1
|
Interaction of Arsenic Exposure and Transcriptomic Profile in Basal Cell Carcinoma. Cancers (Basel) 2022; 14:cancers14225598. [PMID: 36428691 PMCID: PMC9688807 DOI: 10.3390/cancers14225598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/08/2022] [Accepted: 11/12/2022] [Indexed: 11/16/2022] Open
Abstract
Exposure to inorganic arsenic (As) is recognized as risk factor for basal cell carcinoma (BCC). We have followed-up 7000 adults for 6 years who were exposed to As and had manifest As skin toxicity. Of them, 1.7% developed BCC (males = 2.2%, females = 1.3%). In this study, we compared transcriptome-wide RNA sequencing data from the very first 26 BCC cases and healthy skin tissue from independent 16 individuals. Genes in “ cell carcinoma pathway”, “Hedgehog signaling pathway”, and “Notch signaling pathway” were overexpressed in BCC, confirming the findings from earlier studies in BCC in other populations known to be exposed to As. However, we found that the overexpression of these known pathways was less pronounced in patients with high As exposure (urinary As creatinine ratio (UACR) > 192 µg/gm creatinine) than patients with low UACR. We also found that high UACR was associated with impaired DNA replication pathway, cellular response to different DNA damage repair mechanisms, and immune response. Transcriptomic data were not strongly suggestive of great potential for immune checkpoint inhibitors; however, it suggested lower chance of platinum drug resistance in BCC patients with high UACR compared high platinum drug resistance potential in patients with lower UACR.
Collapse
|
2
|
Keeratichamroen S, Lirdprapamongkol K, Thongnest S, Boonsombat J, Chawengrum P, Sornprachum T, Sirirak J, Verathamjamras C, Ornnork N, Ruchirawat S, Svasti J. JAK2/STAT3‑mediated dose‑dependent cytostatic and cytotoxic effects of sesquiterpene lactones from Gymnanthemum extensum on A549 human lung carcinoma cells. Oncol Rep 2021; 47:6. [PMID: 34738622 PMCID: PMC8600427 DOI: 10.3892/or.2021.8217] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/04/2021] [Indexed: 12/19/2022] Open
Abstract
Due to drug resistance and disease recurrence, lung cancer remains one of the primary cancer-related causes of death in both men and women worldwide. In addition, lung cancer is clinically silent and thus most patients are at an advanced stage at the time of diagnosis. The limited efficiency of current conventional chemotherapies necessitates the search for novel effective anticancer agents. The present study demonstrated the anti-proliferative effect and apoptosis-inducing activity of three sesquiterpene lactones isolated from Gymnanthemum extensum, vernodalin (VDa), vernolepin (VLe) and vernolide (VLi), on A549 human lung cancer cells. Treatment with sub-cytotoxic doses (cell viability remaining >75%) of VDa, VLe and VLi, arrested progression of the A549 cell cycle at the G0/G1 phase, while cytotoxic doses of the three compounds induced G2/M phase arrest and apoptosis. Mechanistic studies revealed that VDa, VLe and VLi may exert their anti-tumor activity through the JAK2/STAT3 pathway. Molecular docking analysis confirmed that VDa, VLe and VLi formed hydrogen bonds with the FERM domain of JAK2 protein. Overall, the present study highlighted the potential therapeutic value of VDa, VLe and VLi to be further developed as anticancer agents for the treatment of lung cancer.
Collapse
Affiliation(s)
| | | | - Sanit Thongnest
- Laboratory of Natural Products, Chulabhorn Research Institute, Bangkok 10210, Thailand
| | - Jutatip Boonsombat
- Laboratory of Natural Products, Chulabhorn Research Institute, Bangkok 10210, Thailand
| | - Pornsuda Chawengrum
- Program in Chemical Sciences, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok 10210, Thailand
| | - Thiwaree Sornprachum
- Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok 10210, Thailand
| | - Jitnapa Sirirak
- Department of Chemistry, Faculty of Science, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Chris Verathamjamras
- Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok 10210, Thailand
| | - Narittira Ornnork
- Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok 10210, Thailand
| | - Somsak Ruchirawat
- Center of Excellence on Environmental Health and Toxicology, Ministry of Education, Bangkok 10400, Thailand
| | - Jisnuson Svasti
- Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok 10210, Thailand
| |
Collapse
|
3
|
Zhou Z, Zhou B, Chen H, Lu K, Wang Y. Oxidative stress activates the Nrf2-mediated antioxidant response and P38 MAPK pathway: A possible apoptotic mechanism induced by BDE-47 in rainbow trout (Oncorhynchus mykiss) gonadal RTG-2 cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 287:117341. [PMID: 34023659 DOI: 10.1016/j.envpol.2021.117341] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 06/12/2023]
Abstract
Our previous study showed that 2,2',4,4'-tetrabromodiphenyl ether (BDE-47), the most biotoxic polybrominated diphenyl ether (PBDE) in the marine environment, induced apoptosis in rainbow trout gonadal RTG-2 cells. This effect occurred via ROS- and Ca2+-mediated apoptotic pathways, but the exact mechanism remains unknown. Therefore, in the present study, the possible mechanism was examined from the perspective of ROS-induced oxidative stress. The results showed that BDE-47 exposure significantly elevated the malondialdehyde (MDA) contents and the intracellular GSH/GSSG ratio, and the GSH-related enzymes were greatly altered, indicating alteration of the redox status and occurrence of oxidative stress. The mRNA levels of nuclear factor E2-related factor 2 (Nrf2) and its downstream genes were simultaneously greatly elevated. The p38 mitogen-activated protein kinase (MAPK) signaling pathway was also found to be induced by BDE-47 exposure. The addition of SB203580, a p38 MAPK inhibitor resulted in decreased apoptosis. In addition, supplementation with Ca2+ inhibitors BAPTA-AM positively affected p38 MAPK activation. Taken together, BDE-47 exposure resulted in the occurrence of oxidative stress and initiated the Nrf2-mediated antioxidant response. Subsequently, the altered redox status induced p38 MAPK activation, which played a pivotal role in the cellular apoptosis of RTG-2 cells.
Collapse
Affiliation(s)
- Zhongyuan Zhou
- Department of Marine Ecology, College of Marine Life Science, Ocean University of China, Qingdao, 266003, China.
| | - Bin Zhou
- Department of Marine Ecology, College of Marine Life Science, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| | - Hongmei Chen
- Key Laboratory of Xinjiang Endemic Phytomedicine Resources, Ministry of Education, Pharmacology Department, School of Pharmacy, Shihezi University, Shihezi, 832002, China.
| | - Keyu Lu
- Department of Geography, University College London, London, WC1E 6BT, UK.
| | - You Wang
- Department of Marine Ecology, College of Marine Life Science, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| |
Collapse
|
4
|
Cao L, Yuan X, Bao F, Lv W, He Z, Tang J, Han J, Hu J. Downregulation of HSPA2 inhibits proliferation via ERK1/2 pathway and endoplasmic reticular stress in lung adenocarcinoma. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:540. [PMID: 31807522 DOI: 10.21037/atm.2019.10.16] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background To explore the mechanisms of HSPA2 downregulation in inhibiting the proliferation of lung adenocarcinoma. Methods We obtained 85 specimens of human lung adenocarcinoma and specimens of adjacent nontumor tissues from the First Affiliated Hospital, School of Medicine, Zhejiang University. We then analyzed the expression of HSPA2 in these tissues and in lung adenocarcinoma and normal lung cell lines. Human lung adenocarcinoma cell lines were transfected with siRNA silencing HSPA2 and subjected to colony forming, Thiazolyl blue tetrazolium bromide (MTT), propidium iodide flow cytometry, immunofluorescence assay and western blotting to explore the causes of the reduction in the proliferation of lung adenocarcinoma cells and the endoplasmic reticulum stress induced by HSPA2 downregulation. Finally, we confirmed these mechanisms via rescue assay. Results Greater HSPA2 expression was found in the lung adenocarcinoma specimens than in the specimens of adjacent nontumor tissues, and greater expression was found in lung adenocarcinoma cell lines than in normal cell lines. HSPA2 knockdown via siRNA reduced proliferation and led to G1/S phase cell cycle arrest in the lung adenocarcinoma cell lines. G1/S phase cell cycle arrest triggered by HSPA2 downregulation could be attributed, at least in part, to phosphorylation and activation of the Erk1/2 pathway and probably to activation of IRE1α/PERK-mediated endoplasmic reticulum stress. Conclusions HSPA2 plays an important role in the origin and development of lung adenocarcinoma. It is thus deserving of further study as a promising clinical therapeutic target.
Collapse
Affiliation(s)
- Longxiang Cao
- Department of Thoracic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Xiaoshuai Yuan
- Department of Thoracic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Feichao Bao
- Department of Thoracic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Wang Lv
- Department of Thoracic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Zhehao He
- Department of Thoracic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Jie Tang
- Department of Thoracic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Jia Han
- Department of Thoracic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Jian Hu
- Department of Thoracic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| |
Collapse
|
5
|
He Z, Chen X, Fu M, Tang J, Li X, Cao H, Wang Y, Zheng SJ. Inhibition of fowl adenovirus serotype 4 replication in Leghorn male hepatoma cells by SP600125 via blocking JNK MAPK pathway. Vet Microbiol 2019; 228:45-52. [DOI: 10.1016/j.vetmic.2018.11.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/15/2018] [Accepted: 11/16/2018] [Indexed: 12/21/2022]
|
6
|
Krupkova O, Sadowska A, Kameda T, Hitzl W, Hausmann ON, Klasen J, Wuertz-Kozak K. p38 MAPK Facilitates Crosstalk Between Endoplasmic Reticulum Stress and IL-6 Release in the Intervertebral Disc. Front Immunol 2018; 9:1706. [PMID: 30174670 PMCID: PMC6107791 DOI: 10.3389/fimmu.2018.01706] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 07/10/2018] [Indexed: 11/24/2022] Open
Abstract
Degenerative disc disease is associated with increased expression of pro-inflammatory cytokines in the intervertebral disc (IVD). However, it is not completely clear how inflammation arises in the IVD and which cellular compartments are involved in this process. Recently, the endoplasmic reticulum (ER) has emerged as a possible modulator of inflammation in age-related disorders. In addition, ER stress has been associated with the microenvironment of degenerated IVDs. Therefore, the aim of this study was to analyze the effects of ER stress on inflammatory responses in degenerated human IVDs and associated molecular mechanisms. Gene expression of ER stress marker GRP78 and pro-inflammatory cytokines IL-6, IL-8, IL-1β, and TNF-α was analyzed in human surgical IVD samples (n = 51, Pfirrmann grade 2-5). The expression of GRP78 positively correlated with the degeneration grade in lumbar IVDs and IL-6, but not with IL-1β and TNF-α. Another set of human surgical IVD samples (n = 25) was used to prepare primary cell cultures. ER stress inducer thapsigargin (Tg, 100 and 500 nM) activated gene and protein expression of IL-6 and induced phosphorylation of p38 MAPK. Both inhibition of p38 MAPK by SB203580 (10 µM) and knockdown of ER stress effector CCAAT-enhancer-binding protein homologous protein (CHOP) reduced gene and protein expression of IL-6 in Tg-treated cells. Furthermore, the effects of an inflammatory microenvironment on ER stress were tested. TNF-α (5 and 10 ng/mL) did not activate ER stress, while IL-1β (5 and 10 ng/mL) activated gene and protein expression of GRP78, but did not influence [Ca2+]i flux and expression of CHOP, indicating that pro-inflammatory cytokines alone may not induce ER stress in vivo. This study showed that IL-6 release in the IVD can be initiated following ER stress and that ER stress mediates IL-6 release through p38 MAPK and CHOP. Therapeutic targeting of ER stress response may reduce the consequences of the harsh microenvironment in degenerated IVD.
