1
|
Zheng WQ, Porcel JM, Hu ZD. Tumor markers determination in malignant pleural effusion: pearls and pitfalls. Clin Chem Lab Med 2025; 63:515-520. [PMID: 39148297 DOI: 10.1515/cclm-2024-0542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/09/2024] [Indexed: 08/17/2024]
Abstract
Serum and pleural fluid tumor markers are well-recognized auxiliary diagnostic tools for malignant pleural effusion (MPE). Here, we discuss some pearls and pitfalls regarding the role of tumor markers in MPE management. The following issues are discussed in this article: What is the appropriate clinical scenario for evaluating pleural tumor markers? Which tumor markers should be advocated for diagnosing MPE? Can extremely high levels of tumor markers be employed to establish a diagnosis of MPE? Does the serum-to-pleural fluid ratio of a tumor marker have the same diagnostic efficacy as the measurement of that marker alone in the pleural fluid? Can tumor markers be used to estimate the risk of specific cancers? What should be considered when interpreting the diagnostic accuracy of tumor markers? How should tumor marker studies be performed? We addressed these issues with published works, particularly systematic reviews and meta-analyses.
Collapse
Affiliation(s)
- Wen-Qi Zheng
- Department of Laboratory Medicine, 159375 The Affiliated Hospital of Inner Mongolia Medical University , Hohhot, P.R. China
- Key Laboratory for Biomarkers, Inner Mongolia Medical University, Hohhot, P.R. China
| | - José M Porcel
- Department of Internal Medicine, Pleural Medicine and Clinical Ultrasound Unit, Arnau de Vilanova University Hospital, IRBLleida, University of Lleida, Lleida, Spain
| | - Zhi-De Hu
- Department of Laboratory Medicine, 159375 The Affiliated Hospital of Inner Mongolia Medical University , Hohhot, P.R. China
- Key Laboratory for Biomarkers, Inner Mongolia Medical University, Hohhot, P.R. China
| |
Collapse
|
2
|
Yang Q, Niu Y, Zhou Q, Yang DN, Zhu HZ, Yan C, Cha SN, Jiang TW, Yan L, Zheng WQ, Wen JX, Hu ZD. Influences of age and sex on the diagnostic accuracy of human epididymis secretory protein 4 for malignant pleural effusion. Sci Rep 2025; 15:3217. [PMID: 39863671 PMCID: PMC11762769 DOI: 10.1038/s41598-025-86929-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
Previous studies have suggested that the presence of human epididymal protein 4 (HE4) in pleural fluid can be used to diagnose malignant pleural effusion (MPE) with moderate accuracy. However, the factors that affect the diagnostic accuracy of HE4 remain unknown. This study aimed to examine how age and sex influence the diagnostic accuracy of HE4. Participants with undiagnosed pleural effusion were prospectively enrolled in two cohorts (Hohhot cohort and Changshu cohort), and the presence of HE4 in their pleural fluid upon admission was determined by an electrochemiluminescence immunoassay. A receiver operating characteristic (ROC) curve with its area under the curve (AUC) was utilized to assess the diagnostic value of HE4 for MPE. Additionally, we conducted subgroup analyses and used a resampling method with different upper age limits to investigate the impacts of age and sex on the diagnostic accuracy of HE4 for MPE. The Hohhot cohort included 86 patients with benign pleural effusions (BPEs) and 66 patients with MPE, whereas the Changshu cohort included 26 patients with MPE and 32 patients with BPE. The diagnostic accuracy of HE4 decreased as age increased in both cohorts. The diagnostic accuracy of HE4 in males did not differ significantly from that in females. Therefore, we conclude that age should be considered when using HE4 in pleural fluid to diagnose MPE.
Collapse
Affiliation(s)
- Qian Yang
- Department of Laboratory Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
- Key Laboratory for Biomarkers, Inner Mongolia Medical University, Hohhot, China
| | - Yan Niu
- Public Service Center for Medical Research, Inner Mongolia Medical University, Hohhot, China
| | - Qianghua Zhou
- Key Laboratory for Biomarkers, Inner Mongolia Medical University, Hohhot, China
- Department of Laboratory Medicine and Pathobiology, Temerty Medicine, University of Toronto, Toronto, ON, Canada
- Laboratory Medicine Program, University Health Network, Toronto, ON, Canada
| | - Dan-Ni Yang
- Department of Laboratory Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
- Key Laboratory for Biomarkers, Inner Mongolia Medical University, Hohhot, China
| | - Hong-Zhe Zhu
- Department of Laboratory Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
- Key Laboratory for Biomarkers, Inner Mongolia Medical University, Hohhot, China
| | - Cheng Yan
- Department of Laboratory Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
- Key Laboratory for Biomarkers, Inner Mongolia Medical University, Hohhot, China
| | - Su-Na Cha
- Department of Laboratory Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
- Key Laboratory for Biomarkers, Inner Mongolia Medical University, Hohhot, China
| | - Ting-Wang Jiang
- Department of Key Laboratory, Affiliated Changshu Hospital of Nantong University, Changshu, 215500, China
| | - Li Yan
- Key Laboratory for Biomarkers, Inner Mongolia Medical University, Hohhot, China
- Department of Respiratory and Critical Care Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Wen-Qi Zheng
- Department of Laboratory Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
- Key Laboratory for Biomarkers, Inner Mongolia Medical University, Hohhot, China
| | - Jian-Xun Wen
- Public Service Center for Medical Research, Inner Mongolia Medical University, Hohhot, China.
