1
|
Raja R, Dumontier E, Phen A, Cloutier JF. Insertion of a neomycin selection cassette in the Amigo1 locus alters gene expression in the olfactory epithelium leading to region-specific defects in olfactory receptor neuron development. Genesis 2024; 62:e23594. [PMID: 38590146 DOI: 10.1002/dvg.23594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/08/2024] [Accepted: 03/18/2024] [Indexed: 04/10/2024]
Abstract
During development of the nervous system, neurons connect to one another in a precisely organized manner. Sensory systems provide a good example of this organization, whereby the composition of the outside world is represented in the brain by neuronal maps. Establishing correct patterns of neural circuitry is crucial, as inaccurate map formation can lead to severe disruptions in sensory processing. In rodents, olfactory stimuli modulate a wide variety of behaviors essential for survival. The formation of the olfactory glomerular map is dependent on molecular cues that guide olfactory receptor neuron axons to broad regions of the olfactory bulb and on cell adhesion molecules that promote axonal sorting into specific synaptic units in this structure. Here, we demonstrate that the cell adhesion molecule Amigo1 is expressed in a subpopulation of olfactory receptor neurons, and we investigate its role in the precise targeting of olfactory receptor neuron axons to the olfactory bulb using a genetic loss-of-function approach in mice. While ablation of Amigo1 did not lead to alterations in olfactory sensory neuron axonal targeting, our experiments revealed that the presence of a neomycin resistance selection cassette in the Amigo1 locus can lead to off-target effects that are not due to loss of Amigo1 expression, including unexpected altered gene expression in olfactory receptor neurons and reduced glomerular size in the ventral region of the olfactory bulb. Our results demonstrate that insertion of a neomycin selection cassette into the mouse genome can have specific deleterious effects on the development of the olfactory system and highlight the importance of removing antibiotic resistance cassettes from genetic loss-of-function mouse models when studying olfactory system development.
Collapse
Affiliation(s)
- Reesha Raja
- The Neuro (Montreal Neurological Institute-Hospital), Montréal, Québec, Canada
- Integrated Program in Neuroscience, McGill University, Montréal, Québec, Canada
| | - Emilie Dumontier
- The Neuro (Montreal Neurological Institute-Hospital), Montréal, Québec, Canada
| | - Alina Phen
- The Neuro (Montreal Neurological Institute-Hospital), Montréal, Québec, Canada
| | - Jean-François Cloutier
- The Neuro (Montreal Neurological Institute-Hospital), Montréal, Québec, Canada
- Integrated Program in Neuroscience, McGill University, Montréal, Québec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, Canada
| |
Collapse
|
2
|
Lü Z, Liu T, Liu Y, Wang Y, Liu J, Liu B, Gong L, Liu L. Climate Adaptation and Drift Shape the Genomes of Two Eel-Goby Sister Species Endemic to Contrasting Latitude. Animals (Basel) 2023; 13:3240. [PMID: 37893964 PMCID: PMC10603712 DOI: 10.3390/ani13203240] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/12/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Deciphering the role of climate adaptation in generating genetic divergence and hence speciation is a central question in evolution. Comparisons of genomes of closely related species spanning selective climate gradients are particularly informative in discerning the signatures of selection and thereby providing valuable information concerning the role of climate adaptation in speciation. Here we re-sequenced 99 genomes of the two sister eel-goby species Odontamblyopus lacepedii and O. rebecca, which are endemic to tidal mudflats spanning contrasting latitude gradients, to estimate the influence of divergent climate selection on shaping genome-wide patterns of divergence. The results indicated that genome-wide differentiation between the two species was evident (genome-wide FST = 0.313). Against a background of high baseline genomic divergence, 588 and 1202 elevated divergent loci were detected to be widespread throughout their genomes, as opposed to focused within small islands of genomic regions. These patterns of divergence may arise from divergent climate selection in addition to genetic drift acting through past glacial segregation (1.46 million years ago). We identified several candidate genes that exhibited elevated divergence between the two species, including genes associated with substance metabolism, energy production, and response to environmental cues, all putative candidates closely linked to thermal adaptation expected from the latitude gradient. Interestingly, several candidates related to gamete recognition and time of puberty, and also exhibited elevated divergence, indicating their possible role in pre-zygote isolation and speciation of the two species. Our results would expand our knowledge on the roles of latitude climate adaptation and genetic drift in generating and maintaining biodiversity in marine teleosts.
