1
|
Ma G, Yan X, Wang C, Ran X, Liang Z, Chen X, Hu T, Tang X, Zhuang H, Huang Y, Luo P, Shen L. Mechanism of arsenic-induced liver injury in rats revealed by metabolomics and ionomics based approach. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 293:118038. [PMID: 40090166 DOI: 10.1016/j.ecoenv.2025.118038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 02/11/2025] [Accepted: 03/08/2025] [Indexed: 03/18/2025]
Abstract
Arsenic (As) is an environmental toxicant and human carcinogen, long-term exposure to As can lead to varying degrees of liver injury. In this study, the liver injury model of As poisoned Sprague-Dawley (SD) rats was established, and the potential mechanism was investigated by metabonomics and ionomics. A total of 164 differential expressed metabolites (DEMs) were identified between the As poisoned group and the control group, which mainly involved in nicotinate and nicotinamide metabolism, steroid hormone biosynthesis, taurine and hypotaurine metabolism, and porphyrin metabolism. The levels of 10 ions were significantly increased in As poisoned group, including As, bismuth (Bi), cadmium (Cd), mercury (Hg), manganese (Mn), rubidium (Rb), antimony (Sb), strontium (Sr), uranium(U), and zinc (Zn), in contrast, the levels of lead (Pb) and thallium (TI) were significantly decreased. Spearman correlation analysis showed that As, Cd, Hg and Pb were negatively correlated with androstenedione, protoporphyrinogen IX and estriol, whereas As and Mn was positively correlated with progesterone (PROG), Cd was positively correlated with NAD+ and 3-Sulfino-L-alanine. There are sex differences in changes in metabolites and ions levels. Male and female rats shared 60 DEMs and 2 pathways (steroid hormone biosynthesis and porphyrin metabolism pathway). The levels of As, Cd, Hg, and Sr were significantly changed in both male and female rats. In both female and male rats, As was positively correlated with PROG, and Cd was positively correlated with coproporphyrin III. The results of this study provide new insights to elucidate the mechanism of As-induced liver injury in rats.
Collapse
Affiliation(s)
- Guanwei Ma
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, PR China
| | - Xi Yan
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, PR China
| | - Chao Wang
- Chemical Analysis & Physical Testing Institute, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, PR China
| | - Xiaoqian Ran
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, PR China
| | - Zhiyuan Liang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Xiaolu Chen
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, PR China
| | - Ting Hu
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, PR China
| | - Xiaoxiao Tang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Hongbin Zhuang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Yuhan Huang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Peng Luo
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, PR China; Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Guiyang 561113, PR China; State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine.
| | - Liming Shen
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, PR China; College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China.
| |
Collapse
|
2
|
Yue X, Li Q, Tao J, Zhang H, Peng J, Zhang D, Yang J, Ji D, Tao F, Cao Y, Ji D, Liang C. The associations of the concentrations of toxic metals (including metalloid) in blood and follicular fluid with the risk of diminished ovarian reserve. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117144. [PMID: 39418720 DOI: 10.1016/j.ecoenv.2024.117144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/29/2024] [Accepted: 09/29/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND Diminished ovarian reserve (DOR), a triggering factor for female infertility, affects 10% ∼ 35% of women of reproductive age. It is still unclear whether exposure to toxic metals (including metalloid) is associated with DOR risk, especially with respect to their relationships with the clinical phenotypes of DOR. METHODS A case-control study including 439 patients was conducted, and Ba, Ni, As, Tl, Cd, Pb, Hg, Al and Cr levels in BL and FF were measured. Subsequent analyses were focused on Ba, Ni, As and Tl, which had the highest weights in the associations of the nine toxic metals (including metalloid) with DOR risk, by integrating weighted quantile sum (WQS) regression and bayesian kernel machine regression (BKMR) models. Conditional logistic regression models and BKMR models were used to assess the individual and combined effects of Ba, Ni, As and Tl exposures on DOR risk. Multiple linear regression models were used to investigate the relationships between toxic metal (including metalloid) levels in BL and FF and the clinical characteristics of DOR. RESULTS The levels of Ba [second vs. lowest tertile: adjusted odds ratio (aOR) and 95 % confidence interval (CI) = 1.97 (1.13, 3.44); highest vs. lowest tertile: aOR (95 % CI) = 2.38 (1.32, 4.26)], Ni [highest vs. lowest tertile: aOR (95 % CI) = 2.59 (1.45, 4.65)] and As [highest vs. lowest tertile: aOR (95 % CI) = 1.96 (1.18, 3.25)] in BL, and Ba [highest vs. lowest tertile: aOR (95 % CI) = 4.60 (1.68, 12.61)] in FF were significantly associated with a higher risk of