| | - Zhi-De Hu
- Department of Laboratory Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China.
- Key Laboratory for Biomarkers, Inner Mongolia Medical University, Hohhot, China.
| |
Collapse
|
3
|
Meng Y, Li X, Li H, Gu B. Establishment of tumor marker reference intervals for different age and gender groups in the healthy population of South China. Scand J Clin Lab Invest 2024; 84:398-404. [PMID: 39283251 DOI: 10.1080/00365513.2024.2400653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/29/2024] [Accepted: 09/01/2024] [Indexed: 11/05/2024]
Abstract
To establish age- and sex-specific reference intervals (RIs) for serum tumor markers (AFP, CEA, CA125, CA199, CA153, HE4, CA724, CYFRA21-1, PSA, and NSE) among a cohort of healthy individuals in South China, a retrospective analysis was conducted on 51,353 samples collected from 2015 to 2020, during health assessments at Guangdong Provincial People's Hospital. The influence of age and gender on serum tumor markers was investigated. New RIs were determined using non-parametric rank-based methods per CLSI EP28-A3C guidelines. Significant differences were detected across age groups for AFP, CEA, CA125, CA199, HE4, CYFRA21-1, PSA, and NSE (p < 0.05). The upper reference limits (URLs) for CA153 and HE4 are significantly lower compared to our current laboratory standards. The URL for CA125 exceeds these limits in individuals under 50 but decreases in those aged 50 and above. For CA199, CEA, and PSA, the URLs are below current standards in individuals younger than 60 but exceed them in those aged 60 and older. Noteworthy elevations were observed in CA724, CYFRA21-1, and NSE levels. Our study establishes age- and sex-specific RIs for ten serum tumor markers among healthy individuals from South China, providing a fundamental resource for the prevention, early detection, and management of tumor-related disorders.
Collapse
Affiliation(s)
- Yue Meng
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Xinwei Li
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Huixian Li
- Medical Big Data Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Bing Gu
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
4
|
Sundaresan S, Rajapriya P, Lavanya SK. Aging and cancer: Clinical role of tumor markers in the geriatric population (Review). MEDICINE INTERNATIONAL 2024; 4:21. [PMID: 39640494 PMCID: PMC11618985 DOI: 10.3892/mi.2024.145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 02/15/2024] [Indexed: 12/07/2024]
Abstract
Aging, with the progressive deterioration and functional decline of several organ systems, is highly heterogeneous for both between and within individuals. Tumor markers are widely used in clinical practice as a screening test for individuals >50 years of age. More specifically, caring for elderly patients is a public health concern, given the incidence of cancer and its related mortality and morbidity. A multidisciplinary diagnostic procedure known as a geriatric assessment is capable of identifying functional, psychological and physiological issues that are missed by standard evaluation. The present review focuses on cancers affecting the geriatric population, highlights current opportunities and challenges, and highlights the unmet need for clinically relevant tumor markers in elderly patients with cancer. A comprehensive geriatric examination, including a biological assessment, still requires conveniently available tumor markers and their levels in older populations in order to forecast deterioration or loss of functional balance. These tumor indicators ought to make it possible to track patients using other outcomes, such overall survival and functional impairment. Despite the notable progress made in the understanding of human biology, the mechanisms and networks underlying aging remain largely unknown. In addition, as elderly patients are a highly heterogeneous population, age-related changes cannot be distinguished solely by chronological age. Strong clinical studies, well-established protocols and meta-analyses may contribute to the better utilization of tumor biomarkers in the elderly population. Hence, the present review addresses the effects of aging on tumor markers and the usefulness of tumor marker values for the geriatric population.
