1
|
Qian C, Zhang X, Tian YS, Yuan L, Wei Q, Yang Y, Xu M, Wang X, Sun M. Coptisine inhibits esophageal carcinoma growth by modulating pyroptosis via inhibition of HGF/c-Met signaling. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-024-03765-6. [PMID: 39792166 DOI: 10.1007/s00210-024-03765-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 12/23/2024] [Indexed: 01/12/2025]
Abstract
Esophageal carcinoma is a highly prevalent malignancy worldwide. The present study aimed to investigate the mechanism by which the natural compound coptisine affects pyroptosis in esophageal squamous cell carcinoma (ESCC). The expression of c-Met in ESCC patients was assessed by immunohistochemical analysis of tissue microarrays. Natural drugs that bind to c-Met were identified by screening and molecular docking. The effect of coptisine on the proliferation of ESCC cells was detected by CCK-8 and colony formation assays. Cell cycle progression and cell apoptosis were detected by flow cytometry. The levels of mRNAs related to pyroptosis and miR-21 after coptisine treatment were assessed via real-time quantitative PCR. The effect of pyroptosis was evaluated by reactive oxygen species level detection and transmission electron microscopy (TEM) analysis. The expression of proteins related to pyroptosis and the HGF/c-Met pathway was detected by western blotting. A xenograft tumor model was established, and the inhibitory effect of coptisine was evaluated by observing tumor growth. The results showed that the highly expressed protein c-Met in esophageal cancer could bind with coptisine. Coptisine inhibited c-Met phosphorylation and proliferation in ESCC cells. Furthermore, coptisine inhibited the expression of downstream proteins of the HGF/c-Met signaling pathway and induced ROS generation. Tumor xenograft experiments demonstrated that coptisine effectively inhibited tumor growth by reducing the levels of pyroptosis-associated proteins. In conclusion, these findings indicate that inhibition of the HGF/c-Met signaling pathway suppresses pyroptosis to enhance the antitumor effect of coptisine in ESCC and support the potential use of coptisine for EC treatment.
Collapse
Affiliation(s)
- Chunmei Qian
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xing Zhang
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yu-Shi Tian
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, 565-0871, Japan
| | - Lin Yuan
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Qiao Wei
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yifu Yang
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Midie Xu
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Institute of Pathology, Fudan University, Shanghai, 200032, China.
| | - Xiaoyu Wang
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Menghong Sun
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
2
|
Naskar S, Mishra I, Srinath BS, Kumar RV, Veeraiyan D, Melgiri P, P S H, Sastry M, K V, Korlimarla A. Lower expressions of MIR34A and MIR31 in colo-rectal cancer are associated with an enriched immune microenvironment. Pathol Res Pract 2024; 263:155656. [PMID: 39437642 DOI: 10.1016/j.prp.2024.155656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 10/07/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024]
Abstract
INTRODUCTION MicroRNAs (MIRs) play a crucial role in colorectal cancer (CRC) development and metastasis by regulating immune responses. Tumour-infiltrating lymphocytes (TILs) are an important predictive factor in many cancers, but, their association with microRNAs have not been studied well in colorectal cancer. Three microRNAs (MIR34A, MIR31 & MIR21), the roles of which in tumorigenesis is well-studied and which also possess immunomodulatory effect, were identified by extensive literature search. Of these, MIR34A acts as a tumour suppressor, MIR21 is considered an onco-MIR, and MIR31 displays both tumour-suppressing and oncogenic properties, making it ambiguous. This study examines the relationship between these three micro-RNAs and TILs in CRC. MATERIALS & METHODS Conducted over 18 months at a tertiary cancer care hospital in southern India, this unicentric observational study included 69 cases. These cases were analyzed for miR expression using q-RT-PCR, TILs density through hematoxylin & eosin(H&E) slide examination, and