Collapse
Affiliation(s)
- Olga Krupkova
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | | | - Takuya Kameda
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
- Fukushima Medical University, Fukushima, Japan
| | - Wolfgang Hitzl
- Biostatistics, Research Office, Paracelsus Medical University, Salzburg, Austria
- Department of Ophthalmology and Optometry, Paracelsus Medical University, Salzburg, Austria
| | | | | | - Karin Wuertz-Kozak
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
- Academic Teaching Hospital, Spine Research Institute, Paracelsus Medical University, Salzburg, Austria
- Spine Center, Schön Klinic Munich Harlaching, Munich, Germany
- Department of Health Sciences, University of Potsdam, Potsdam, Germany
| |
Collapse
|
7
|
Qu X, Ding X, Duan M, Yang J, Lin R, Zhou Z, Wang S. Influenza virus infection induces translocation of apoptosis-inducing factor (AIF) in A549 cells: role of AIF in apoptosis and viral propagation. Arch Virol 2016; 162:669-675. [PMID: 27853862 DOI: 10.1007/s00705-016-3151-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 11/03/2016] [Indexed: 02/04/2023]
Abstract
It is recognized that influenza virus induces caspase-dependent apoptosis by activating caspase-3. Apoptosis-inducing factor (AIF) is a caspase-independent cell death effector, and its mitochondrial-nuclear translocation plays an important role in apoptosis. It is demonstrated in this study how influenza virus infection can induce caspase-independent apoptosis in the human alveolar epithelial cell line A549. AIF is translocated from the mitochondria to the nucleus in a caspase-independent manner in response to infection with influenza virus. Knockdown of AIF expression by small interfering RNA (siRNA) led to a reduction in virus-infection-induced apoptosis and virus yield. These results indicate that AIF translocation has a role in influenza-virus-induced apoptosis.
Collapse
Affiliation(s)
- Xinyan Qu
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing, 100850, China.,Shandong Analysis and Test Center, Shandong Academy of Sciences, Jinan, China
| | - Xiaoran Ding
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing, 100850, China
| | - Ming Duan
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing, 100850, China.,Institute of Zoonoses, Jilin University, 5333 Xian road, Changchun, 130062, China
| | - Jing Yang
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing, 100850, China
| | - Ruxian Lin
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing, 100850, China
| | - Zhe Zhou
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing, 100850, China.
| | - Shengqi Wang
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing, 100850, China.
| |
Collapse
|
8
|
Responses of solid tumor cells in DMEM to reactive oxygen species generated by non-thermal plasma and chemically induced ROS systems. Sci Rep 2015; 5:8587. [PMID: 25715710 PMCID: PMC4341198 DOI: 10.1038/srep08587] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 01/27/2015] [Indexed: 02/08/2023] Open
Abstract
In this study, we assessed the role of different reactive oxygen species (ROS) generated by soft jet plasma and chemical-induced ROS systems with regard to cell death in T98G, A549, HEK293 and MRC5 cell lines. For a comparison with plasma, we generated superoxide anion (O2−), hydroxyl radical (HO·), and hydrogen peroxide (H2O2) with chemicals inside an in vitro cell culture. Our data revealed that plasma decreased the viability and intracellular ATP values of cells and increased the apoptotic population via a caspase activation mechanism. Plasma altered the mitochondrial membrane potential and eventually up-regulated the mRNA expression levels of BAX, BAK1 and H2AX gene but simultaneously down-regulated the levels of Bcl-2 in solid tumor cells. Moreover, a western blot analysis confirmed that plasma also altered phosphorylated ERK1/2/MAPK protein levels. At the same time, using ROS scavengers with plasma, we observed that scavengers of HO· (mannitol) and H2O2 (catalase and sodium pyruvate) attenuated the activity of plasma on cells to a large extent. In contrast, radicals generated by specific chemical systems enhanced cell death drastically in cancer as well as normal cell lines in a dose-dependent fashion but not specific with regard to the cell type as compared to plasma.
Collapse
|
9
|
Irazoqui AP, Boland RL, Buitrago CG. Actions of 1,25(OH)2-vitamin D3 on the cellular cycle depend on VDR and p38 MAPK in skeletal muscle cells. J Mol Endocrinol 2014; 53:331-43. [PMID: 25316911 DOI: 10.1530/jme-14-0102] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Previously, we have reported that 1,25(OH)2-vitamin D3 (1,25D) activates p38 MAPK (p38) in a vitamin D receptor (VDR)-dependent manner in proliferative C2C12 myoblast cells. It was also demonstrated that 1,25D promotes muscle cell proliferation and differentiation. However, we did not study these hormone actions in depth. In this study we have investigated whether the VDR and p38 participate in the signaling mechanism triggered by 1,25D. In C2C12 cells, the VDR was knocked down by a shRNA, and p38 was specifically inhibited using SB-203580. Results from cell cycle studies indicated that hormone stimulation prompts a peak of S-phase followed by an arrest in the G0/G1-phase, events which were dependent on VDR and p38. Moreover, 1,25D increases the expression of cyclin D3 and the cyclin-dependent kinase inhibitors, p21(Waf1/Cip1) and p27(Kip1), while cyclin D1 protein levels did not change during G0/G1 arrest. In all these events, p38 and VDR were required. At the same time, a 1,25D-dependent acute increase in myogenin expression was observed, indicating that the G0/G1 arrest of cells is a pro-differentiative event. Immunocytochemical assays revealed co-localization of VDR and cyclin D3, promoted by 1,25D in a p38-dependent manner. When cyclin D3 expression was silenced, VDR and myogenin levels were downregulated, indicating that cyclin D3 was required for 1,25D-induced VDR expression and the concomitant entrance into the differentiation process. In conclusion, the VDR and p38 are involved in control of the cellular cycle by 1,25D in skeletal muscle cells, providing key information on the mechanisms underlying hormone regulation of myogenesis.
Collapse
Affiliation(s)
- Ana P Irazoqui
- INBIOSUR - CONICETDepartamento de Biología, Bioquímica and Farmacia, Universidad Nacional del Sur, San Juan 670, 8000 Bahía Blanca, Argentina
| | - Ricardo L Boland
- INBIOSUR - CONICETDepartamento de Biología, Bioquímica and Farmacia, Universidad Nacional del Sur, San Juan 670, 8000 Bahía Blanca, Argentina
| | - Claudia G Buitrago
- INBIOSUR - CONICETDepartamento de Biología, Bioquímica and Farmacia, Universidad Nacional del Sur, San Juan 670, 8000 Bahía Blanca, Argentina
| |
Collapse
|
10
|
Darling NJ, Cook SJ. The role of MAPK signalling pathways in the response to endoplasmic reticulum stress. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:2150-63. [DOI: 10.1016/j.bbamcr.2014.01.009] [Citation(s) in RCA: 222] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 12/20/2013] [Accepted: 01/09/2014] [Indexed: 12/30/2022]
|
11
|
Kang N, Wang MM, Wang YH, Zhang ZN, Cao HR, Lv YH, Yang Y, Fan PH, Qiu F, Gao XM. Tetrahydrocurcumin induces G2/M cell cycle arrest and apoptosis involving p38 MAPK activation in human breast cancer cells. Food Chem Toxicol 2014; 67:193-200. [PMID: 24593988 DOI: 10.1016/j.fct.2014.02.024] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Revised: 02/06/2014] [Accepted: 02/11/2014] [Indexed: 01/10/2023]
Abstract
Curcumin (CUR) is a major naturally-occurring polyphenol of Curcuma species, which is commonly used as a yellow coloring and flavoring agent in foods. In recent years, it has been reported that CUR exhibits significant anti-tumor activity in vivo. However, the pharmacokinetic features of CUR have indicated poor oral bioavailability, which may be related to its extensive metabolism. The CUR metabolites might be responsible for the antitumor pharmacological effects in vivo. Tetrahydrocurcumin (THC) is one of the major metabolites of CUR. In the present study, we examined the efficacy and associated mechanism of action of THC in human breast cancer MCF-7 cells for the first time. Here, THC exhibited significant cell growth inhibition by inducing MCF-7 cells to undergo mitochondrial apoptosis and G2/M arrest. Moreover, co-treatment of MCF-7 cells with THC and p38 MAPK inhibitor, SB203580, effectively reversed the dissipation in mitochondrial membrane potential (Δψm), and blocked THC-mediated Bax up-regulation, Bcl-2 down-regulation, caspase-3 activation as well as p21 up-regulation, suggesting p38 MAPK might mediate THC-induced apoptosis and G2/M arrest. Taken together, these results indicate THC might be an active antitumor form of CUR in vivo, and it might be selected as a potentially effective agent for treatment of human breast cancer.
Collapse
Affiliation(s)
- Ning Kang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, PR China; Department of Biochemistry and Molecular Biology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, PR China
| | - Miao-Miao Wang
- Department of Biochemistry and Molecular Biology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, PR China
| | - Ying-Hui Wang
- Department of Biochemistry and Molecular Biology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, PR China
| | - Zhe-Nan Zhang
- Department of Biochemistry and Molecular Biology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, PR China
| | - Hong-Rui Cao
- Department of Biochemistry and Molecular Biology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, PR China
| | - Yuan-Hao Lv
- Department of Biochemistry and Molecular Biology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, PR China
| | - Yang Yang
- Department of Biochemistry and Molecular Biology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, PR China
| | - Peng-Hui Fan
- Department of Biochemistry and Molecular Biology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, PR China
| | - Feng Qiu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, PR China.
| | - Xiu-Mei Gao
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, PR China.
| |
Collapse
|
12
|
Lin DW, Chung BP, Kaiser P. S-adenosylmethionine limitation induces p38 mitogen-activated protein kinase and triggers cell cycle arrest in G1. J Cell Sci 2013; 127:50-9. [PMID: 24155332 DOI: 10.1242/jcs.127811] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The primary methyl group donor S-adenosylmethionine (SAM) is important for a plethora of cellular pathways including methylation of nucleic acids, proteins, and the 5' cap structure of mRNAs, as well as biosynthesis of phospholipids and polyamines. In addition, because it is the cofactor for chromatin methylation, SAM is an important metabolite for the establishment and maintenance of epigenetic marks. Here, we demonstrate that cells halt proliferation when SAM levels become low. Cell cycle arrest occurs primarily in the G1 phase of the cell cycle and is accompanied by activation of the mitogen-activated protein kinase p38 (MAPK14) and subsequent phosphorylation of MAPK-activated protein kinase-2 (MK2). Surprisingly, Cdk4 activity remains high during cell cycle arrest, whereas Cdk2 activity decreases concomitantly with cyclin E levels. Cell cycle arrest was induced by both pharmacological and genetic manipulation of SAM synthesis through inhibition or downregulation of methionine adenosyltransferase, respectively. Depletion of methionine, the precursor of SAM, from the growth medium induced a similar cell cycle arrest. Unexpectedly, neither methionine depletion nor inhibition of methionine adenosyltransferase significantly affected mTORC1 activity, suggesting that the cellular response to SAM limitation is independent from this major nutrient-sensing pathway. These results demonstrate a G1 cell cycle checkpoint that responds to limiting levels of the principal cellular methyl group donor S-adenosylmethionine. This metabolic checkpoint might play important roles in maintenance of epigenetic stability and general cellular integrity.