Collapse
Affiliation(s)
- Sivapatham Sundaresan
- Department of Medical Research, SRM Medical College Hospital and Research Centre, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Tamil Nadu 603203, India
| | - Palanirasu Rajapriya
- Department of Liver Sciences, Rela Institute of Medical Sciences, Chennai, Tamil Nadu 600044, India
| | - Selvaraj Kaveri Lavanya
- Department of Medical Research, SRM Medical College Hospital and Research Centre, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Tamil Nadu 603203, India
| |
Collapse
|
5
|
Xing L, Zhao S, Gao S, Shi X, Huang Y, Bian P, Sun J. Reference intervals of Cyfra21-1 and CEA in healthy adult Han Chinese population. Pract Lab Med 2024; 40:e00409. [PMID: 38846326 PMCID: PMC11153929 DOI: 10.1016/j.plabm.2024.e00409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/16/2024] [Accepted: 05/24/2024] [Indexed: 06/09/2024] Open
Abstract
Objective This study aimed to establish the reference intervals of Cyfra21-1 and CEA for the local screening populations using a chemiluminescence method. Methods A total of 4845 healthy adults and 190 lung cancer patients were included from the First Hospital of Hebei Medical University. The levels of Cyfra21-1 and CEA were measured to establish the local reference intervals. Results The upper limit reference intervals for Cyfra21-1 and CEA were determined as 3.19 ng/ml and 3.13 ng/ml, respectively. Notably, both Cyfra21-1 and CEA levels were found to be higher in males than in females. Additionally, both biomarkers showed an increasing trend with age.In terms of diagnostic efficacy, the receiver operating characteristic (ROC) curve areas for Cyfra21-1, CEA, and their combination in lung cancer were 0.86, 0.73, and 0.91, respectively. Conclusion Our study revealed that the reference intervals of Cyfra21-1 and CEA in the local population differed from the established reference intervals. Furthermore, both biomarkers exhibited gender-dependent variations and demonstrated a positive correlation with age. Combining the two biomarkers showed potential for improving the diagnosis rate of lung cancer.
Collapse
Affiliation(s)
| | | | - Shichao Gao
- Department of Clinical Laboratory, The First Hospital of Hebei Medical University, 89 Donggang Road, Yuhua District, Shijiazhuang, 050031, Hebei Province, China
| | - Xiaoqian Shi
- Department of Clinical Laboratory, The First Hospital of Hebei Medical University, 89 Donggang Road, Yuhua District, Shijiazhuang, 050031, Hebei Province, China
| | - Yaomeng Huang
- Department of Clinical Laboratory, The First Hospital of Hebei Medical University, 89 Donggang Road, Yuhua District, Shijiazhuang, 050031, Hebei Province, China
| | - Puhuan Bian
- Department of Clinical Laboratory, The First Hospital of Hebei Medical University, 89 Donggang Road, Yuhua District, Shijiazhuang, 050031, Hebei Province, China
| | - Jingna Sun
- Department of Clinical Laboratory, The First Hospital of Hebei Medical University, 89 Donggang Road, Yuhua District, Shijiazhuang, 050031, Hebei Province, China
| |
Collapse
|
6
|
Dou X, Lu J, Yu Y, Yi Y, Zhou L. Determination of Tumor Marker Screening for Lung Cancer Using ROC Curves. DISEASE MARKERS 2024; 2024:4782618. [PMID: 38549716 PMCID: PMC10978075 DOI: 10.1155/2024/4782618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 02/13/2024] [Accepted: 02/21/2024] [Indexed: 04/02/2024]
Abstract
Introduction Lung cancer ranks first among malignant tumors worldwide and is a leading cause of cancer-related mortality in both men and women. Combining tumor marker testing is a strategy to screen individuals at high risk of pulmonary cancer and minimize pulmonary cancer mortality. Therefore, tumor marker screening is crucial. In this study, we analyzed combinations of tumor markers for lung cancer screening using receiver operating characteristic (ROC) curve analysis. Methods A retrospective descriptive study was conducted on patients diagnosed with lung cancer, as well as healthy and benign lung diseases, using data from the China Huludao Central Hospital database between January 2016 and July 2022. The t-test and ROC curve were utilized to assess the effectiveness of individual tumor marker and the combination of multiple tumor markers. Tumor markers are molecular products metabolized and secreted by tumor tissues, characterized by cells or body fluids. They serve as indicators of tumor stage and grading, monitor treatment response, and predict recurrence. Results In this study, 267 healthy participants, 385 patients with benign lesions, and 296 patients with lung cancer underwent tumor marker screening. The sensitivity of five tumor markers-CEA, CYFRA21-1, NSE, pro-GRP, and CA125-was found to be <55%. This study revealed that a single tumor marker had limited value in lung cancer screening. However, combining two or more markers yielded varying area under the curves (AUC), with no significant impact on screening accuracy. The combination of CEA + CA125 demonstrated the highest accuracy for lung cancer screening in healthy participants. At a cutoff of 0.447 for CEA + CA125, the combination showed a sensitivity of 0.676 and specificity of 0.846 for lung cancer screening. Conversely, for patients with benign lung lesions, the optimal combination was CEA + NSE, with a cutoff of 0.393, yielding a sensitivity of 0.645 and specificity of 0.766 for lung cancer screening. Conclusion The five tumor markers-CEA, CA125, CY211, NSE, GRP-show promising results in screening healthy individuals and patients with lung cancer. However, only CEA, NSE, and GRP effectively differentiate patients with benign lung lesions from those with lung cancer. A single tumor marker has limited utility in detecting and screening for lung cancer and should be combined with other tumor markers. CEA + CA125 emerges as a superior tumor marker for distinguishing healthy individuals from those with lung cancer, whereas the CEA + NSE combination is more effective in identifying tumor markers in patients with benign lung lesions and lung cancer.