Collapse
Affiliation(s)
- Zhenming Lü
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, College of Marine Sciences and Technology, Zhejiang Ocean University, Zhoushan 316022, China; (Z.L.); (T.L.); (Y.L.); (J.L.); (B.L.); (L.G.)
| | - Tianwei Liu
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, College of Marine Sciences and Technology, Zhejiang Ocean University, Zhoushan 316022, China; (Z.L.); (T.L.); (Y.L.); (J.L.); (B.L.); (L.G.)
| | - Yantao Liu
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, College of Marine Sciences and Technology, Zhejiang Ocean University, Zhoushan 316022, China; (Z.L.); (T.L.); (Y.L.); (J.L.); (B.L.); (L.G.)
| | - Yuzhen Wang
- National Engineering Research Center for Facilitated Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China;
| | - Jing Liu
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, College of Marine Sciences and Technology, Zhejiang Ocean University, Zhoushan 316022, China; (Z.L.); (T.L.); (Y.L.); (J.L.); (B.L.); (L.G.)
| | - Bingjian Liu
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, College of Marine Sciences and Technology, Zhejiang Ocean University, Zhoushan 316022, China; (Z.L.); (T.L.); (Y.L.); (J.L.); (B.L.); (L.G.)
| | - Li Gong
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, College of Marine Sciences and Technology, Zhejiang Ocean University, Zhoushan 316022, China; (Z.L.); (T.L.); (Y.L.); (J.L.); (B.L.); (L.G.)
| | - Liqin Liu
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, College of Marine Sciences and Technology, Zhejiang Ocean University, Zhoushan 316022, China; (Z.L.); (T.L.); (Y.L.); (J.L.); (B.L.); (L.G.)
| |
Collapse
|
3
|
Chakraborty S, Kahali B. Exome-wide analysis reveals role of LRP1 and additional novel loci in cognition. HGG ADVANCES 2023; 4:100208. [PMID: 37305557 PMCID: PMC10248556 DOI: 10.1016/j.xhgg.2023.100208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 05/16/2023] [Indexed: 06/13/2023] Open
Abstract
Cognitive functioning is heritable, with metabolic risk factors known to accelerate age-associated cognitive decline. Identifying genetic underpinnings of cognition is thus crucial. Here, we undertake single-variant and gene-based association analyses upon 6 neurocognitive phenotypes across 6 cognition domains in whole-exome sequencing data from 157,160 individuals of the UK Biobank cohort to expound the genetic architecture of human cognition. We report 20 independent loci associated with 5 cognitive domains while controlling for APOE isoform-carrier status and metabolic risk factors; 18 of which were not previously reported, and implicated genes relating to oxidative stress, synaptic plasticity and connectivity, and neuroinflammation. A subset of significant hits for cognition indicates mediating effects via metabolic traits. Some of these variants also exhibit pleiotropic effects on metabolic traits. We further identify previously unknown interactions of APOE variants with LRP1 (rs34949484 and others, suggestively significant), AMIGO1 (rs146766120; pAla25Thr, significant), and ITPR3 (rs111522866, significant), controlling for lipid and glycemic risks. Our gene-based analysis also suggests that APOC1 and LRP1 have plausible roles along shared pathways of amyloid beta (Aβ) and lipid and/or glucose metabolism in affecting complex processing speed and visual attention. In addition, we report pairwise suggestive interactions of variants harbored in these genes with APOE affecting visual attention. Our report based on this large-scale exome-wide study highlights the effects of neuronal genes, such as LRP1, AMIGO1, and other genomic loci, thus providing further evidence of the genetic underpinnings for cognition during aging.