Collapse
Affiliation(s)
- Da-Wei Lin
- University of California Irvine, Department of Biological Chemistry, College of Medicine, 240D Med Sci I, Irvine, CA 92697-1700, USA
| | | | | |
Collapse
|
13
|
Hwang HB, Oh TH, Kim HS. Effect of ethanol-treated mid-peripheral epithelium on corneal wound healing in rabbits. BMC Ophthalmol 2013; 13:27. [PMID: 23822645 PMCID: PMC3703275 DOI: 10.1186/1471-2415-13-27] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 07/01/2013] [Indexed: 11/20/2022] Open
Abstract
Background To determine the effect of an ethanol-treated mid-peripheral epithelium on wound healing of the corneal epithelium. Methods Epithelial removal was performed on 18 rabbit eyes, which were divided into three groups of six eyes each as follows: group 1, an 8.0-mm diameter treated with balanced salt solution (BSS) and an 8.0-mm removal; group 2, an 8.0-mm diameter treated with 20% ethanol for 30 seconds and an 8.0-mm removal; and group 3, a 9.0-mm diameter treated with ethanol and an 8.0-mm removal (barrier zone setting group). The corneal defect area was analyzed post-operatively. The concentrations of vascular endothelial growth factor (VEGF) and epidermal growth factor (EGF) in tears were determined pre-operatively and post-operatively. Healed corneal tissues were examined with light and electron microscopy. Immunohistochemical analysis was also performed to estimate the expression of EGF receptors in healed corneal tissue. Results The epithelial healing rate in group 3 was faster than that in the two other groups (p < 0.05). The expression of VEGF and EGF in group 3 was higher than that in the other two groups (p < 0.05). Light microscopy revealed clear healing of the corneal epithelium in all groups except for some cases in group 1. Electron microscopy revealed a relatively intact microstructure of the healed corneal tissues, especially in group 2 and 3 when compared with group 1. Meanwhile, in the immunohistochemistry, group 3 showed significantly higher expression of EGFR when compared with the other groups. Furthermore, EGFR expression had a tendency to be stronger in the mid-peripheral corneal area than in the central corneal area. Conclusions The preserved mid-peripheral epithelial layer treated with ethanol (barrier zone) promoted corneal epithelial healing. It appeared to be correlated with elevated tear VEGF and EGF levels in the post-operative period.
Collapse
|
14
|
Sun Y, Tang S, Jin X, Zhang C, Zhao W, Xiao X. Opposite effects of JNK and p38 MAPK signaling pathways on furazolidone-stimulated S phase cell cycle arrest of human hepatoblastoma cell line. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2013; 755:24-9. [DOI: 10.1016/j.mrgentox.2013.04.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 03/30/2013] [Accepted: 04/27/2013] [Indexed: 01/24/2023]
|
15
|
Chang HJ, Lee JH, Hwang KJ, Kim MR, Yoo JH. Peroxisome proliferator-activated receptor γ agonist suppresses human telomerase reverse transcriptase expression and aromatase activity in eutopic endometrial stromal cells from endometriosis. Clin Exp Reprod Med 2013; 40:67-75. [PMID: 23875162 PMCID: PMC3714431 DOI: 10.5653/cerm.2013.40.2.67] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2013] [Revised: 05/27/2013] [Accepted: 06/03/2013] [Indexed: 01/16/2023] Open
Abstract
Objective To investigate the effect of peroxisome proliferator activated receptor γ (PPARγ) agonist on the cell proliferation properties and expression of human telomerase reverse transcriptase (hTERT) and aromatase in cultured endometrial stromal cell (ESC) from patients with endometriosis. Methods Human endometrial tissues were obtained from women with endometriosis and healthy women (controls) using endometrial biopsy. Isolated ESCs were cultured and the cell proliferation was measured by 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide assay and expression of hTERT, aromatase, and cyclooxygenase (COX)-2 by western blotting according to the addition of rosiglitazone (PPARγ agonist). Results We demonstrate that the cultured ESCs of endometriosis showed hTERT protein overexpression and increased cellular proliferation, which was inhibited by rosiglitazone, in a dose-dependent manner. At the same time, PPARγ agonist also inhibited aromatase and COX-2 expression, resulting in decreased prostaglandin E2 production in the ESCs of endometriosis. Conclusion This study suggests that PPARγ agonist plays an inhibitory role in the proliferative properties of eutopic endometrium with endometriosis by down-regulation of hTERT and COX-2 expression; this could be a new treatment target for endometriosis.
Collapse
Affiliation(s)
- Hye Jin Chang
- Health Promotion Center, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | | | | | | | | |
Collapse
|
16
|
Sillibourne JE, Hurbain I, Grand-Perret T, Goud B, Tran P, Bornens M. Primary ciliogenesis requires the distal appendage component Cep123. Biol Open 2013; 2:535-45. [PMID: 23789104 PMCID: PMC3683156 DOI: 10.1242/bio.20134457] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 03/14/2013] [Indexed: 12/14/2022] Open
Abstract
Primary cilium formation is initiated at the distal end of the mother centriole in a highly co-ordinated manner. This requires the capping of the distal end of the mother centriole with a ciliary vesicle and the anchoring of the basal body (mother centriole) to the cell cortex, both of which are mediated by the distal appendages. Here, we show that the distal appendage protein Cep123 (Cep89/CCDC123) is required for the assembly, but not the maintenance, of a primary cilium. In the absence of Cep123 ciliary vesicle formation fails, suggesting that it functions in the early stages of primary ciliogenesis. Consistent with such a role, Cep123 interacts with the centriolar satellite proteins PCM-1, Cep290 and OFD1, all of which play a role in primary ciliogenesis. These interactions are mediated by a domain in the C-terminus of Cep123 (400-783) that overlaps the distal appendage-targeting domain (500-600). Together, the data implicate Cep123 as a new player in the primary ciliogenesis pathway and expand upon the role of the distal appendages in this process.
Collapse
Affiliation(s)
- James E. Sillibourne
- Institut Curie, Centre de Recherche/UMR144 du Centre Nationale de la Recherche Scientifique, 26 rue d'Ulm, F-75248 Paris Cedex 05, France
| | - Ilse Hurbain
- Cell and Tissue Imaging Facility-IBiSA, CNRS UMR 144, Paris F-75248, France
| | - Thierry Grand-Perret
- Oncology Discovery, Janssen Research and Development, Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Bruno Goud
- Institut Curie, Centre de Recherche/UMR144 du Centre Nationale de la Recherche Scientifique, 26 rue d'Ulm, F-75248 Paris Cedex 05, France
| | - Phong Tran
- Institut Curie, Centre de Recherche/UMR144 du Centre Nationale de la Recherche Scientifique, 26 rue d'Ulm, F-75248 Paris Cedex 05, France
| | - Michel Bornens
- Institut Curie, Centre de Recherche/UMR144 du Centre Nationale de la Recherche Scientifique, 26 rue d'Ulm, F-75248 Paris Cedex 05, France
| |
Collapse
|
17
|
Sun Y, Tang S, Jin X, Zhang C, Zhao W, Xiao X. Involvement of the p38 MAPK signaling pathway in S-phase cell-cycle arrest induced by Furazolidone in human hepatoma G2 cells. J Appl Toxicol 2012; 33:1500-5. [PMID: 23112108 DOI: 10.1002/jat.2829] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2012] [Revised: 09/02/2012] [Accepted: 09/05/2012] [Indexed: 01/28/2023]
Abstract
Given the previously described essential role for the p38 mitogen-activation protein kinase (p38 MAPK) signaling pathway in human hepatoma G2 cells (HepG2), we undertook the present study to investigate the role of the p38 MAPK signaling pathway in cell-cycle arrest induced by Furazolidone (FZD). The aim of this study was to determine the effects of FZD on HepG2 cells by activating and inhibiting the p38 MAPK signaling pathway. The cell cycle and proliferation of HepG2 cells treated with FZD were detected by flow cytometry and MTT assay in the presence or absence of p38 MAPK inhibitors (SB203580), respectively. Cyclin D1, cyclin D3 and CDK6 were detected by quantitative real-time PCR and western blot analysis. Our data showed that p38 MAPK became phosphorylated after stimulation with FZD. Activation of p38 MAPK could arise S-phase cell-cycle arrest and suppress cell proliferation. Simultaneously, inhibition of the p38 MAPK signaling pathway significantly prevented S-phase cell-cycle arrest, increased the percentage of cell viability and decreased the expression of cyclin D1, cyclin D3 and CDK6. These results demonstrated that FZD arose S-phase cell-cycle arrest via activating the p38 MAPK signaling pathway in HepG2 cells. Cyclin D1, cyclin D3 and CDK6 are target genes functioning at the downstream of p38 MAPK in HepG2 cells induced by FZD.
Collapse
Affiliation(s)
- Yu Sun
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | | | | | | | | | | |
Collapse
|
18
|
Faust D, Schmitt C, Oesch F, Oesch-Bartlomowicz B, Schreck I, Weiss C, Dietrich C. Differential p38-dependent signalling in response to cellular stress and mitogenic stimulation in fibroblasts. Cell Commun Signal 2012; 10:6. [PMID: 22404972 PMCID: PMC3352310 DOI: 10.1186/1478-811x-10-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 03/09/2012] [Indexed: 01/07/2023] Open
Abstract
p38 MAP kinase is known to be activated by cellular stress finally leading to cell cycle arrest or apoptosis. Furthermore, a tumour suppressor role of p38 MAPK has been proposed. In contrast, a requirement of p38 for proliferation has also been described. To clarify this paradox, we investigated stress- and mitogen-induced p38 signalling in the same cell type using fibroblasts. We demonstrate that - in the same cell line - p38 is activated by mitogens or cellular stress, but p38-dependent signalling is different. Exposure to cellular stress, such as anisomycin, leads to a strong and persistent p38 activation independent of GTPases. As a result, MK2 and downstream the transcription factor CREB are phosphorylated. In contrast, mitogenic stimulation results in a weaker and transient p38 activation, which upstream involves small GTPases and is required for cyclin D1 induction. Consequently, the retinoblastoma protein is phosphorylated and allows G1/S transition. Our data suggest a dual role of p38 and indicate that the level and/or duration of p38 activation determines the cellular response, i.e either proliferation or cell cycle arrest.