Collapse
Affiliation(s)
- Xiaofeng Dou
- School of Public Health, Dalian Medical University, Dalian 116044, Liaoning, China
| | - Jiachen Lu
- School of Public Health, Dalian Medical University, Dalian 116044, Liaoning, China
| | - Yingying Yu
- School of Public Health, Dalian Medical University, Dalian 116044, Liaoning, China
| | - Yaohui Yi
- School of Public Health, Dalian Medical University, Dalian 116044, Liaoning, China
| | - Ling Zhou
- School of Public Health, Dalian Medical University, Dalian 116044, Liaoning, China
| |
Collapse
|
7
|
Zhang X, Ji L, Liu M, Li J, Sun H, Liang F, Zhao Y, Wang Z, Yang T, Wang Y, Si Q, Du R, Dai L, Ouyang S. Integrative Multianalytical Model Based on Novel Plasma Protein Biomarkers for Distinguishing Lung Adenocarcinoma and Benign Pulmonary Nodules. J Proteome Res 2024; 23:277-288. [PMID: 38085828 DOI: 10.1021/acs.jproteome.3c00551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Given the pressing clinical problem of making a decision in diagnosis for subjects with pulmonary nodules, we aimed to discover novel plasma protein biomarkers for lung adenocarcinoma (LUAD) and benign pulmonary nodules (BPNs) and then develop an integrative multianalytical model to guide the clinical management of LUAD and BPN patients. Through label-free quantitative plasma proteomic analysis (data are available via ProteomeXchange with identifier PXD046731), 12 differentially expressed proteins (DEPs) in LUAD and BPN were screened. The diagnostic abilities of DEPs were validated in two independent validation cohorts. The results showed that the levels of three candidate proteins (PRDX2, PON1, and APOC3) were lower in the plasma of LUAD than in BPN. The three candidate proteins were combined with three promising computed tomography indicators (spiculation, vascular notch sign, and lobulation) and three traditional markers (CEA, CA125, and CYFRA21-1) to construct an integrative multianalytical model, which was effective in distinguishing LUAD from BPN, with an AUC of 0.904, a sensitivity of 81.44%, and a specificity of 90.14%. Moreover, the model possessed impressive diagnostic performance between early LUADs and BPNs, with the AUC, sensitivity, specificity, and accuracy of 0.868, 65.63%, 90.14%, and 82.52%, respectively. This model may be a useful auxiliary diagnostic tool for LUAD and BPN by achieving a better balance of sensitivity and specificity.
Collapse
Affiliation(s)
- Xue Zhang
- Department of Respiratory and Sleep Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052 Henan, China
- Henan Institute of Medical and Pharmaceutical Sciences & Henan Key Medical Laboratory of Tumor Molecular Biomarkers, Zhengzhou University, Zhengzhou 450001 Henan, China
- Henan Key Laboratory of Tumor Epidemiology, Zhengzhou University, Zhengzhou 450052 Henan, China
| | - Longtao Ji
- Henan Institute of Medical and Pharmaceutical Sciences & Henan Key Medical Laboratory of Tumor Molecular Biomarkers, Zhengzhou University, Zhengzhou 450001 Henan, China
- BGI College, Zhengzhou University, Zhengzhou 450001 Henan, China
| | - Man Liu
- Henan Institute of Medical and Pharmaceutical Sciences & Henan Key Medical Laboratory of Tumor Molecular Biomarkers, Zhengzhou University, Zhengzhou 450001 Henan, China
- Henan Key Laboratory of Tumor Epidemiology, Zhengzhou University, Zhengzhou 450052 Henan, China
| | - Jiaqi Li
- Henan Institute of Medical and Pharmaceutical Sciences & Henan Key Medical Laboratory of Tumor Molecular Biomarkers, Zhengzhou University, Zhengzhou 450001 Henan, China
- Henan Key Laboratory of Tumor Epidemiology, Zhengzhou University, Zhengzhou 450052 Henan, China
| | - Hao Sun
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052 Henan, China
| | - Feifei Liang
- Henan Institute of Medical and Pharmaceutical Sciences & Henan Key Medical Laboratory of Tumor Molecular Biomarkers, Zhengzhou University, Zhengzhou 450001 Henan, China
- BGI College, Zhengzhou University, Zhengzhou 450001 Henan, China
| | - Yutong Zhao
- Henan Institute of Medical and Pharmaceutical Sciences & Henan Key Medical Laboratory of Tumor Molecular Biomarkers, Zhengzhou University, Zhengzhou 450001 Henan, China
- Henan Key Laboratory of Tumor Epidemiology, Zhengzhou University, Zhengzhou 450052 Henan, China
| | - Zhi Wang
- Henan Institute of Medical and Pharmaceutical Sciences & Henan Key Medical Laboratory of Tumor Molecular Biomarkers, Zhengzhou University, Zhengzhou 450001 Henan, China
- BGI College, Zhengzhou University, Zhengzhou 450001 Henan, China
| | - Ting Yang
- Henan Institute of Medical and Pharmaceutical Sciences & Henan Key Medical Laboratory of Tumor Molecular Biomarkers, Zhengzhou University, Zhengzhou 450001 Henan, China