DOR, respectively. The significantly positive combined effect of the four toxic metals (including metalloid) on DOR risk was exhibited when their BL levels exceeded the 25th percentile compared with their median levels. Among these, As (0.9822) and Ba (0.9704) were the primary contributors to this relationship. Similarly, this finding was confirmed by the statistical results from FF samples, with a linear positive correlation between combined exposure and DOR risk, where Ba (0.9440) was the primary contributor. Finally, elevated levels of Ba, Ni, and As in BL and Ba in FF were significantly linked to the higher follicle-stimulating hormone (FSH) levels. The levels of Ba in BL and FF, as well as As in BL, were significantly associated with the lower luteinizing hormone (LH)/FSH ratio values. CONCLUSION Overall, the results of this study indicate that elevated levels of Ba, Ni, As and Tl are associated with a higher risk of DOR, whether individually or in combination, and that Ba levels in BL and FF are stable contributors. In addition, exposure to Ba, Ni, As and Tl is linked to various clinical phenotype parameters of DOR. Further research is needed to confirm these associations and to identify potential mechanisms involved.
Collapse
Affiliation(s)
- Xinyu Yue
- Department of Obstetrics and Gynaecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, Anhui 230022, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, Anhui 230032, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, Anhui 230032, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei, Anhui 230032, China; Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, No 81 Meishan Road, Hefei, Anhui 230032, China; Anhui Provincial Institute of Translational Medicine, No 81 Meishan Road, Hefei, Anhui 230032, China
| | - Qian Li
- Department of Obstetrics and Gynaecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, Anhui 230022, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, Anhui 230032, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, Anhui 230032, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei, Anhui 230032, China; Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, No 81 Meishan Road, Hefei, Anhui 230032, China; Anhui Provincial Institute of Translational Medicine, No 81 Meishan Road, Hefei, Anhui 230032, China
| | - Jiajing Tao
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, China / School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, Anhui 230032, China
| | - Hua Zhang
- Department of Obstetrics and Gynaecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, Anhui 230022, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, Anhui 230032, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, Anhui 230032, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei, Anhui 230032, China; Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, No 81 Meishan Road, Hefei, Anhui 230032, China; Anhui Provincial Institute of Translational Medicine, No 81 Meishan Road, Hefei, Anhui 230032, China
| | - Jie Peng
- Department of Obstetrics and Gynaecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, Anhui 230022, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, Anhui 230032, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, Anhui 230032, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei, Anhui 230032, China; Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, No 81 Meishan Road, Hefei, Anhui 230032, China; Anhui Provincial Institute of Translational Medicine, No 81 Meishan Road, Hefei, Anhui 230032, China
| | - Dongyang Zhang
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, China / School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, Anhui 230032, China
| | - Jing Yang
- Department of Obstetrics and Gynaecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, Anhui 230022, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, Anhui 230032, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, Anhui 230032, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei, Anhui 230032, China; Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, No 81 Meishan Road, Hefei, Anhui 230032, China; Anhui Provincial Institute of Translational Medicine, No 81 Meishan Road, Hefei, Anhui 230032, China
| | - Duoxu Ji
- The First Clinical Medical College of Anhui Medical University, No 81 Meishan Road, Hefei, Anhui 230032, China
| | - Fangbiao Tao
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, China / School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, Anhui 230032, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, Anhui 230032, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, Anhui 230032, China; Anhui Provincial Institute of Translational Medicine, No 81 Meishan Road, Hefei, Anhui 230032, China.
| | - Yunxia Cao
- Department of Obstetrics and Gynaecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, Anhui 230022, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, Anhui 230032, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, Anhui 230032, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei, Anhui 230032, China; Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, No 81 Meishan Road, Hefei, Anhui 230032, China; Anhui Provincial Institute of Translational Medicine, No 81 Meishan Road, Hefei, Anhui 230032, China.