p53 and beta-catenin expression via immunohistochemistry (IHC). Correlations between non-parametric variables were assessed using Chi-square and Spearman correlation tests. RESULTS The study found significantly higher MIR34A expression in patients aged 60 years and less (26/41, p=0.024) and a higher prevalence of MIR21 in male patients (23/35, p=0.012). TILs at the tumour advancing front were categorized as low (≤10 %) or high (≥15 %). Among the 36 cases with low TILs, high MIR34A and high MIR31 expressions were observed in 24 cases (p=0.016) and 23 cases (p=0.03), respectively. Conversely, 21 of 33 cases with high TILs had low expressions of both MIR34A and MIR31. High TILs were more common in early-stage CRC (TNM stages I-IIIA), with 20 out of 28 cases, compared to 28 of 41 cases in later stages (IIIB-IVC) exhibiting low TILs (p=0.003). Aberrant p53 expression correlated with lower MIR34A levels, consistent with TCGA data. CONCLUSION Lower MIR34A and MIR31 levels are associated with higher TILs density in CRC. Unlike other cancers where MIR34A has anti-tumour effects, there was no statistically significant correlation between its expression and the pT or TNM stages in this study. Increased TILs being a good prognostic indicator, this suggests MIR34A and MIR31 may help CRC cells evade immune surveillance. Aberrant p53 expression downregulates MIR34A, underscoring the therapeutic potential of miRs.
Collapse
Affiliation(s)
- Sudipta Naskar
- Department of Pathology, Sri Shankara Cancer Hospital & Research Centre, Bangalore, India.
| | - Ipseet Mishra
- Department of Surgical Oncology, Sri Shankara Cancer Hospital & Research Centre, Bangalore, India.
| | - B S Srinath
- Department of Surgical Oncology, Sri Shankara Cancer Hospital & Research Centre, Bangalore, India.
| | - Rekha V Kumar
- Department of Histopathology, Sri Shankara Cancer Hospital & Research Centre, Bangalore, India.
| | - Drugadevi Veeraiyan
- Department of Molecular Oncology, Sri Shankara Cancer Hospital & Research Centre, Bangalore, India.
| | - Pooja Melgiri
- Department of Molecular Oncology, Sri Shankara Cancer Hospital & Research Centre, Bangalore, India.
| | - Hari P S
- Department of Molecular Oncology, Sri Shankara Cancer Hospital & Research Centre, Bangalore, India.
| | - Manjunath Sastry
- Department of Surgical Oncology, Sri Shankara Cancer Hospital & Research Centre, Bangalore, India.
| | - Venkatachala K
- Department of Surgical Oncology, Sri Shankara Cancer Hospital & Research Centre, Bangalore, India.
| | - Aruna Korlimarla
- Department of Molecular Oncology, Sri Shankara Cancer Hospital & Research Centre, Bangalore, India.
| |
Collapse
|
3
|
Hayashi Y, Millen JC, Ramos RI, Linehan JA, Wilson TG, Hoon DSB, Bustos MA. Cell-free and extracellular vesicle microRNAs with clinical utility for solid tumors. Mol Oncol 2024. [PMID: 39129372 DOI: 10.1002/1878-0261.13709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/28/2024] [Accepted: 07/23/2024] [Indexed: 08/13/2024] Open
Abstract
As cutting-edge technologies applied for the study of body fluid molecular biomarkers are continuously evolving, clinical applications of these biomarkers improve. Diverse forms of circulating molecular biomarkers have been described, including cell-free DNA (cfDNA), circulating tumor cells (CTCs), and cell-free microRNAs (cfmiRs), although unresolved issues remain in their applicability, specificity, sensitivity, and reproducibility. Translational studies demonstrating the clinical utility and importance of cfmiRs in multiple cancers have significantly increased. This review aims to summarize the last 5 years of translational cancer research in the field of cfmiRs and their potential clinical applications to diagnosis, prognosis, and monitoring disease recurrence or treatment responses with a focus on solid tumors. PubMed was utilized for the literature search, following rigorous exclusion criteria for studies based on tumor types, patient sample size, and clinical applications. A total of 136 studies on cfmiRs in different solid tumors were identified and divided based on tumor types, organ sites, number of cfmiRs found, methodology, and types of biofluids analyzed. This comprehensive review emphasizes clinical applications of cfmiRs and summarizes underserved areas where more research and validations are needed.