- BGI College, Zhengzhou University, Zhengzhou 450001 Henan, China
| | - Yulin Wang
- Henan Institute of Medical and Pharmaceutical Sciences & Henan Key Medical Laboratory of Tumor Molecular Biomarkers, Zhengzhou University, Zhengzhou 450001 Henan, China
- Henan Key Laboratory of Tumor Epidemiology, Zhengzhou University, Zhengzhou 450052 Henan, China
| | - Qiufang Si
- Henan Institute of Medical and Pharmaceutical Sciences & Henan Key Medical Laboratory of Tumor Molecular Biomarkers, Zhengzhou University, Zhengzhou 450001 Henan, China
- BGI College, Zhengzhou University, Zhengzhou 450001 Henan, China
| | - Renle Du
- Henan Institute of Medical and Pharmaceutical Sciences & Henan Key Medical Laboratory of Tumor Molecular Biomarkers, Zhengzhou University, Zhengzhou 450001 Henan, China
| | - Liping Dai
- Henan Institute of Medical and Pharmaceutical Sciences & Henan Key Medical Laboratory of Tumor Molecular Biomarkers, Zhengzhou University, Zhengzhou 450001 Henan, China
- BGI College, Zhengzhou University, Zhengzhou 450001 Henan, China
- Henan Key Laboratory of Tumor Epidemiology, Zhengzhou University, Zhengzhou 450052 Henan, China
| | - Songyun Ouyang
- Department of Respiratory and Sleep Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052 Henan, China
| |
Collapse
|
8
|
Chen J, Fan L, Yang Z, Yang D. Comparison of results and age-related changes in establishing reference intervals for CEA, AFP, CA125, and CA199 using four indirect methods. Pract Lab Med 2024; 38:e00353. [PMID: 38221990 PMCID: PMC10787276 DOI: 10.1016/j.plabm.2023.e00353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/16/2024] Open
Abstract
•The reference intervals calculated using RefineR, Kosmic, TMC, and non-parametric methods are similar.•TMC algorithm is more robust, demonstrates a high pass rate among the four methods and has the ability to automatically isolate outliers.•The reference intervals of CA125 and CA199 showed significant differences between age and sex.
Collapse
Affiliation(s)
- Juping Chen
- Department of Laboratory Medicine, Liangzhu Branch of the First Affiliated Hospital of Zhejiang University, Zhejiang, China
- School of Public Health, Zhejiang University School of Medicine, Zhejiang, China
| | - Lina Fan
- Department of Laboratory Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Zheng Yang
- Department of Laboratory Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Dagan Yang
- Department of Laboratory Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, China
| |
Collapse
|
9
|
Detection of Changes in CEA and ProGRP Levels in BALF of Patients with Peripheral Lung Cancer and the Relationship with CT Signs. CONTRAST MEDIA & MOLECULAR IMAGING 2023; 2023:1421709. [PMID: 36851977 PMCID: PMC9966566 DOI: 10.1155/2023/1421709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/22/2022] [Accepted: 07/23/2022] [Indexed: 02/20/2023]
Abstract
Objective To investigate the relationship between the detection of changes in the levels of carcinoembryonic antigen (CEA) and progastrin-releasing peptide (ProGRP) in bronchoalveolar lavage fluid (BALF) and CT signs in patients with peripheral lung cancer. Methods Retrospective analysis of 108 patients with perihilar lung cancer who attended our hospital from January 2019 to January 2022, 54 cases were randomly selected as the observation group and 50 cases as the control group. Patients in both groups received CT examination and BALF test at the same time to observe and compare the differences in serum levels, the relationship between CT signs and serum indices, and the diagnostic value of peripheral lung cancer between the two groups. Results The serum levels of ProGrp, CEA, CA211, and NSE in the observation group were significantly higher than those in the control group, and the difference was statistically significant (P < 0.05). The morphology, density, mass enhancement pattern, bronchial morphology, obstructive signs, and lymph node fusion of CT signs were compared between the observation group and the control group, indicating that CT signs were more helpful for the localization, diagnosis, and staging of lung cancer. The results of ROC curve analysis showed that the AUC value of low-dose CT combined with serum ProGrp, CEA, CA211, and NSE was 0.892, sensitivity was 96.21%, and specificity of 90.05%, which were significantly higher than those of the single tests, respectively. The positive likelihood ratio was 84.41% and the negative likelihood ratio was 87.11%. Conclusion The combination of CT signs and serum tumour markers helps to improve the detection rate, sensitivity, and specificity of lung cancer, which has a high diagnostic rate for lung cancer and may provide evidence for the early diagnosis of lung cancer.