Collapse
Affiliation(s)
- Dagmar Faust
- Institute of Toxicology, Medical Center of the Johannes Gutenberg-University, Obere Zahlbacherstr, 67, 55131 Mainz, Germany.
| | | | | | | | | | | | | |
Collapse
|
19
|
Shin SY, Kim CG, Lim Y, Lee YH. The ETS family transcription factor ELK-1 regulates induction of the cell cycle-regulatory gene p21(Waf1/Cip1) and the BAX gene in sodium arsenite-exposed human keratinocyte HaCaT cells. J Biol Chem 2011; 286:26860-72. [PMID: 21642427 DOI: 10.1074/jbc.m110.216721] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Cyclin-dependent kinase inhibitor (CDKN1A), often referred to as p21(Waf1/Cip1) (p21), is induced by a variety of environmental stresses. Transcription factor ELK-1 is a member of the ETS oncogene superfamily. Here, we show that ELK-1 directly trans-activates the p21 gene, independently of p53 and EGR-1, in sodium arsenite (NaASO(2))-exposed HaCaT cells. Promoter deletion analysis and site-directed mutagenesis identified the presence of an ELK-1-binding core motif between -190 and -170 bp of the p21 promoter that confers inducibility by NaASO(2). Chromatin immunoprecipitation and electrophoretic mobility shift analyses confirmed the specific binding of ELK-1 to its putative binding sequence within the p21 promoter. In addition, NaASO(2)-induced p21 promoter activity was enhanced by exogenous expression of ELK-1 and reduced by expression of siRNA targeted to ELK-1 mRNA. The importance of ELK-1 in response to NaASO(2) was further confirmed by the observation that stable expression of ELK-1 siRNA in HaCaT cells resulted in the attenuation of NaASO(2)-induced p21 expression. Although ELK-1 was activated by ERK, JNK, and p38 MAPK in response to NaASO(2), ELK-1-mediated activation of the p21 promoter was largely dependent on ERK. In addition, EGR-1 induced by ELK-1 seemed to be involved in NaASO(2)-induced expression of BAX. This supports the view that the ERK/ELK-1 cascade is involved in p53-independent induction of p21 and BAX gene expression.
Collapse
Affiliation(s)
- Soon Young Shin
- SMART Institute of Advanced Biomedical Science, Konkuk University, Seoul 143-701, Korea.
| | | | | | | |
Collapse
|
20
|
Dinér P, Veide Vilg J, Kjellén J, Migdal I, Andersson T, Gebbia M, Giaever G, Nislow C, Hohmann S, Wysocki R, Tamás MJ, Grøtli M. Design, synthesis, and characterization of a highly effective Hog1 inhibitor: a powerful tool for analyzing MAP kinase signaling in yeast. PLoS One 2011; 6:e20012. [PMID: 21655328 PMCID: PMC3104989 DOI: 10.1371/journal.pone.0020012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Accepted: 04/08/2011] [Indexed: 11/19/2022] Open
Abstract
The Saccharomyces cerevisiae High-Osmolarity Glycerol (HOG) pathway is a conserved mitogen-activated protein kinase (MAPK) signal transduction system that often serves as a model to analyze systems level properties of MAPK signaling. Hog1, the MAPK of the HOG-pathway, can be activated by various environmental cues and it controls transcription, translation, transport, and cell cycle adaptations in response to stress conditions. A powerful means to study signaling in living cells is to use kinase inhibitors; however, no inhibitor targeting wild-type Hog1 exists to date. Herein, we describe the design, synthesis, and biological application of small molecule inhibitors that are cell-permeable, fast-acting, and highly efficient against wild-type Hog1. These compounds are potent inhibitors of Hog1 kinase activity both in vitro and in vivo. Next, we use these novel inhibitors to pinpoint the time of Hog1 action during recovery from G(1) checkpoint arrest, providing further evidence for a specific role of Hog1 in regulating cell cycle resumption during arsenite stress. Hence, we describe a novel tool for chemical genetic analysis of MAPK signaling and provide novel insights into Hog1 action.
Collapse
Affiliation(s)
- Peter Dinér
- Medicinal Chemistry, Department of Chemistry, University of Gothenburg,
Göteborg, Sweden
| | - Jenny Veide Vilg
- Microbiology, Department of Cell and Molecular Biology, University of
Gothenburg, Göteborg, Sweden
| | - Jimmy Kjellén
- Microbiology, Department of Cell and Molecular Biology, University of
Gothenburg, Göteborg, Sweden
| | - Iwona Migdal
- Institute of Plant Biology, Department of Genetics and Cell Physiology,
University of Wroclaw, Wroclaw, Poland
| | - Terese Andersson
- Medicinal Chemistry, Department of Chemistry, University of Gothenburg,
Göteborg, Sweden
| | - Marinella Gebbia
- Department of Pharmaceutical Sciences, University of Toronto, Toronto,
Canada
| | - Guri Giaever
- Department of Pharmaceutical Sciences, University of Toronto, Toronto,
Canada
| | - Corey Nislow
- Department of Molecular Genetics, University of Toronto, Toronto,
Canada
| | - Stefan Hohmann
- Microbiology, Department of Cell and Molecular Biology, University of
Gothenburg, Göteborg, Sweden
| | - Robert Wysocki
- Institute of Plant Biology, Department of Genetics and Cell Physiology,
University of Wroclaw, Wroclaw, Poland
| | - Markus J. Tamás
- Microbiology, Department of Cell and Molecular Biology, University of
Gothenburg, Göteborg, Sweden
| | - Morten Grøtli
- Medicinal Chemistry, Department of Chemistry, University of Gothenburg,
Göteborg, Sweden
- * E-mail:
| |
Collapse
|
21
|
Nigam M, Singh N, Ranjan V, Zaidi D, Sharma R, Nigam D, Gupta DK, Sundaram S, Balapure AK. Centchroman mediated apoptosis involves cross-talk between extrinsic/intrinsic pathways and oxidative regulation. Life Sci 2010; 87:750-8. [DOI: 10.1016/j.lfs.2010.10.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2010] [Revised: 09/29/2010] [Accepted: 10/15/2010] [Indexed: 01/02/2023]
|
22
|
Ding J, Ning B, Huang Y, Zhang D, Li J, Chen CY, Huang C. PI3K/Akt/JNK/c-Jun signaling pathway is a mediator for arsenite-induced cyclin D1 expression and cell growth in human bronchial epithelial cells. Curr Cancer Drug Targets 2009; 9:500-9. [PMID: 19519318 DOI: 10.2174/156800909788486740] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Arsenite exposure is associated with an increased risk of human lung cancer. However, the molecular mechanisms underlying the arsenite-induced human lung carcinogenesis remain elusive. In this study, we demonstrated that arsenite upregulates cyclin D1 expression/activity to promote the growth of human bronchial epithelial Beas-2B cells. In this process, the JNKs (c-Jun N-terminal kinases)/c-Jun cascade is elicited. The inhibition of JNKs or c-Jun by chemical or genetic inhibitors blocks the cyclin D1 induction mediated by arsenite. Furthermore, using a loss of function mutant of p85 (Deltap85, a subunit of PI3K) or dominant-negative Akt (DN-Akt), we showed that PI3K and Akt act as the upstream regulators of JNKs and c-Jun in arsenite-mediated growth promotion. Overall, our data suggest a pathway of PI-3K/Akt/JNK/c-Jun/cylin D1 signaling in response to arsenite in human bronchial epithelial cells.
Collapse
Affiliation(s)
- Jin Ding
- Nelson Institute of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY 10987, USA.
| | | | | | | | | | | | | |
Collapse
|
23
|
Kim MJ, Choi SY, Park IC, Hwang SG, Kim C, Choi YH, Kim H, Lee KH, Lee SJ. Opposing roles of c-Jun NH2-terminal kinase and p38 mitogen-activated protein kinase in the cellular response to ionizing radiation in human cervical cancer cells. Mol Cancer Res 2009; 6:1718-31. [PMID: 19010820 DOI: 10.1158/1541-7786.mcr-08-0032] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Exposure of cells to ionizing radiation induces activation of multiple signaling pathways that play critical roles in determining cell fate. However, the molecular basis for cell death or survival signaling in response to radiation is unclear at present. Here, we show opposing roles of the c-jun NH(2)-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK) pathways in the mitochondrial cell death in response to ionizing radiation in human cervical cancer cells. Ionizing radiation triggered Bax and Bak activation, Bcl-2 down-regulation, and subsequent mitochondrial cell death. Inhibition of JNK completely suppressed radiation-induced Bax and Bak activation and Bcl-2 down-regulation. Dominant-negative forms of stress-activated protein kinase/extracellular signal-regulated kinase kinase 1 (SEK-1)/mitogen-activated protein kinase kinase-4 (MKK-4) inhibited JNK activation. Radiation also induced phosphoinositide 3-kinase (PI3K) activation. Interestingly, inhibition of PI3K effectively attenuated radiation-induced mitochondrial cell death and increased clonogenic survival. Inhibition of PI3K also suppressed SEK-1/MKK-4 and JNK activation, Bax and Bak activation, and Bcl-2 down-regulation. In contrast, inhibition of p38 MAPK led to enhanced Bax and Bak activation and mitochondrial cell death. RacN17, a dominant-negative form of Rac1, inhibited p38 MAPK activation and increased Bax and Bak activation. Exposure of cells to radiation also induced selective activation of c-Src among Src family kinases. Inhibition of c-Src by pretreatment with Src family kinase inhibitor PP2 or small interfering RNA targeting of c-Src attenuated radiation-induced p38 MAPK and Rac1 activation and enhanced Bax and Bak activation and cell death. Our results support the notion that the PI3K-SEK-1/MKK-4-JNK pathway is required for the mitochondrial cell death in response to radiation, whereas the c-Src-Rac1-p38 MAPK pathway plays a cytoprotective role against mitochondrial cell death.
Collapse
Affiliation(s)
- Min-Jung Kim
- Laboratory of Molecular Biochemistry, Department of Chemistry, Hanyang University, Seoul, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
The selenium analog of the chemopreventive compound S,S'-(1,4-phenylenebis[1,2-ethanediyl])bisisothiourea is a remarkable inducer of apoptosis and inhibitor of cell growth in human non-small cell lung cancer. Chem Biol Interact 2009; 180:158-64. [PMID: 19497413 DOI: 10.1016/j.cbi.2009.03.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Revised: 03/03/2009] [Accepted: 03/04/2009] [Indexed: 11/22/2022]
Abstract
Lung cancer continues to be the leading cause of cancer deaths throughout the world and conventional therapy remains largely unsuccessful. Although, chemoprevention is a plausible alternative approach to curb the lung cancer epidemic, clinically there are no effective chemopreventive agents. Thus, development of novel compounds that can target cellular and molecular pathways involved in the multistep carcinogenesis process is urgently needed. Previous studies have suggested that substitution of sulfur by selenium in established cancer chemopreventive agents may result in more effective analogs. Thus in the present study we selected the chemopreventive agent S,S'-(1,4-phenylenebis[1,2-ethanediyl])bisisothiourea (PBIT), also known to inhibit inducible nitric oxide synthase (iNOS), synthesized its selenium analog (Se-PBIT) and compared both compounds in preclinical model systems using non-small cell lung cancer (NSCLC) cell lines (NCI-H460 and A549); NSCLC is the most common histologic type of all lung cancer cases. Se-PBIT was found to be superior to PBIT as an inducer of apoptosis and inhibitor of cell growth. Se-PBIT arrested cell cycles at G1 and G2-M stage in both A549 and H460 cell lines. Although both compounds are weakly but equally effective inhibitors of iNOS protein expression and activity, only Se-PBIT significantly enhanced the levels of p53, p38, p27 and p21 protein expression, reduced levels of phospholipase A2 (PLA2) but had no effect on cyclooxygenase-2 (COX-2) protein levels; such molecular targets are involved in cell growth inhibition, induction of apoptosis and cell cycle regulation. The results indicate that Se-PBIT altered molecular targets that are involved in the development of human lung cancer. Although, the mechanisms that can fully account for these effects remain to be determined, the results are encouraging to further evaluate the chemopreventive efficacy of Se-PBIT against the development of NSCLC in a well-defined animal model.
