIP (RNA immunoprecipitation), luciferase reporter assay, FISH (fluorescence in situ hybridization) and rescue experiments were used for determining the correlation among hsa_circ_0001666, miR-576-5p and PCDH10. RESULTS Hsa_circ_0001666 was downregulated in both CRC cell lines along with tumour tissues. A higher expression level of hsa_circ_0001666 indicated a better clinical prognosis in patients with CRC. Hsa_circ_0001666 knockdown significantly supported CRC cell proliferation along with invasion and inhibited cell apoptosis in vitro. Hsa_circ_0001666 knockdown accelerated the CRC growth and metastasis in vivo. Moreover, the mechanistic study showed that hsa_circ_0001666, acting as 'ceRNA' of miR-576-5p, prevented PCDH10 downregulation, as well as suppressed EMT and stemness of CRC cells, and the Wnt/β-catenin signalling pathway. Inhibiting miR-576-5p or overexpressing PCDH10 could reverse phenotypic changes caused by knocking down of hsa_circ_0001666. CONCLUSIONS Hsa_circ_0001666 suppresses CRC progression through the miR-576-5p/PCDH10 axis and may provide a new insight for the diagnosis and treatment of CRC.
Collapse
Affiliation(s)
- Jiahui Zhou
- The First School of Clinical MedicineNanjing Medical UniversityNanjingChina
- Department of General SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Lu Wang
- The First School of Clinical MedicineNanjing Medical UniversityNanjingChina
- Department of General SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Qingyang Sun
- The First School of Clinical MedicineNanjing Medical UniversityNanjingChina
- Department of General SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Ranran Chen
- The First School of Clinical MedicineNanjing Medical UniversityNanjingChina
- Department of General SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Chuan Zhang
- The First School of Clinical MedicineNanjing Medical UniversityNanjingChina
- Department of General SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Peng Yang
- The First School of Clinical MedicineNanjing Medical UniversityNanjingChina
- Department of General SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Yuqian Tan
- The First School of Clinical MedicineNanjing Medical UniversityNanjingChina
- Department of General SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Chaofan Peng
- The First School of Clinical MedicineNanjing Medical UniversityNanjingChina
- Department of General SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Tuo Wang
- The First School of Clinical MedicineNanjing Medical UniversityNanjingChina
- Department of General SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Chi Jin
- The First School of Clinical MedicineNanjing Medical UniversityNanjingChina
- Department of General SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Jiangzhou Ji
- The First School of Clinical MedicineNanjing Medical UniversityNanjingChina
- Department of General SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Kangpeng Jin
- The First School of Clinical MedicineNanjing Medical UniversityNanjingChina
- Department of General SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Yueming Sun
- The First School of Clinical MedicineNanjing Medical UniversityNanjingChina
- Department of General SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| |
Collapse
|