Collapse
|
10
|
Yin H, Hong H, Yin P, Lu W, Niu S, Chen X, Xia Y, Jiang P, Huang Z. Increased levels of N6-methyladenosine in peripheral blood RNA: a perspective diagnostic biomarker and therapeutic target for non-small cell lung cancer. Clin Chem Lab Med 2023; 61:473-484. [PMID: 36542027 DOI: 10.1515/cclm-2022-1033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 12/11/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVES Due to lack of effective biomarkers for non-small cell lung cancer (NSCLC), many patients are diagnosed at an advanced stage, which leads to poor prognosis. Dysregulation of N6-methyladenosine (m6A) RNA contributes significantly to tumorigenesis and tumor progression. However, the diagnostic value of m6A RNA status in peripheral blood to screen NSCLC remains unclear. METHODS Peripheral blood samples from 152 NSCLC patients and 64 normal controls (NCs) were applied to assess the m6A RNA levels. Bioinformatics and qRT-PCR analysis were performed to identify the specific immune cells in peripheral blood cells and investigate the mechanism of the alteration of m6A RNA levels. RESULTS Robust elevation of m6A RNA levels of peripheral blood cells was exhibited in the NSCLC group. Moreover, the m6A levels increased as NSCLC progressed, and reduced after treatment. The m6A levels contained area under the curve (AUC) was 0.912, which was remarkably greater than the AUCs for CEA (0.740), CA125 (0.743), SCC (0.654), and Cyfra21-1 (0.730). Furthermore, the combination of these traditional biomarkers with m6A levels elevated the AUC to 0.970. Further analysis established that the expression of m6A erasers FTO and ALKBH5 were both markedly reduced and negatively correlated with m6A levels in peripheral blood of NSCLC. Additionally, GEO database and flow cytometry analysis implied that FTO and ALKBH5 attributes to peripheral CD4+ T cells proportion and activated the immune functions of T cells. CONCLUSIONS These findings unraveled that m6A RNA of peripheral blood immune cells was a prospective biomarker for the diagnosis of NSCLC.
Collapse
Affiliation(s)
- Haofan Yin
- Department of Clinical Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, P.R. China.,Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, P.R. China.,Department of Clinical Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, P.R. China
| | - Honghai Hong
- Department of Clinical Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, P.R. China
| | - Ping Yin
- Department of Clinical Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, P.R. China
| | - Wenhua Lu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, P.R. China
| | - Shiqiong Niu
- Department of Clinical Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, P.R. China
| | - Xinchun Chen
- Blood Transfusion Department, University of Chineses Academy of Sciences-Shenzhen Hospital, Shenzhen, Guangdong, P.R. China
| | - Yong Xia
- Department of Clinical Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, P.R. China
| | - Ping Jiang
- Department of Clinical Medical Laboratory, Guangzhou First' People Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, P.R. China
| | - Zhijian Huang
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, P.R. China
| |
Collapse
|
11
|
Yang Q, Niu Y, Wen JX, Yang DN, Han YL, Wen XH, Yan L, Huang JH, Chen H, Zheng WQ, Jiang TW, Hu ZD. Value of human epididymis secretory protein 4 in differentiating malignant from benign pleural effusion: an analysis of two cohorts. Ther Adv Respir Dis 2023; 17:17534666231216566. [PMID: 38084849 PMCID: PMC10722922 DOI: 10.1177/17534666231216566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 11/08/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Lung cancer is the most common cause of malignant pleural effusion (MPE). Serum human epididymis secretory protein 4 (HE4) is a useful diagnostic marker for lung cancer. OBJECTIVE This study aimed to evaluate the diagnostic accuracy of pleural fluid HE4 for MPE. DESIGN A prospective, double-blind diagnostic test accuracy study. METHODS Patients with undiagnosed pleural effusion were enrolled in two cohorts (Hohhot and Changshu). Electrochemiluminescence immunoassay was used to detect pleural fluid HE4. The diagnostic accuracy of HE4 was evaluated by a receiver operating characteristic (ROC) curve, and the net benefit of HE4 was assessed by a decision curve analysis (DCA). RESULTS A total of 66 MPEs and 86 benign pleural effusions (BPEs) were enrolled in the Hohhot cohort. In the Changshu cohort, 26 MPEs and 32 BPEs were enrolled. In both cohorts, MPEs had significantly higher pleural fluid HE4 than BPEs. The area under the ROC curve (AUC) of HE4 was 0.73 (95% CI: 0.64-0.81) in the Hohhot cohort and 0.79 (95% CI: 0.67-0.91) in the Changshu cohort. At a threshold of 1300 pmol/L, HE4 had sensitivities of 0.44 (95% CI: 0.33-0.56) in the Hohhot cohort and 0.54 (95% CI: 0.35-0.73) in the Changshu cohort. The corresponding specificities were 0.90 (95% CI: 0.83-0.95) in the Hohhot cohort and 0.94 (95% CI: 0.84-1.00) in the Changshu cohort. In subgroup analyses, HE4 had an AUC (95% CI) of 0.78 (0.71-0.85) in exudates and an AUC of 0.69 (0.57-0.81) in patients with negative effusion cytology. The DCA revealed that HE4 determination had a net benefit in both cohorts. CONCLUSION Pleural fluid HE4 has moderate diagnostic accuracy for MPE and has net benefit in pleural effusion patients with unknown etiology.