Collapse
|
25
|
Kim MJ, Byun JY, Yun CH, Park IC, Lee KH, Lee SJ. c-Src-p38 mitogen-activated protein kinase signaling is required for Akt activation in response to ionizing radiation. Mol Cancer Res 2009; 6:1872-80. [PMID: 19074832 DOI: 10.1158/1541-7786.mcr-08-0084] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The Akt and mitogen-activated protein kinase (MAPK) pathways have been implicated in tumor cell survival and contribute to radiation resistance. However, the molecular basis for link between MAPK and Akt in cell survival response to radiation is unclear. Here, we show that c-Src-Rac1-p38 MAPK pathway signals Akt activation and cell survival in response to radiation. Ionizing radiation triggered Thr(308) and Ser(473) phosphorylation of Akt. Exposure of cells to radiation also induced p38 MAPK and c-Jun NH(2)-terminal kinase activations. Inhibition of c-Jun NH(2)-terminal kinase suppressed radiation-induced cell death, whereas inhibition of p38 MAPK effectively increased sensitivity to radiation. Interestingly, inhibition of p38 MAPK completely attenuated radiation-induced Ser(473) phosphorylation of Akt but did not affect Thr(308) phosphorylation. Conversely, overexpression of p38 MAPK enhanced Ser(473) phosphorylation of Akt in response to radiation. In addition, inhibition of p38 MAPK failed to alter phosphoinositide 3-kinase and phosphoinositide-dependent protein kinase activities. Ectopic expression of RacN17, dominant-negative form of Rac1, inhibited p38 MAPK activation and Ser(473) phosphorylation of Akt. Following exposure to radiation, c-Src was selectively activated among Src family tyrosine kinases. Inhibition of c-Src attenuated Rac1 and p38 MAPK activations and Ser(473) phosphorylation of Akt. Our results support the notion that the c-Src-Rac1-p38 MAPK pathway is required for activation of Akt in response to radiation and plays a cytoprotective role against radiation in human cancer cells.
Collapse
Affiliation(s)
- Min-Jung Kim
- Laboratory of Molecular Biochemistry, Department of Chemistry, Hanyang University, 17 Haengdang-Dong, Seongdong-Gu, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
26
|
Yao YQ, Ding X, Jia YC, Huang CX, Wang YZ, Xu YH. Anti-tumor effect of beta-elemene in glioblastoma cells depends on p38 MAPK activation. Cancer Lett 2008; 264:127-34. [PMID: 18442668 DOI: 10.1016/j.canlet.2008.01.049] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2007] [Revised: 01/28/2008] [Accepted: 01/18/2008] [Indexed: 10/22/2022]
Abstract
beta-Elemene, a natural plant drug extracted from Curcuma wenyujin, has been used as an antitumor drug for different tumors, including glioblastoma. However, the mechanism of its anti-tumor effect is largely unknown. Here we report that anti-proliferation of glioblastoma cells induced by beta-elemene was dependent on p38 MAPK activation. Treatment of glioblastoma cell lines with beta-elemene, led to phosphorylation of p38 MAPK, cell-cycle arrest in G0/G1 phase and inhibition of proliferation of these cells. Inhibition of p38 MAPK reversed beta-elemene-mediated anti-proliferation effect. Furthermore, the growth of glioblastoma cell-transplanted tumors in nude mice was inhibited by intraperitoneal injection of beta-elemene. Taken together, our findings indicate that activation of p38 MAPK is critical for the anti-proliferation effect of beta-elemene and that p38 MAPK might be a putative pharmacological target for glioblastoma therapy.
Collapse
Affiliation(s)
- Yi-Qun Yao
- Department of Neurosurgery, 1st Affiliated Hospital of Dalian Medical University, Dalian, China
| | | | | | | | | | | |
Collapse
|
27
|
Kim MJ, Lee KH, Lee SJ. Ionizing radiation utilizes c-Jun N-terminal kinase for amplification of mitochondrial apoptotic cell death in human cervical cancer cells. FEBS J 2008; 275:2096-108. [DOI: 10.1111/j.1742-4658.2008.06363.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
28
|
Liu TZ, Cheng JT, Yiin SJ, Chen CY, Chen CH, Wu MJ, Chern CL. Isoobtusilactone A induces both caspase-dependent and -independent apoptosis in Hep G2 cells. Food Chem Toxicol 2007; 46:321-7. [PMID: 17897765 DOI: 10.1016/j.fct.2007.08.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2007] [Revised: 08/07/2007] [Accepted: 08/12/2007] [Indexed: 11/23/2022]
Abstract
Isoobtusilactone A, a constituent isolated from the leaves of Cinnamomum kotoense, has been demonstrated by us earlier to be an agent capable of inducing apoptotic cell death of Hep G2 cells. In order to clarify if caspases alone were the sole mediator for eliciting this apoptotic process, a broad caspases inhibitor, Z-VAD.fmk, was utilized to explore this possibility. Interestingly, although Z-VAD.fmk was demonstrated to be capable of completely inhibiting isoobtusilactone A-induced oligonucleosomal DNA fragmentation, yet it could only prevent limited amount of cells from becoming apoptosis-prone. These data implied that some other mechanism(s) might be involved. Thus, the involvement of apoptosis-inducing factor (AIF), a mediator arbitrating caspase-independent apoptosis, in isoobtusilactone A-induced apoptotic process was examined. These findings indicated that isoobtusilactone A could elicit the nuclear translocation of AIF that accompanied the occurrence of large-scale DNA fragmentation. Reduction of AIF expression by AIF-siRNA transfection suppressed large-scale DNA fragmentation. Interestingly, inhibition of AIF expression by AIF-siRNA could not prevent isoobtusilactone A-induced oligonucleosomal DNA fragmentation. In the same vein, when the cells were simultaneously combined pretreatment with AIF-siRNA and Z-VAD.fmk, both large-scale DNA and oligonucleosomal DNA fragmentations could nearly be prevented. Taken together, these findings suggested that isoobtusilactone A-induced apoptotic cell death was mediated via both caspase-dependent and -independent pathways.
Collapse
Affiliation(s)
- Tsan-Zon Liu
- Center for Gerontological Research and Graduate Institute of Medical Biotechnology, Chang-Gang University, Kwei-Shan, Taoyuan, Taiwan, ROC
| | | | | | | | | | | | | |
Collapse
|
29
|
Li JP, Yang JL. Cyclin B1 proteolysis via p38 MAPK signaling participates in G2 checkpoint elicited by arsenite. J Cell Physiol 2007; 212:481-8. [PMID: 17373649 DOI: 10.1002/jcp.21042] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Timely induction of cyclin B1 controls mitotic entry, whereas its proteolysis is essential for mitotic exit. By contrast, cyclin B1 transcription is repressed during G(2) arrest induced by DNA damage. The p38 mitogen-activated protein kinase is involved in the G(2) checkpoint; yet, its impact on cyclin B1 protein levels remains unclear. Here we show that untimely proteolysis of cyclin B1 following p38 activation contributes to G(2) checkpoint. Exposing early G(2) cells to arsenite impeded cyclin B1 protein accumulation, Cdk1 activation, and G(2)-to-M progression. Conversely, cyclin B1 was non-degradable in late G(2) and mitotic cells after arsenite. Cyclin B1 proteolysis was enhanced by arsenite in early G(2) and asynchronous cells. This rapid destruction of cyclin B1 was mediated via the ubiquitin-proteasome pathway probably in a Cdc20 and Cdh1 independent mechanism. Under arsenite, inhibition of p38 activation or depletion of p38alpha suppressed cyclin B1 ubiquitination and proteolysis, while forced expression of MKK6-p38 accelerated these events. Inactivation of p38 in arsenite-treated early G(2) cells allowed G(2)-to-M progression, blocked apoptosis, increased cell viability, and decreased micronucleus formation. Thus, p38 signaling pathway triggering cyclin B1 proteolysis after arsenite may play an important role in connecting G(2) arrest with apoptosis or genome instability.
Collapse
Affiliation(s)
- Ju-Pi Li
- Molecular Carcinogenesis Laboratory, Institute of Biotechnology and Department of Life Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | | |
Collapse
|
30
|
Chen CY, Liu TZ, Chen CH, Wu CC, Cheng JT, Yiin SJ, Shih MK, Wu MJ, Chern CL. Isoobtusilactone A-induced apoptosis in human hepatoma Hep G2 cells is mediated via increased NADPH oxidase-derived reactive oxygen species (ROS) production and the mitochondria-associated apoptotic mechanisms. Food Chem Toxicol 2007; 45:1268-76. [PMID: 17321026 DOI: 10.1016/j.fct.2007.01.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2006] [Revised: 12/04/2006] [Accepted: 01/15/2007] [Indexed: 12/12/2022]
Abstract
Chemoprevention by the use of naturally occurring substances is becoming a promising strategy to prevent cancer. In this study, the effects of isoobtusilactone A, a novel constituent isolated from the leaves of Cinnamomum kotoense, on the proliferation of human hepatoma Hep G2 cells were studied. Under our experimental conditions, isoobtusilactone A was found to elicit a concentration-dependent growth impediment (IC(50)=37.5 microM). The demise of these cells induced by isoobtusilactone A was apoptotic in nature, exhibiting a concentration-dependent increase in sub-G(1) fraction and DNA fragmentation. Subcellular fractionation analysis further revealed that Bax translocation to mitochondria resulted in a rapid release of cytochrome c, followed by activation of caspase 3 and PARP cleavage, and finally cell death. Isoobtusilactone A-treated cells also displayed transient increase of ROS during the earlier stage of the experiment, followed by the disruption of mitochondrial transmembrane potential (DeltaPsi(m)). The presence of a ROS scavenger (N-acetyl-L-cysteine) and an inhibitor of NADPH oxidase (diphenyleneiodonium chloride) blocked ROS production and the subsequent apoptotic cell death. In addition, in order to investigate the acute toxicity of isoobtusilactone A, groups of 5-6-week old Sprague-Dawley rats were subjected to oral administration of 350, or 700 mg/kg bw isoobtusilactone A four times each week for two weeks. There was no significant difference between control animals and treated animals with respect to the body weight gain, the body weight ratio of liver, spleen and kidney, haematological and clinical chemistry parameters. Taken together, our data suggest that ROS generated through the activation of NADPH oxidase plays an essential role in apoptosis induced by isoobtusilactone A, and the dosages of isoobtusilactone A tested in this study did not cause animal toxicity.