| | - Dongmei Ji
- Department of Obstetrics and Gynaecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, Anhui 230022, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, Anhui 230032, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, Anhui 230032, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei, Anhui 230032, China; Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, No 81 Meishan Road, Hefei, Anhui 230032, China; Anhui Provincial Institute of Translational Medicine, No 81 Meishan Road, Hefei, Anhui 230032, China.
| | - Chunmei Liang
- Department of Obstetrics and Gynaecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, Anhui 230022, China; Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, China / School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, Anhui 230032, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, Anhui 230032, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, Anhui 230032, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei, Anhui 230032, China; Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, No 81 Meishan Road, Hefei, Anhui 230032, China; Anhui Provincial Institute of Translational Medicine, No 81 Meishan Road, Hefei, Anhui 230032, China.
| |
Collapse
|
3
|
Kuai Y, Gao X, Yang H, Luo H, Xu Y, Liu C, Yu H, Wang Y, Zhang C, Ma X, Lu C. Pentachloronitrobenzene alters progesterone production and primordial follicle recruitment in cultured granulosa cells and rat ovary†. Biol Reprod 2021; 102:511-520. [PMID: 31616914 DOI: 10.1093/biolre/ioz195] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 08/18/2019] [Accepted: 10/07/2019] [Indexed: 01/09/2023] Open
Abstract
Pentachloronitrobenzene (PCNB) is an organochlorine fungicide widely used for crop production and has become an environmental concern. Little is known about the effect of PCNB on ovarian steroidogenesis and follicular development. We found that PCNB stimulated Star expression and progesterone production in cultured rat granulosa cells in a dose-dependent manner. PCNB activated mitogen-activated protein kinase (MAPK3/1) extracellulat regulated kinase (ERK1/2), thus inhibition of either protein kinase A (PKA) or MAPK3/1 signaling pathway significantly attenuated progesterone biosynthesis caused by PCNB, suggesting that PCNB induced progesterone production by activating the cyclic adenosine monophosphate (cAMP/PKA) and MAPK3/1 signaling pathways. Further investigation demonstrated that PCNB induced Star expression and altered MAPK3/1 signaling in ovary tissues of immature SD rats treated with PCNB at the dose of 100, 200, or 300 mg/kg by daily gavage for 7 days, while serum progesterone level was dose-dependently decreased. We demonstrated that PCNB exposure accelerated the recruitment of primordial follicles into the growing follicle pool in ovary tissues, accompanied by increased levels of anti-Mullerian hormone (AMH) in both ovary tissues and serum. Taken together, our data demonstrate for the first time that PCNB stimulated Star expression, altered MAPK3/1 signaling and progesterone production in vivo and in vitro, and accelerated follicular development with a concomitant increase in AMH in ovary tissues and serum. Our findings provide novel insight into the toxicity of PCNB to animal ovary function.
Collapse
Affiliation(s)
- Yanrong Kuai
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China.,Department of Genetics, National Research Institute for Family Planning, Beijing, China
| | - Xiaobo Gao
- Department of Genetics, National Research Institute for Family Planning, Beijing, China
| | - Huixia Yang
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| | - Haiyan Luo
- Department of Genetics, National Research Institute for Family Planning, Beijing, China
| | - Yang Xu
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| | - Chenchen Liu
- Department of Genetics, National Research Institute for Family Planning, Beijing, China.,Graduate School of Peking Union Medical College, Beijing, China
| | - Haiying Yu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Yihan Wang
- Department of Genetics, National Research Institute for Family Planning, Beijing, China.,Graduate School of Peking Union Medical College, Beijing, China
| | - Chen Zhang
- Department of Genetics, National Research Institute for Family Planning, Beijing, China.,Graduate School of Peking Union Medical College, Beijing, China
| | - Xu Ma
- Department of Genetics, National Research Institute for Family Planning, Beijing, China
| | - Cailing Lu
- Department of Genetics, National Research Institute for Family Planning, Beijing, China.,Graduate School of Peking Union Medical College, Beijing, China
| |
Collapse
|