Collapse
Affiliation(s)
- Qian Yang
- Department of Laboratory Medicine, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Yan Niu
- Department of Medical Experiment Center, The Basic Medical Sciences College of Inner Mongolia Medical University, Hohhot, China
| | - Jian-Xun Wen
- Department of Medical Experiment Center, The Basic Medical Sciences College of Inner Mongolia Medical University, Hohhot, China
| | - Dan-Ni Yang
- Department of Laboratory Medicine, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Yu-Ling Han
- Department of Laboratory Medicine, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
- Department of Parasitology, The Basic Medical Sciences College of Inner Mongolia Medical University, Hohhot, China
| | - Xu-Hui Wen
- Department of Laboratory Medicine, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
- Department of Parasitology, The Basic Medical Sciences College of Inner Mongolia Medical University, Hohhot, China
| | - Li Yan
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Jin-Hong Huang
- Department of Pulmonary and Critical Care Medicine, Affiliated Changshu Hospital of Nantong University, Changshu, China
| | - Hong Chen
- Department of Pulmonary and Critical Care Medicine, Affiliated Changshu Hospital of Nantong University, Changshu, China
| | - Wen-Qi Zheng
- Department of Laboratory Medicine, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, ChinaDepartment of Parasitology, The Basic Medical Sciences College of Inner Mongolia Medical University, Hohhot, China
| | - Ting-Wang Jiang
- Department of Key Laboratory, Affiliated Changshu Hospital of Nantong University, Changshu 215500, China
| | - Zhi-De Hu
- Department of Laboratory Medicine, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China
| |
Collapse
|
12
|
Chang CH, Weng HH, Lin YC, Lin CN, Huang TJ, Chen MY. Association between serum carcinoembryonic antigen and cardiometabolic risks: Implication for cardiometabolic prevention. Front Endocrinol (Lausanne) 2023; 14:1113178. [PMID: 36909325 PMCID: PMC9995979 DOI: 10.3389/fendo.2023.1113178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/07/2023] [Indexed: 02/25/2023] Open
Abstract
BACKGROUND Serum carcinoembryonic antigen (CEA) is a biomarker commonly used to detect colorectal cancer. CEA levels are affected by many factors, including cardiometabolic diseases, such as cardiovascular diseases (CVDs) and diabetes. Cardiometabolic diseases and cancer share a similar pathological inflammatory pathway, which correlates with an unhealthy lifestyle. Hence, establishing an adequate CEA cut-off value might be a valuable reference for developing precision healthcare programs for cardiometabolic disease prevention. This study aimed to investigate the association between cardiometabolic risks and serum CEA and the underlying factors. METHODS A community-based, cross-sectional study was conducted between March and December 2021 on the western coast of Taiwan. Lifestyle data were assessed using a structured questionnaire. The cardiometabolic biomarkers, serum CEA, urine malondialdehyde, and 1-hydroxypyrene were quantified by the central laboratory of the collaborating hospital. Chi-square and binary multivariable logistic regression implemented in R version 4.0.2 were used to identify factors defining the risk of high serum CEA levels. RESULTS A total of 6,295 adult residents without cancer-related diseases completed the study. The mean age was 48.6 (SD = 16.4) years, 56% were female, 32% had metabolic syndrome, and 23% and 10% had CVDs and diabetes, respectively. Multivariate logistic regression showed that age ≥ 65 years, male sex, alcohol consumption, smoking, infrequent use of dental floss, fewer remaining teeth, CVDs, diabetes, and oxidative stress were significantly associated with serum CEA ≥ 3 ng/mL. The discriminatory performance of the area under the receiver operating characteristic curve was 0.75 (0.73-0.76), showing that this model was suitable for distinguishing high CEA levels. CONCLUSION Our findings highlight the importance of understanding cardiometabolic diseases, unhealthy lifestyles, and oxidative stress, which contribute to high serum CEA. This study demonstrates that CEA, a well-known tumor marker, can help the early detection and prevention of cardiometabolic diseases via personalized lifestyle modification.