Collapse
MESH Headings
- Administration, Oral
- Alkanes/pharmacology
- Alkanes/therapeutic use
- Animals
- Antineoplastic Agents, Phytogenic/pharmacology
- Antineoplastic Agents, Phytogenic/toxicity
- Apoptosis/drug effects
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Cell Cycle/drug effects
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Cinnamomum/chemistry
- Dose-Response Relationship, Drug
- Drug Screening Assays, Antitumor
- Humans
- Lactones/pharmacology
- Lactones/therapeutic use
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Membrane Potentials/drug effects
- Mitochondria, Liver/pathology
- NADPH Oxidases/metabolism
- Plant Extracts/pharmacology
- Plant Extracts/toxicity
- Rats
- Rats, Sprague-Dawley
- Reactive Oxygen Species/metabolism
Collapse
Affiliation(s)
- Chung-Yi Chen
- Basic Medical Science Education Center, Fooyin University, Ta-Liao, Kaohsiung Hsien, Taiwan, ROC.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Lee B, Kim CH, Moon SK. Honokiol causes the p21WAF1-mediated G(1)-phase arrest of the cell cycle through inducing p38 mitogen activated protein kinase in vascular smooth muscle cells. FEBS Lett 2006; 580:5177-84. [PMID: 16962592 DOI: 10.1016/j.febslet.2006.08.064] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2006] [Revised: 07/17/2006] [Accepted: 08/24/2006] [Indexed: 11/25/2022]
Abstract
Honokiol, an active component in extracts of Magnolia officinalis, has been proposed to play a role in anti-inflammatory, antioxidant activity, anti-angiogenic and anti-tumor activity. Although honokiol has a variety of pharmacological effects on certain cell types, its effects on vascular smooth muscle cells (VSMC) are unclear. This issue was investigated in the present study, honokiol was found to inhibit cell viability and DNA synthesis in cultured VSMC. These inhibitory effects were associated with G1 cell cycle arrest. Treatment with honokiol blocks the cell cycle in the G1 phase, down-regulates the expression of cyclins and CDKs and up-regulates the expression of p21WAF1, a CDK inhibitor. While honokiol did not up-regulate p27, it caused an increase in the promoter activity of the p21WAF1 gene. Immunoblot and deletion analysis of the p21WAF1 promoter showed that honokiol induced the expression of p21WAF1 and that this expression was independent of the p53 pathway. Furthermore, the honokiol-mediated signaling pathway involved in VSMC growth inhibition was examined. Among the relevant pathways, honokiol induced a marked activation of p38 MAP kinase and JNK. The expression of dominant negative p38 MAP kinase and SB203580, a p38 MAP kinase specific inhibitor, blocked the expression of honokiol-dependent p38 MAP kinase and p21WAF1. Consistently, blockade of p38 MAPK kinase function reversed honokiol-induced VSMC proliferation and cell cycle proteins. These data demonstrate that the p38 MAP kinase pathway participates in p21WAF1 induction, subsequently leading to a decrease in the levels of cyclin D1/CDK4 and cyclin E/CDK2 complexes and honokiol-dependent VSMC growth inhibition. In conclusion, these findings concerning the molecular mechanisms of honokiol in VSMC provides a theoretical basis for clinical approaches to the use therapeutic agents in treating atherosclerosis.
Collapse
Affiliation(s)
- Beobyi Lee
- Department of Anatomy, College of Medicine, Konkuk University, Chungju City, Chungbuk 380-701, South Korea
| | | | | |
Collapse
|
32
|
Abstract
Transforming growth factor beta (TGFbeta), a multifunctional growth factor, is one of the most important ligands involved in the regulation of cell behavior in ocular tissues in physiological or pathological processes of development or tissue repair, although various other growth factors are also involved. Increased activity of this ligand may induce unfavorable inflammatory responses and tissue fibrosis. In mammals, three isoforms of TGFbeta, that is, beta1, beta2, and beta3, are known. Although all three TGFbeta isoforms and their receptors are present in ocular tissues, lack of TGFbeta2, but not TGFbeta1 or TGFbeta3, perturbs embryonic morphogenesis of the eyes in mice. Smads2/3 are key signaling molecules downstream of cell surface receptors for TGFbeta or activin. Upon TGF binding to the respective TGF receptor, Smads2/3 are phosphorylated by the receptor kinase at the C-terminus, form a complex with Smad4 and translocate to the nucleus for activation of TGFbeta gene targets. Moreover, mitogen-activated protein kinase, c-Jun N-terminal kinase, and p38 modulate Smad signals directly via Smad linker phosphorylation or indirectly via pathway crosstalk. Smad signals may therefore be a critical threrapeutic target in the treatment of ocular disorders related to fibrosis as in other systemic fibrotic diseases. The present paper reviews recent progress concerning the roles of TGFbeta signaling in the pathology of the eye.
Collapse
Affiliation(s)
- Shizuya Saika
- Department of Ophthalmology, Wakayama Medical University, Wakayama, Japan.
| |
Collapse
|
33
|
Huang HS, Liu ZM, Ding L, Chang WC, Hsu PY, Wang SH, Chi CC, Chuang CH. Opposite effect of ERK1/2 and JNK on p53-independent p21WAF1/CIP1 activation involved in the arsenic trioxide-induced human epidermoid carcinoma A431 cellular cytotoxicity. J Biomed Sci 2005; 13:113-25. [PMID: 16283431 DOI: 10.1007/s11373-005-9040-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2005] [Accepted: 09/30/2005] [Indexed: 10/25/2022] Open
Abstract
While arsenic trioxide (As2O3) is an infamous carcinogen, it is also an effective chemotherapeutic agent for acute promyelocytic leukemia and some solid tumors. In human epidermoid carcinoma A431 cells, we found that As2O3 induced cell death in time- and dose-dependent manners. Similarly, dependent regulation of the p21WAF1/CIP1 (p21) promoter, mRNA synthesis, and resultant protein expression was also observed. Additionally, transfection of a small interfering RNA of p21 could block the As2O3-induced cell growth arrest. The As2O3-induced p21 activation was attenuated by inhibitors of EGFR and MEK in a dose-dependent manner. Using a reporter assay, we demonstrated the involvement of the EGFR-Ras-Raf-ERK1/2 pathway in the promoter activation. In contrast, JNK inhibitor enhanced the As2O3-induced p21 activation, also in a dose-dependent fashion. Over-expression of a dominant negative JNK plasmid likewise also enhanced this activation. Furthermore, MEK inhibitor attenuated the anti-tumor effect of As2O3. In contrast, in combination with JNK inhibitor and As2O3 enhanced cellular cytotoxicity. Therefore, we conclude that in A431 cells the ERK1/2 and JNK pathways might differentially contribute to As2O3-induced p21 expression and then due to cellular cytotoxicity.
Collapse
Affiliation(s)
- Huei-Sheng Huang
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Othumpangat S, Kashon M, Joseph P. Sodium arsenite-induced inhibition of eukaryotic translation initiation factor 4E (eIF4E) results in cytotoxicity and cell death. Mol Cell Biochem 2005; 279:123-31. [PMID: 16283521 DOI: 10.1007/s11010-005-8284-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Exposure to arsenic (As) is a risk factor for the development of diabetes, vascular diseases and cancer. Several theories have been proposed to account for the mechanisms potentially responsible for As toxicity and carcinogenesis. Currently, we have investigated whether the eukaryotic translation initiation factor 4E (eIF4E), the mRNA cap binding and rate limiting factor required for translation, is a target for As-induced cytotoxicity and cell death. We have also investigated the potential cellular mechanisms underlying the As-induced de-regulation of expression of eIF4E that are most likely responsible for the cytotoxicity and cell death induced by As. Exposure of four different human cell lines - HCT15 (colorectal adenocarcinoma), PLC/PR/5 (hepatocellular carcinoma), HeLa (cervical adenocarcinoma) and Chang (likely derived from HeLa cells) to sodium arsenite (NaAsO2) for time intervals up to 24 h resulted in a concentration-dependent cytotoxicity and cell death. All the NaAsO2-treated cells exhibited significant inhibition of eIF4E gene (protein). The potential involvement of eIF4E gene expression in the NaAsO2-induced cytotoxicity and cell death was investigated by silencing the cellular expression of the eIF4E gene by employing a small interfering RNA (SiRNA) specifically targeting the eIF4E gene's expression. The SiRNA-mediated silencing of eIF4E gene expression also resulted in significant cytotoxicity and cell death suggesting that the toxicity noticed among the NaAsO2-treated cells was probably due to the chemically induced inhibition of eIF4E gene expression. The potential involvement of inhibition of eIF4E gene expression in the NaAsO2-induced cytotoxicity and cell death was further investigated by employing transgenic cell lines overexpressing the eIF4E gene. Overexpression of the eIF4E gene in the Chinese hamster ovary cell line was protective against the NaAsO2-induced cytotoxicity and cell death. Additional studies conducted to understand the potential mechanisms responsible for NaAsO2-induced inhibition of eIF4E gene expression demonstrated that exposure to NaAsO2 resulted in transcriptional down-regulation of the eIF4E gene only in HCT-15 and HeLa cells, while in the NaAsO2-treated and PLC/PR/5 and Chang cells, the eIF4E mRNA expression level was comparable to those of the corresponding control cells. Cellular levels of ubiquitin and the process of ubiquitination were significantly higher in the NaAsO2-treated cells compared with the control cells. Immunoprecipitation of lysates obtained from the NaAsO2-treated cells and the subsequent western blot analysis of the immunoprecipitated protein(s) using the eIF4E antibody detected the presence of eIF4E protein in the immunoprecipitate suggesting possible ubiquitination of eIF4E protein in the NaAsO2-treated cells. Pre-exposure of the NaAsO2-treated cells to proteasome inhibitors blocked the inhibition of eIF4E gene expression as well as the resulting cytotoxicity and cell death. Furthermore, exposure of cells to NaAsO2 resulted in a significant inhibition of expression of the cell cycle and growth regulating gene, cyclin D1. Whether or not the inhibition of cyclin D1 in the NaAsO2-treated cells is mediated through the inhibition of eIF4E was tested by silencing the expression of eIF4E gene in the cells. Transfection of cells with SiRNA specifically targeting eIF4E gene expression resulted in a significant inhibition of cyclin D1 gene suggesting that the observed inhibition of cyclin D1 gene in the NaAsO2-treated cells is most likely mediated through inhibition of eIF4E gene. Taken together, our results indicate that the exposure of cells to NaAsO2 resulted in cytotoxicity and cell death, at least in part, due to the inhibition of eIF4E gene expression leading to diminished cellular levels of critical genes such as cyclin D1.
Collapse
Affiliation(s)
- Sreekumar Othumpangat
- Molecular Carcinogenesis Laboratory, Toxicology and Molecular Biology Branch, National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505, USA
| | | | | |
Collapse
|
35
|
Vázquez N, Greenwell-Wild T, Marinos NJ, Swaim WD, Nares S, Ott DE, Schubert U, Henklein P, Orenstein JM, Sporn MB, Wahl SM. Human immunodeficiency virus type 1-induced macrophage gene expression includes the p21 gene, a target for viral regulation. J Virol 2005; 79:4479-91. [PMID: 15767448 PMCID: PMC1061522 DOI: 10.1128/jvi.79.7.4479-4491.2005] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In contrast to CD4+ T cells, human immunodeficiency virus type 1 (HIV-1)-infected macrophages typically resist cell death, support viral replication, and consequently, may facilitate HIV-1 transmission. To elucidate how the virus commandeers the macrophage's intracellular machinery for its benefit, we analyzed HIV-1-infected human macrophages for virus-induced gene transcription by using multiple parameters, including cDNA expression arrays. HIV-1 infection induced the transcriptional regulation of genes associated with host defense, signal transduction, apoptosis, and the cell cycle, among which the cyclin-dependent kinase inhibitor 1A (CDKN1A/p21) gene was the most prominent. p21 mRNA and protein expression followed a bimodal pattern which was initially evident during the early stages of infection, and maximum levels occurred concomitant with active HIV-1 replication. Mechanistically, viral protein R (Vpr) independently regulates p21 expression, consistent with the reduced viral replication and lack of p21 upregulation by a Vpr-negative virus. Moreover, the treatment of macrophages with p21 antisense oligonucleotides or small interfering RNAs reduced HIV-1 infection. In addition, the synthetic triterpenoid and peroxisome proliferator-activated receptor gamma ligand, 2-cyano-3,12-dioxooleana-1,9-dien-28-oic acid (CDDO), which is known to influence p21 expression, suppressed viral replication. These data implicate p21 as a pivotal macrophage facilitator of the viral life cycle. Moreover, regulators of p21, such as CDDO, may provide an interventional approach to modulate HIV-1 replication.