Collapse
Affiliation(s)
- Yoshinori Hayashi
- Department of Translational Molecular Medicine, Saint John's Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, USA
| | - Janelle-Cheri Millen
- Department of Surgical Oncology, Saint John's Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, USA
| | - Romela Irene Ramos
- Department of Translational Molecular Medicine, Saint John's Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, USA
| | - Jennifer A Linehan
- Department of Urology and Urologic Oncology, Saint John's Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, USA
| | - Timothy G Wilson
- Department of Urology and Urologic Oncology, Saint John's Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, USA
| | - Dave S B Hoon
- Department of Translational Molecular Medicine, Saint John's Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, USA
- Department of Genome Sequencing Center, Saint John's Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, USA
| | - Matias A Bustos
- Department of Translational Molecular Medicine, Saint John's Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, USA
| |
Collapse
|
4
|
Matsuoka T, Yashiro M. The Role of the Transforming Growth Factor-β Signaling Pathway in Gastrointestinal Cancers. Biomolecules 2023; 13:1551. [PMID: 37892233 PMCID: PMC10605301 DOI: 10.3390/biom13101551] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
Transforming growth factor-β (TGF-β) has attracted attention as a tumor suppressor because of its potent growth-suppressive effect on epithelial cells. Dysregulation of the TGF-β signaling pathway is considered to be one of the key factors in carcinogenesis, and genetic alterations affecting TGF-β signaling are extraordinarily common in cancers of the gastrointestinal system, such as hereditary nonpolyposis colon cancer and pancreatic cancer. Accumulating evidence suggests that TGF-β is produced from various types of cells in the tumor microenvironment and mediates extracellular matrix deposition, tumor angiogenesis, the formation of CAFs, and suppression of the anti-tumor immune reaction. It is also being considered as a factor that promotes the malignant transformation of cancer, particularly the invasion and metastasis of cancer cells, including epithelial-mesenchymal transition. Therefore, elucidating the role of TGF-β signaling in carcinogenesis, cancer invasion, and metastasis will provide novel basic insight for diagnosis and prognosis and the development of new molecularly targeted therapies for gastrointestinal cancers. In this review, we outline an overview of the complex mechanisms and functions of TGF-β signaling. Furthermore, we discuss the therapeutic potentials of targeting the TGF-β signaling pathway for gastrointestinal cancer treatment and discuss the remaining challenges and future perspectives on targeting this pathway.
Collapse
Affiliation(s)
| | - Masakazu Yashiro
- Molecular Oncology and Therapeutics, Osaka Metropolitan University Graduate School of Medicine, Osaka 5458585, Japan;
| |
Collapse
|
5
|
Ma Y, Xu X, Wang H, Liu Y, Piao H. Non-coding RNA in tumor-infiltrating regulatory T cells formation and associated immunotherapy. Front Immunol 2023; 14:1228331. [PMID: 37671150 PMCID: PMC10475737 DOI: 10.3389/fimmu.2023.1228331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/28/2023] [Indexed: 09/07/2023] Open
Abstract
Cancer immunotherapy has exhibited promising antitumor effects in various tumors. Infiltrated regulatory T cells (Tregs) in the tumor microenvironment (TME) restrict protective immune surveillance, impede effective antitumor immune responses, and contribute to the formation of an immunosuppressive microenvironment. Selective depletion or functional attenuation of tumor-infiltrating Tregs, while eliciting effective T-cell responses, represents a potential approach for anti-tumor immunity. Furthermore, it does not disrupt the Treg-dependent immune homeostasis in healthy organs and does not induce autoimmunity. Yet, the shared cell surface molecules and signaling pathways between Tregs and multiple immune cell types pose challenges in this process. Noncoding RNAs (ncRNAs), including microRNAs (miRNAs) and long noncoding RNAs (lncRNAs), regulate both cancer and immune cells and thus can potentially improve antitumor responses. Here, we review recent advances in research of tumor-infiltrating Tregs, with a focus on the functional roles of immune checkpoint and inhibitory Tregs receptors and the regulatory mechanisms of ncRNAs in Treg plasticity and functionality.