Collapse
Affiliation(s)
- Chia-Hao Chang
- Department of Nursing, Chang Gung University of Science and Technology, Chiayi, Taiwan
| | - Hsu-Huei Weng
- Department of Nursing, Chang Gung University of Science and Technology, Chiayi, Taiwan
- Department of Diagnostic Radiology, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Yu-Chih Lin
- Department of Family Medicine, Chang Gung Memorial Hospital, Yunlin, Taiwan
| | - Chia-Ni Lin
- Department of Laboratory Medicine, Chang-Gung Memorial Hospital, Linkou, Taiwan
- Department of Medical Biotechnology and Laboratory Science, Chang Gung University, Taoyuan, Taiwan
| | - Tung-Jung Huang
- Department of Nursing, Chang Gung University of Science and Technology, Chiayi, Taiwan
- Department of Pulmonary and Critical Care, Chang Gung Memorial Hospital, Yunlin, Taiwan
| | - Mei-Yen Chen
- Department of Nursing, Chang Gung University of Science and Technology, Chiayi, Taiwan
- School of Nursing, Chang Gung University, Taoyuan, Taiwan
- Research Fellow, Department of Cardiology, Chang Gung Memorial Hospital, Chiayi, Taiwan
- *Correspondence: Mei-Yen Chen,
| |
Collapse
|
13
|
Yi M, Liao Z, Deng L, Xu L, Tan Y, Liu K, Chen Z, Zhang Y. High diagnostic value of miRNAs for NSCLC: quantitative analysis for both single and combined miRNAs in lung cancer. Ann Med 2021; 53:2178-2193. [PMID: 34913774 PMCID: PMC8740622 DOI: 10.1080/07853890.2021.2000634] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/26/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are good candidates as biomarkers for Lung cancer (LC). The aim of this article is to figure out the diagnostic value of both single and combined miRNAs in LC. METHODS Normative meta-analysis was conducted based on PRISMA. We assessed the diagnostic value by calculating the combined sensitivity (Sen), specificity (Spe), positive likelihood ratio (PLR), negative likelihood ratio (NLR) and diagnostic odds ratio (DOR) and the area under the curve (AUC) of single and combined miRNAs for LC and specific subgroups. RESULTS A total of 80 qualified studies with a total of 8971 patients and 10758 controls were included. In non-small cell lung carcinoma (NSCLC), we involved 20 single-miRNAs and found their Sen, Spe and AUC ranged from 0.52-0.81, 0.66-0.88, and 0.68-0.90, respectively, specially, miR-19 with the maximum Sen, miR-20 and miR-10 with the highest Spe as well as miR-17 with the maximum AUC. Additionally, we detected miR-21 with the maximum Sen of 0.74 [95%CI: 0.62-0.83], miR-146 with the maximum Spe and AUC of 0.93 [95%CI: 0.79-0.98] and 0.89 [95%CI: 0.86-0.92] for early-stage NSCLC. We also identified the diagnostic power of available panel (miR-210, miR-31 and miR-21) for NSCLC with satisfying Sen, Spe and AUC of 0.82 [95%CI: 0.78-0.84], 0.87 [95%CI: 0.84-0.89] and 0.91 [95%CI: 0.88-0.93], and furtherly constructed 2 models for better diagnosis. CONCLUSIONS We identified several single miRNAs and combined groups with high diagnostic power for NSCLC through pooled quantitative analysis, which shows that specific miRNAs are good biomarker candidates for NSCLC and further researches needed.
Collapse
Affiliation(s)
- Minhan Yi
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- School of Life Sciences, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zexi Liao
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Xiangya Medical School, Central South University, Changsha, Hunan, China
| | - Langmei Deng
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Emergency, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Li Xu
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Yun Tan
- School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Kun Liu
- School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Ziliang Chen
- School of Computer Science and Engineering, Central South University, Changsha, Hunan, China
| | - Yuan Zhang
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|