Collapse
Affiliation(s)
- Nancy Vázquez
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Jiang SJ, Lin TM, Shi GY, Eng HL, Chen HY, Wu HL. Inhibition of bovine herpesvirus-4 replication by arsenite through downregulation of the extracellular signal-regulated kinase signaling pathway. J Biomed Sci 2005; 11:500-10. [PMID: 15153785 DOI: 10.1007/bf02256099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2003] [Accepted: 02/03/2004] [Indexed: 10/25/2022] Open
Abstract
Infection of bovine arterial endothelial (BAE) cells with bovine herpesvirus-4 (BHV-4) induced biphasic activation of one of the cellular mitogen-activated protein kinase (MAPK) downstream targets, extracellular signal-regulated kinase (ERK). ERK activity reached a maximum within 0.5 h postinfection (h.p.i.), and had declined and returned to basal levels by 2 h.p.i. However, at 18- 24 h.p.i., a second phase of increased ERK activation occurred. Treatment of BHV-4-infected BAE cells with either U0126, a potent inhibitor of MAPK/ERK kinase, or arsenite dose-dependently blocked ERK activation and inhibited viral DNA synthesis and viral replication in the culture. Further detailed investigations revealed that transcription of viral immediate-early gene 2 (IE-2), which is required for viral DNA replication, was significantly suppressed by both U0126 and arsenite. These results imply that ERK activation may play a pivotal role in herpesvirus replication, and that inhibition of ERK activation can effectively inhibit viral IE protein synthesis and viral replication.
Collapse
Affiliation(s)
- Shinn-Jong Jiang
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | | | | | | | | | | |
Collapse
|
37
|
Azuma Y, Watanabe K, Date M, Daito M, Ohura K. Possible involvement of p38 in mechanisms underlying acceleration of proliferation by 15-deoxy-Delta(12,14)-prostaglandin J2 and the precursors in leukemia cell line THP-1. J Pharmacol Sci 2005; 94:261-70. [PMID: 15037811 DOI: 10.1254/jphs.94.261] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
15-deoxy-Delta(12,14)-prostaglandin J(2) (15dPGJ2), which is a ligand for peroxisome proliferator-activated receptor gamma (PPARgamma), induced apoptosis of several human tumors including gastric, lung, colon, prostate, and breast. However, the role of PPARgamma signals in other types of cancer cells (e.g., leukemia) except solid cancer cells is still unclear. The aim of this study is to evaluate the ability of 15dPGJ2 to modify the proliferation of the human leukemia cell line THP-1. 15dPGJ2 at 5 microM stimulated the proliferation in THP-1 at 24 to 72 h after incubation. In contrast, 15dPGJ2 at concentrations above 10 microM inhibited the proliferation through the induction of apoptosis. PGD2, PGJ2, and Delta12-PGJ2 (DeltaPGJ2), precursors of 15dPGJ2, had similar proliferative effects at lower concentrations, whereas they induced apoptosis at high concentrations. 15dPGJ2 and three precursors failed to induce the differentiation in THP-1 as assessed by using the differentiation marker CD11b. FACScan analysis revealed that PGD2 at 5 microM, PGJ2 at 1 microM, DeltaPGJ2 at 1 microM and 15dPGJ2 at 5 microM all accelerated cell cycle progression in THP-1. Immunoblotting analysis revealed that PGD2 at 5 microM and 15dPGJ2 at 5 microM inhibited the expression of phospho-p38, phospho-MKK3/MKK6, and phospho-ATF-2, and the expression of Cdk inhibitors including p18, p21, and p27 in THP-1. In contrast, PGJ2 at 1 microM and DeltaPGJ2 at 1 microM did not affect their expressions. These results suggest that 15dPGJ2 and PGD2 may, through inactivation of the p38 mitogen-activated protein kinase pathway, inhibit the expression of Cdk inhibitors, leading to acceleration of the THP-1 proliferation.
Collapse
Affiliation(s)
- Yasutaka Azuma
- Department of Pharmacology, Osaka Dental University, Japan.
| | | | | | | | | |
Collapse
|
38
|
Nuntharatanapong N, Chen K, Sinhaseni P, Keaney JF. EGF receptor-dependent JNK activation is involved in arsenite-induced p21Cip1/Waf1 upregulation and endothelial apoptosis. Am J Physiol Heart Circ Physiol 2005; 289:H99-H107. [PMID: 15734884 DOI: 10.1152/ajpheart.00901.2004] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Arsenic exposure is associated with an increased risk of atherosclerosis and vascular diseases. Although endothelial cells have long been considered to be the primary targets of arsenic toxicity, the underlying molecular mechanism remains largely unknown. In this study, we sought to explore the signaling pathway triggered by sodium arsenite and its implication for endothelial phenotype. We found that sodium arsenite produced time- and dose-dependent decreases in human umbilical vein endothelial cell viability. This effect correlated with the induction of p21Cip1/Waf1 (up to 10-fold), a regulatory protein of cell cycle and apoptosis. We also found that arsenite-stimulated EGF (ErbB1) and ErbB2 receptor transactivation, manifest as receptor tyrosine phosphorylation, appeared to be a proximal signaling event leading to p21Cip1/Waf1 induction, because both pharmacological inhibitors and knockdown of receptors by RNA interference blocked arsenite-induced p21Cip1/Waf1 upregulation. Arsenite-induced activation of JNK and p38 MAPK was distinct, with only JNK as a downstream target of the EGF receptor. Moreover, inhibition of JNK with SP-600125 or dominant negative MKK7 inhibited only p21Cip1/Waf1 induction, whereas the p38 MAPK inhibitor SB-203580 or dominant negative MKK4 inhibited both p21Cip1/Waf1 and p53 induction. Functionally, inhibition of p21Cip1/Waf1 induction prevented endothelial apoptosis due to arsenite treatment. Insofar as endothelial dysfunction promotes vascular disease, these data provide a mechanism for the increased incidence of cardiovascular disease due to arsenite exposure.
Collapse
Affiliation(s)
- Nopparat Nuntharatanapong
- Evans Memorial Department of Medicine, Boston Univ. School of Medicine, Whitaker Cardiovascular Institute, 715 Albany St., Rm. W507, Boston, MA 02118, USA
| | | | | | | |
Collapse
|
39
|
Park MT, Kim MJ, Kang YH, Choi SY, Lee JH, Choi JA, Kang CM, Cho CK, Kang S, Bae S, Lee YS, Chung HY, Lee SJ. Phytosphingosine in combination with ionizing radiation enhances apoptotic cell death in radiation-resistant cancer cells through ROS-dependent and -independent AIF release. Blood 2005; 105:1724-33. [PMID: 15486061 DOI: 10.1182/blood-2004-07-2938] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
AbstractThe use of chemical modifiers as radiosensitizers in combination with low-dose irradiation may increase the therapeutic effect on cancer by overcoming a high apoptotic threshold. Here, we showed that phytosphingosine treatment in combination with γ-radiation enhanced apoptotic cell death of radiation-resistant human T-cell lymphoma in a caspase-independent manner. Combination treatment induced an increase in intracellular reactive oxygen species (ROS) level, mitochondrial relocalization of B-cell lymphoma-2(Bcl-2)-associated X protein (Bax), poly-adenosine diphosphate (ADP)-ribose polymerase 1 (PARP-1) activation, and nuclear translocation of apoptosis-inducing factor (AIF). siRNA targeting of AIF effectively protected cells from the combination treatment-induced cell death. An antioxidant, N-acetyl-L-cysteine (NAC), inhibited Bax relocalization and AIF translocation but not PARP-1 activation. Moreover, transfection of Bax-siRNA significantly inhibited AIF translocation. Pretreatment of PARP-1 inhibitor, DPQ (3,4-dihydro-5-[4-(1-piperidinyl)-butoxy]-1(2H)-isoquinolinone), or PARP-1-siRNA also partially attenuated AIF translocation, whereas the same treatment did not affect intracellular ROS level and Bax redistribution. Taken together, these results demonstrate that enhancement of cell death of radiation-resistant cancer cells by phytosphingosine treatment in combination with γ-radiation is mediated by nuclear translocation of AIF, which is in turn mediated both by ROS-dependent Bax relocalization and ROS-independent PARP-1 activation. The molecular signaling pathways that we elucidated in this study may provide potential drug targets for radiation sensitization of cancers refractive to radiation therapy. (Blood. 2005;105:1724-1733)
Collapse
Affiliation(s)
- Moon-Taek Park
- Laboratory of Radiation Effect, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Kang YH, Yi MJ, Kim MJ, Park MT, Bae S, Kang CM, Cho CK, Park IC, Park MJ, Rhee CH, Hong SI, Chung HY, Lee YS, Lee SJ. Caspase-independent cell death by arsenic trioxide in human cervical cancer cells: reactive oxygen species-mediated poly(ADP-ribose) polymerase-1 activation signals apoptosis-inducing factor release from mitochondria. Cancer Res 2005; 64:8960-7. [PMID: 15604259 DOI: 10.1158/0008-5472.can-04-1830] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Although mechanisms of arsenic trioxide (As(2)O(3))-induced cell death have been studied extensively in hematologic cancers, those in solid cancers have yet to be clearly defined. In this study, we showed that the translocation of apoptosis-inducing factor (AIF) from mitochondria to the nucleus is required for As(2)O(3)-induced cell death in human cervical cancer cells. We also showed that reactive oxygen species (ROS)-mediated poly(ADP-ribose) polymerase-1 (PARP-1) activation is necessary for AIF release from mitochondria. The treatment of human cervical cancer cells with As(2)O(3) induces dissipation of mitochondrial membrane potential (Deltapsi(m)), translocation of AIF from mitochondria to the nucleus, and subsequent cell death. Small interfering RNA targeting of AIF effectively protects cervical cancer cells against As(2)O(3)-induced cell death. As(2)O(3) also induces an increase of intracellular ROS level and a marked activation of PARP-1. N-acetyl-l-cystein, a thiol-containing antioxidant, completely blocks As(2)O(3)-induced PARP-1 activation, Deltapsi(m) loss, nuclear translocation of AIF from mitochondria, and the consequent cell death. Furthermore, pretreatment of 1,5-dihydroxyisoquinoline or 3,4-dihydro-5-[4-(1-piperidinyl)butoxy]-1(2H)-isoquinolinone, PARP-1 inhibitors, effectively attenuates the loss of Deltapsi(m), AIF release, and cell death. These data support a notion that ROS-mediated PARP-1 activation signals AIF release from mitochondria, resulting in activation of a caspase-independent pathway of cell death in solid tumor cells by As(2)O(3) treatment.
Collapse
Affiliation(s)
- Young-Hee Kang
- Laboratory of Radiation Effect and Laboratory of Cell Biology, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
This article reviews recent progress in research on the role of Smad signaling in corneal wound healing. Smad2 and Smad3 are key signaling molecules downstream of the cell surface receptor of transforming growth factor-beta (TGF-beta) or activin. On ligand binding to the receptor, Smads2/3 undergo phosphorylation, form complexes with Smad4, and thence convey signaling. TGF-beta isoforms have been detected in corneal epithelium and are also deposited in wounded stroma, suggesting their participation in the wound-healing process in corneal tissue. Human or mouse uninjured healthy corneal epithelium shows nuclear accumulation of Smads3/4, indicating active Smad signaling in this tissue. Migrating corneal epithelium lacks nuclear Smad accumulation with up-regulation of Smad7, but p38MAPK is activated. Organ-culture experiments show that p38MAPK activation depends on endogenous TGF-beta and that activation of p38MAPK results in cell proliferation cessation with a reduction of Erk activation and acceleration of cell migration in healing corneal epithelium. These findings indicate that during healing of corneal epithelial defects, endogenous TGF-beta activates p38MAPK for cell migration and suppression of cell proliferation and up-regulates Smad7 for inhibition of Smad2 and Smad3 signaling, resulting in rapid initial resurfacing of the epithelium. Such involvement of p38MAPK in cell migration has been reported in many cell types and observed in keratocyte culture. Possible benefits of preserving non-Smad cascades in treating problems in corneal wound healing by manipulating TGF-beta signals have been suggested.