Collapse
Affiliation(s)
- Yue Ma
- Department of Gynecology, Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital & Institute), Shenyang, Liaoning, China
| | - Xin Xu
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Huaitao Wang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yang Liu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Haiyan Piao
- Medical Oncology Department of Gastrointestinal Cancer, Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital & Institute), Shenyang, Liaoning, China
| |
Collapse
|
6
|
Li B, Ren MY, Chen YZ, Meng YQ, Song TN, Su ZP, Yang B. SYNGR2 serves as a prognostic biomarker and correlates with immune infiltrates in esophageal squamous cell carcinoma. J Gene Med 2022; 24:e3441. [PMID: 35840542 DOI: 10.1002/jgm.3441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/05/2022] [Accepted: 06/28/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Synaptogyrin-2 (SYNGR2) plays an important role in regulating membrane traffic in nonneuronal cells. However, the role of SYNGR2 in esophageal squamous cell carcinoma (ESCC) remains unclear. METHODS All original data were downloaded from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases and integrated via R 3.5.3. SYNGR2 expression was explored in the TCGA and GEO databases. The correlations between SYNGR2 and cancer immune characteristics were analyzed via the TIMER and TISIDB databases. RESULTS In general, SYNGR2 was predominantly overexpressed and had reference value in the diagnosis and prognostic estimation of ESCC. Upregulated SYNGR2 was associated with poorer overall survival, poorer disease-specific survival and T stage in ESCC. Mechanistically, we identified hub genes that included a total of 38 SYNGR2-related genes, which were tightly associated with the protein polyubiquitination pathway in ESCC patients. SYNGR2 expression was negatively related to the infiltrating levels of T helper cells. SYNGR2 methylation was positively correlated with the expression of chemokines (CCL2 and CXCL12), chemokine receptors (CCR1 and CCR2), immunoinhibitors (CXCL12 and TNFRSF4) and immunostimulators (CSF1R and PDCD1LG2) in ESCC. CONCLUSION SYNGR2 may be used as a biomarker for determining prognosis and immune infiltration in ESCC.
Collapse
Affiliation(s)
- Bin Li
- Department of Thoracic Surgery, Lanzhou University Second Hospital, Lanzhou University Second Clinical Medical College, Lanzhou, China
| | - Mei-Yu Ren
- Department of Thoracic Surgery, Lanzhou University Second Hospital, Lanzhou University Second Clinical Medical College, Lanzhou, China
| | - Yu-Zhen Chen
- Department of Thoracic Surgery, Lanzhou University Second Hospital, Lanzhou University Second Clinical Medical College, Lanzhou, China
| | - Yu-Qi Meng
- Department of Thoracic Surgery, Lanzhou University Second Hospital, Lanzhou University Second Clinical Medical College, Lanzhou, China
| | - Tie-Niu Song
- Department of Thoracic Surgery, Lanzhou University Second Hospital, Lanzhou University Second Clinical Medical College, Lanzhou, China
| | - Zhi-Peng Su
- Department of Thoracic Surgery, Lanzhou University Second Hospital, Lanzhou University Second Clinical Medical College, Lanzhou, China
| | - Bo Yang
- Department of Thoracic Surgery, Lanzhou University Second Hospital, Lanzhou University Second Clinical Medical College, Lanzhou, China
| |
Collapse
|
7
|
