1
|
Sena-Dos-Santos C, Moura DD, Epifane-de-Assunção MC, Ribeiro-Dos-Santos Â, Santos-Lobato BL. Mitochondrial DNA variants, haplogroups and risk of Parkinson's disease: A systematic review and meta-analysis. Parkinsonism Relat Disord 2024; 125:107044. [PMID: 38917640 DOI: 10.1016/j.parkreldis.2024.107044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/18/2024] [Accepted: 06/18/2024] [Indexed: 06/27/2024]
Abstract
BACKGROUND Growing evidence has shown that mitochondrial dysfunction is part of the pathogenesis of Parkinson's disease (PD). However, the role of mitochondrial DNA (mtDNA) variants on PD onset is unclear. OBJECTIVES The present study aims to evaluate the effect of mtDNA variants and haplogroups on risk of developing PD. METHODS Systematic review and meta-analysis of studies investigating associations between PD and mtDNA variants and haplogroups. RESULTS A total of 33 studies were eligible from 957 screened studies. Among 13,640 people with PD and 22,588 control individuals, the association with PD was consistently explored in 13 mtDNA variants in 10 genes and 19 macrohaplogroups. Four mtDNA variants were associated with PD: m.4336C (odds ratio [OR] = 2.99; 95 % confidence interval [CI] = 1.79-5.02), m.7028T (OR = 0.80; 95 % CI = 0.70-0.91), m.10398G (OR = 0.92; 95 % CI = 0.85-0.98), and m.13368A (OR = 0.74; 95 % CI = 0.56-0.98). Four mtDNA macrohaplogroups were associated with PD: R (OR = 2.25; 95 % CI = 1.92-2.65), F (OR = 1.18; 95 % CI = 1.01-1.38), H (OR = 1.12; 95 % CI = 1.06-1.18), and B (OR = 0.77; 95 % CI = 0.65-0.92). CONCLUSIONS Despite most studies may be underpowered by the underrepresentation of people without dominant European- and Asian-ancestry, low use of next-generation sequencing for genotyping and small sample sizes, the identification of mtDNA variants and macrohaplogroups associated with PD strengthens the link between the disease and mitochondrial dysfunction and mtDNA genomic instability.
Collapse
Affiliation(s)
| | - Dafne Dalledone Moura
- Laboratório de Neuropatologia Experimental, Universidade Federal do Pará, Belém, Pará, Brazil
| | | | | | | |
Collapse
|
2
|
Bľandová G, Janoštiaková N, Kodada D, Pastorek M, Lipták R, Hodosy J, Šebeková K, Celec P, Krasňanská G, Eliaš V, Wachsmannová L, Konečný M, Repiská V, Baldovič M. Mitochondrial DNA variability and Covid-19 in the Slovak population. Mitochondrion 2024; 75:101827. [PMID: 38135240 DOI: 10.1016/j.mito.2023.101827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/27/2023] [Accepted: 12/16/2023] [Indexed: 12/24/2023]
Abstract
Recent studies have shown that mitochondria are involved in the pathogenesis of Covid-19. Mitochondria play a role in production of reactive oxygen species and induction of an innate immune response, both important during infections. Common variability of mitochondrial DNA (mtDNA) can affect oxidative phosphorylation and the risk or lethality of cardiovascular, neurodegenerative diseases and sepsis. However, it is unclear whether susceptibility of severe Covid-19 might be affected by mtDNA variation. Thus, we have analyzed mtDNA in a sample of 446 Slovak patients hospitalized due to Covid-19 and a control population group consisting of 1874 individuals. MtDNA variants in the HVRI region have been analyzed and classified into haplogroups at various phylogenetic levels. Binary logistic regression was used to assess the risk of Covid-19. Haplogroups T1, H11, K and variants 16256C > T, 16265A > C, 16293A > G, 16311 T > C and 16399A > G were associated with an increased Covid-19 risk. On contrary, Haplogroup J1, haplogroup clusters H + U5b and T2b + U5b, and the mtDNA variant 16189 T > C were associated with decreased risk of Covid-19. Following the application of the Bonferroni correction, statistical significance was observed exclusively for the cluster of haplogroups H + U5b. Unsurprisingly, the most significant factor contributing to the mortality of patients with Covid-19 is the age of patients. Our findings suggest that mtDNA haplogroups can play a role in Covid-19 pathogenesis, thus potentially useful in identifying susceptibility to its severe form. To confirm these associations, further studies taking into account the nuclear genome or other non-biological influences are needed.
Collapse
Affiliation(s)
- Gabriela Bľandová
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, Bratislava, Slovakia.
| | - Nikola Janoštiaková
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Dominik Kodada
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Michal Pastorek
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Róbert Lipták
- Department of Emergency Medicine, University Hospital, Bratislava, Slovakia
| | - Július Hodosy
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia; Department of Emergency Medicine, University Hospital, Bratislava, Slovakia
| | - Katarína Šebeková
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Peter Celec
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia; Institute of Pathophysiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Gabriela Krasňanská
- Laboratory of Genomic Medicine, GHC GENETICS SK, Science Park Comenius University, Bratislava, Slovakia; Department of Biology, Institute of Biology and Biotechnology, Faculty of Natural Sciences, University of St. Cyril and Methodius, Trnava, Slovakia
| | - Vladimír Eliaš
- Laboratory of Genomic Medicine, GHC GENETICS SK, Science Park Comenius University, Bratislava, Slovakia
| | - Lenka Wachsmannová
- Laboratory of Genomic Medicine, GHC GENETICS SK, Science Park Comenius University, Bratislava, Slovakia
| | - Michal Konečný
- Laboratory of Genomic Medicine, GHC GENETICS SK, Science Park Comenius University, Bratislava, Slovakia; Department of Biology, Institute of Biology and Biotechnology, Faculty of Natural Sciences, University of St. Cyril and Methodius, Trnava, Slovakia
| | - Vanda Repiská
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Marian Baldovič
- Laboratory of Genomic Medicine, GHC GENETICS SK, Science Park Comenius University, Bratislava, Slovakia; Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia.
| |
Collapse
|
3
|
Abrishamdar M, Jalali MS, Farbood Y. Targeting Mitochondria as a Therapeutic Approach for Parkinson's Disease. Cell Mol Neurobiol 2023; 43:1499-1518. [PMID: 35951210 PMCID: PMC11412433 DOI: 10.1007/s10571-022-01265-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/21/2022] [Indexed: 11/03/2022]
Abstract
Neurodegeneration is among the most critical challenges that involve modern societies and annually influences millions of patients worldwide. While the pathophysiology of Parkinson's disease (PD) is complicated, the role of mitochondrial is demonstrated. The in vitro and in vivo models and genome-wide association studies in human cases proved that specific genes, including PINK1, Parkin, DJ-1, SNCA, and LRRK2, linked mitochondrial dysfunction with PD. Also, mitochondrial DNA (mtDNA) plays an essential role in the pathophysiology of PD. Targeting mitochondria as a therapeutic approach to inhibit or slow down PD formation and progression seems to be an exciting issue. The current review summarized known mutations associated with both mitochondrial dysfunction and PD. The significance of mtDNA in Parkinson's disease pathogenesis and potential PD therapeutic approaches targeting mitochondrial dysfunction was then discussed.
Collapse
Affiliation(s)
- Maryam Abrishamdar
- Department of Physiology, Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Maryam Sadat Jalali
- Department of Physiology, Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Yaghoob Farbood
- Department of Physiology, Medicine Faculty, Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|