Collapse
Affiliation(s)
- Shizuya Saika
- Department of Ophthalmology, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-0012, Japan.
| |
Collapse
|
42
|
Jiang SJ, Lin TM, Shi GY, Eng HL, Chen HY, Wu HL. Inhibition of bovine herpesvirus-4 replication in endothelial cells by arsenite. Antiviral Res 2004; 63:167-75. [PMID: 15451184 DOI: 10.1016/j.antiviral.2004.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2004] [Accepted: 04/12/2004] [Indexed: 11/24/2022]
Abstract
The effect of arsenite pretreatment on bovine herpesvirus-4 (BHV-4) replication in bovine arterial endothelial (BAE) cells was studied. BHV-4 infectivity, including IE-2 expression, DNA replication and viral yield, were significantly reduced at nontoxic concentrations of arsenite in which cellular DNA synthesis or cell viability of BAE cells were not affected under resting and confluent conditions. This effect was accompanied by the induction of heat shock protein 70 (HSP70) and an interrupted cell cycle (causing cell cultures to accumulate at the S and G2/M phases). Actinomycin D inhibited the induction of HSP70 and reduced arsenite antiviral activity. In conclusion, cellular stress response induced by arsenite in BAE cells inhibited replication of BHV-4, and probably resulted from the induction of HSP70 and interference of cell cycle progression.
Collapse
Affiliation(s)
- Shinn-Jong Jiang
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | | | | | | | | | | |
Collapse
|
43
|
Gao N, Shen L, Zhang Z, Leonard SS, He H, Zhang XG, Shi X, Jiang BH. Arsenite induces HIF-1alpha and VEGF through PI3K, Akt and reactive oxygen species in DU145 human prostate carcinoma cells. Mol Cell Biochem 2004; 255:33-45. [PMID: 14971644 DOI: 10.1023/b:mcbi.0000007259.65742.16] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Arsenite is widely distributed environmental toxicant in water, food and air. It is a known human carcinogen, which is strongly associated with human cancers originated from liver, nasal cavity, lung, skin, bladder, kidney, and prostate. In this study, we investigated whether arsenite induces expression of hypoxia-inducible factor 1 (HIF-1). HIF-1 is a heterodimeric basic helix-loop-helix transcription factor, composed of HIF-1alpha and HIF-1beta/ARNT subunits; and is involved in tumor growth and angiogenesis. Here we demonstrate that arsenite induces the expression of HIF-1alpha but not HIF-1beta subunit in DU145 human prostate carcinoma cells. Arsenite also increases the expression of VEGF through the induction of HIF-1. We also found that arsenite activates PI3K and Akt that are required for arsenite-induced expression of HIF-1alpha and VEGF. The induction of HIF-1 and VEGF by arsenite can not be inhibited by MAP kinase inhibitors. Arsenite causes production of reactive oxygen species (ROS). The major species of ROS required for the induction of HIF-1 and VEGF is H2O2. These data indicate that the arsenite-induced activation of PI3K/Akt signaling and the expression of HIF-1 and VEGF through the generation of ROS could be an important mechanism in the arsenite-induced carcinogenesis.
Collapse
Affiliation(s)
- Ning Gao
- Mary Babb Randolph Cancer Center, Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV 26506, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Azuma Y, Watanabe K, Date M, Daito M, Ohura K. Induction of Proliferation by 15-Deoxy-Δ 12,14-Prostaglandin J 2 and the Precursors in Monocytic Leukemia U937. Pharmacology 2004; 71:181-91. [PMID: 15240994 DOI: 10.1159/000078084] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2003] [Accepted: 12/22/2003] [Indexed: 11/19/2022]
Abstract
Peroxisome proliferator-activated receptor gamma (PPARgamma) is expressed in several human tumors including gastric, lung, colon, prostate and breast. However, the role of PPARgamma signals in leukemia is still unclear. The aim of this study is to evaluate the ability of 15-deoxy-Delta12,14-prostaglandin J2 (15dPGJ2), that is a ligand for PPARgamma, on proliferation of human leukemia cell line U937. 15dPGJ2 at 5 micromol/l stimulated the proliferation. In contrast, 15dPGJ2 at concentrations of >10 micromol/l inhibited the proliferation through the induction of apoptosis. PGD2, PGJ2 and Delta12-PGJ2 (DeltaPGJ2), those are precursors of 15dPGJ2, had similarly proliferative effects, whereas they showed antiproliferative effects at high concentrations. FACScan analysis revealed that PGD2 at 5 micromol/l, PGJ2 at 1 micromol/l, DeltaPGJ2 at 1 micromol/l and 15dPGJ2 at 5 micromol/l, all accelerated cell cycle progression. Immunoblotting analysis revealed that PGD2 at 5 micromol/l and 15dPGJ2 at 5 micromol/l inhibited the expression of phospho-p38, phospho-MKK3/MKK6 and phospho-ATF-2, and the expression of Cdk inhibitors including p18, p27. In contrast, PGJ2 at 1 micromol/l and DeltaPGJ2 at 1 micromol/l did not affect the expression of them. These results suggest that 15dPGJ2 and PGD2 may, through inactivation of the p38 MAPK pathway, inhibit the expression of Cdk inhibitors, leading to acceleration of proliferation.
Collapse
Affiliation(s)
- Yasutaka Azuma
- Department of Pharmacology, Osaka Dental University, Hirakata, Osaka, Japan
| | | | | | | | | |
Collapse
|
45
|
Azuma Y, Watanabe K, Date M, Shirasu S, Daito M, Ohura K. 15-Deoxy-Δ12,14-prostaglandin J2 and Its Precursors Target Phosphoinositide 3-kinase and p38 MAPK to Accelerate Proliferation in the Human T Cell Leukemia Cell Line MOLT-4F. J Oral Biosci 2004. [DOI: 10.1016/s1349-0079(04)80011-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
46
|
Azuma Y, Watanabe K, Date M, Shirasu S, Daito M, Ohura K. 15-Deoxy-.DELTA.12,14-prostaglandin J2 and Its Precursors Target Phosphoinositide 3-kinase and p38 MAPK to Accelerate Proliferation in the Human T Cell Leukemia Cell Line MOLT-4F. J Oral Biosci 2004. [DOI: 10.2330/joralbiosci.46.37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
47
|
Park MT, Choi JA, Kim MJ, Um HD, Bae S, Kang CM, Cho CK, Kang S, Chung HY, Lee YS, Lee SJ. Suppression of Extracellular Signal-related Kinase and Activation of p38 MAPK Are Two Critical Events Leading to Caspase-8- and Mitochondria-mediated Cell Death in Phytosphingosine-treated Human Cancer Cells. J Biol Chem 2003; 278:50624-34. [PMID: 14522966 DOI: 10.1074/jbc.m309011200] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We previously demonstrated that the phytosphingosine-induced apoptosis was accompanied by the concomitant induction of both the caspase-8-mediated and mitochondrial activation-mediated apoptosis pathways. In the present study, we investigated the role of mitogen-activated protein kinases (MAPKs) in the activation of these two distinct cell death pathways induced by phytosphingosine in human cancer cells. Phytosphingosine caused strong induction of caspase-8 activity and caspase-independent Bax translocation to the mitochondria. A rapid decrease of phosphorylated ERK1/2 and a marked increase of p38 MAPK phosphorylation were observed within 10 min after phytosphingosine treatment. Activation of ERK1/2 by pretreatment with phorbol 12-myristate 13-acetate or forced expression of ERK1/2 attenuated phytosphingosine-induced caspase-8 activation. However, Bax translocation and caspase-9 activation was unaffected, indicating that down-regulation of the ERK activity is specifically required for the phytosphingosine-induced caspase-8-dependent cell death pathway. On the other hand, treatment with SB203580, a p38 MAPK-specific inhibitor, or expression of a dominant negative form of p38 MAPK suppressed phytosphingosine-induced translocation of the proapoptotic protein, Bax, from the cytosol to mitochondria, cytochrome c release, and subsequent caspase-9 activation but did not affect caspase-8 activation, indicating that activation of p38 MAPK is involved in the mitochondrial activation-mediated cell death pathway. Our results suggest that phytosphingosine can utilize two different MAPK signaling pathways for amplifying the apoptosis cascade, enhancing the understanding of the molecular mechanisms utilized by naturally occurring metabolites to regulate cell death. Molecular dissection of the signaling pathways that activate the apoptotic cell death machinery is critical for both our understanding of cell death events and development of cancer therapeutic agents.
Collapse
Affiliation(s)
- Moon-Taek Park
- Laboratory of Radiation Effect, Korea Institute of Radiological and Medical Sciences, Seoul 139-706, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Raucci A, Laplantine E, Mansukhani A, Basilico C. Activation of the ERK1/2 and p38 mitogen-activated protein kinase pathways mediates fibroblast growth factor-induced growth arrest of chondrocytes. J Biol Chem 2003; 279:1747-56. [PMID: 14593093 DOI: 10.1074/jbc.m310384200] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Fibroblast growth factors (FGFs) regulate long bone development by affecting the proliferation and differentiation of chondrocytes. FGF treatment inhibits the proliferation of chondrocytes both in vitro and in vivo, but the signaling pathways involved have not been clearly identified. In this report we show that both the MEK-ERK1/2 and p38 MAPK pathways, but not phospholipase C gamma or phosphatidylinositol 3-kinase, play a role in FGF-mediated growth arrest of chondrocytes. Chemical inhibitors of the MEK1/2 or the p38 MAPK pathways applied to rat chondrosarcoma (RCS) chondrocytes significantly prevented FGF-induced growth arrest. The retinoblastoma family members p107 and p130 were previously shown to be essential effectors of FGF-induced growth arrest in chondrocytes. The dephosphorylation of p107, one of the earliest events in RCS growth arrest, was significantly blocked by MEK1/2 inhibitors but not by the p38 MAPK inhibitors, whereas that of p130, which occurs later, was partially prevented both by the MEK and p38 inhibitors. Furthermore, by expressing the nerve growth factor (NGF) receptor, TrkA, and the epidermal growth factor (EGF) receptor, ErbB1, in RCS cells we show that NGF treatment of the transfected cells caused growth inhibition, whereas EGF did not. FGF- and NGF-induced growth inhibition is accompanied by a strong and sustained activation of ERK1/2 and p38 MAPK and a decrease of AKT phosphorylation, whereas EGF induces a much more transient activation of p38 and ERK1/2 and increases AKT phosphorylation. These results indicate that inhibition of chondrocyte proliferation by FGF requires both ERK1/2 and p38 MAPK signaling and also suggest that sustained activation of these pathways is required to achieve growth inhibition.
Collapse
Affiliation(s)
- Angela Raucci
- Department of Microbiology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | | | | | | |
Collapse
|