Ranjbar R, Ghasemian M, Maniati M, Hossein Khatami S, Jamali N, Taheri-Anganeh M. Gastrointestinal disorder biomarkers. Clin Chim Acta 2022; 530:13-26. [DOI: 10.1016/j.cca.2022.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/11/2022] [Accepted: 02/15/2022] [Indexed: 01/19/2023]
|
8
|
Samiei H, Ajam F, Gharavi A, Abdolmaleki S, Kokhaei P, Mohammadi S, Memarian A. Simultaneous disruption of circulating miR-21 and cytotoxic T lymphocytes (CTLs): Prospective diagnostic and prognostic markers for esophageal squamous cell carcinoma (ESCC). J Clin Lab Anal 2022; 36:e24125. [PMID: 34799871 PMCID: PMC8761409 DOI: 10.1002/jcla.24125] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/06/2021] [Accepted: 11/09/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC) as the most prominent type of esophageal cancer (EC) in developing countries encompasses a substantial contribution of cancer-related mortalities and morbidities. Cytotoxic T lymphocytes (CTLs) are the major subset of effector T cells against cancer. However, the microRNAs involved in the development and regulation of CTLs could be disrupted in cancers such as EC. METHODS Here, we evaluated the population of IL-10, TGF-β, IFN-γ, and IL-17a-producing CD3+CD8+ T cells, their association with the circulating levels of miR-21 and miR-29b, and their diagnostic and/or prognostic (after 160 weeks of follow-up) utilities in 34 ESCC patients (12 newly diagnosed: ND, 24 under-treatment: UT) and 34 matched healthy donors. RESULTS The population of IL-10 and TGF-β-producing CTLs (CD8+ Tregs) were considerably expanded, in addition to the overexpression of miR-21 in both groups (ND and UT) of ESCC patients, while the frequency of Tc17 and CD8+ Treg cells increased only in UT patients. The expression means of TGF-β and IL-10 in CTLs were considered to be excellent biomarkers (1 ≥ area under the curve: AUC ≥0.9) in distinguishing ESCC patients and associated subgroups from healthy subjects. Moreover, the lower expressions of TGF-β, IL-17a, IL-10, and IFN-γ in CTLs were associated with ESCC better prognosis. CONCLUSIONS The association between the impaired function of CD3+ CD8+ T cell subsets and miR-21 expression could be introduced as novel therapeutic targets and powerful diagnostic and prognostic markers for ESCC.
Collapse
Affiliation(s)
- Hadiseh Samiei
- Immunology DepartmentFaculty of MedicineSemnan University of Medical SciencesSemnanIran
| | - Faezeh Ajam
- Immunology DepartmentFaculty of MedicineGolestan University of Medical SciencesGorganIran
| | - Abdolsamad Gharavi
- Digestive Diseases Research InstituteTehran University of Medical SciencesTehranIran
- Golestan Research Center of Gastroenterology and HepatologyGolestan University of Medical SciencesGorganIran
| | - Sara Abdolmaleki
- Clinical Immunology LaboratoryDeziani Specialized and Advanced ClinicGolestan University of Medical SciencesGorganIran
| | - Parviz Kokhaei
- Immune and Gene Therapy LaboratoryCancer Centre KarolinskaDepartment of Oncology and PathologyKarolinska InstituteStockholmSweden
- Cancer Research Center and Department of ImmunologySemnan University of Medical SciencesSemnanIran
| | - Saeed Mohammadi
- Stem Cell Research CenterGolestan University of Medical SciencesGorganIran
- Infectious Diseases Research CenterGolestan University of Medical SciencesGorganIran
| | - Ali Memarian
- Golestan Research Center of Gastroenterology and HepatologyGolestan University of Medical SciencesGorganIran
- Department of ImmunologySchool of MedicineGolestan University of Medical SciencesGorganIran
| |
Collapse
|