Collapse
Affiliation(s)
- Shreya Chakraborty
- Centre for Brain Research, Indian Institute of Science, Bangalore, Karnataka 560012, India
- Interdisciplinary Mathematical Sciences, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Bratati Kahali
- Centre for Brain Research, Indian Institute of Science, Bangalore, Karnataka 560012, India
| |
Collapse
|
4
|
Sepela RJ, Stewart RG, Valencia LA, Thapa P, Wang Z, Cohen BE, Sack JT. The AMIGO1 adhesion protein activates Kv2.1 voltage sensors. Biophys J 2022; 121:1395-1416. [PMID: 35314141 PMCID: PMC9072587 DOI: 10.1016/j.bpj.2022.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 11/11/2021] [Accepted: 03/16/2022] [Indexed: 11/30/2022] Open
Abstract
Kv2 voltage-gated potassium channels are modulated by amphoterin-induced gene and open reading frame (AMIGO) neuronal adhesion proteins. Here, we identify steps in the conductance activation pathway of Kv2.1 channels that are modulated by AMIGO1 using voltage-clamp recordings and spectroscopy of heterologously expressed Kv2.1 and AMIGO1 in mammalian cell lines. AMIGO1 speeds early voltage-sensor movements and shifts the gating charge-voltage relationship to more negative voltages. The gating charge-voltage relationship indicates that AMIGO1 exerts a larger energetic effect on voltage-sensor movement than is apparent from the midpoint of the conductance-voltage relationship. When voltage sensors are detained at rest by voltage-sensor toxins, AMIGO1 has a greater impact on the conductance-voltage relationship. Fluorescence measurements from voltage-sensor toxins bound to Kv2.1 indicate that with AMIGO1, the voltage sensors enter their earliest resting conformation, yet this conformation is less stable upon voltage stimulation. We conclude that AMIGO1 modulates the Kv2.1 conductance activation pathway by destabilizing the earliest resting state of the voltage sensors.
Collapse
Affiliation(s)
- Rebecka J Sepela
- Department of Physiology and Membrane Biology, University of California, Davis, California
| | - Robert G Stewart
- Department of Physiology and Membrane Biology, University of California, Davis, California
| | - Luis A Valencia
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California
| | - Parashar Thapa
- Department of Physiology and Membrane Biology, University of California, Davis, California
| | - Zeming Wang
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California
| | - Bruce E Cohen
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California; Division of Molecular Biophysics & Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California
| | - Jon T Sack
- Department of Physiology and Membrane Biology, University of California, Davis, California; Department of Anesthesiology and Pain Medicine, University of California, Davis, California.
| |
Collapse
|
5
|
Goto K, Osaki M, Izutsu R, Tanaka H, Sasaki R, Tanio A, Satofuka H, Kazuki Y, Yamamoto M, Kugoh H, Ito H, Oshimura M, Fujiwara Y, Okada F. Establishment of an antibody specific for AMIGO2 improves immunohistochemical evaluation of liver metastases and clinical outcomes in patients with colorectal cancer. Diagn Pathol 2022; 17:16. [PMID: 35094710 PMCID: PMC8802484 DOI: 10.1186/s13000-021-01176-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/26/2021] [Indexed: 12/11/2022] Open
Abstract
Abstract
Instruction
The human amphoterin-induced gene and open reading frame (AMIGO) was identified as a novel cell adhesion molecule of type I transmembrane protein. AMIGO2 is one of three members of the AMIGO family (AMIGO1, 2, and 3), and the similarity between them is approximately 40% at the amino acid level. We have previously shown that AMIGO2 functions as a driver of liver metastasis. Immunohistochemical analysis of AMIGO2 expression in colorectal cancer (CRC) using a commercially available anti-AMIGO2 mouse monoclonal antibody clone sc-373699 (sc mAb) correlated with liver metastasis and poor prognosis. However, the sc mAb was found to be cross-reactive with all three molecules in the AMIGO family.
Methods
We generated a rat monoclonal antibody clone rTNK1A0012 (rTNK mAb) for human AMIGO2. The rTNK mAb was used to re-evaluate the association between AMIGO2 expression and liver metastases/clinical outcomes using the same CRC tissue samples previously reported with sc mAb.
Results
Western blot analysis revealed that a rTNK mAb was identified as being specific for AMIGO2 protein and did not cross-react with AMIGO1 and AMIGO3. The rTNK mAb and sc mAb showed higher AMIGO2 expression, which correlates with a high frequency of liver metastases (65.3% and 47.5%, respectively), while multivariate analysis showed that AMIGO2 expression was an independent prognostic factor for liver metastases (p = 7.930E-10 and p = 1.707E-5). The Kaplan-Meier analyses showed that the rTNK mAb (p = 0.004), but not sc mAb (p = 0.107), predicted worse overall survival in patients with high AMIGO2 expression. The relationship between AMIGO2 expression and poor disease-specific survival showed a higher level of significance for rTNK mAb (p = 0.00004) compared to sc mAb (p = 0.001).
Conclusions
These results indicate that the developed rTNK1A0012 mAb is an antibody that specifically recognizes AMIGO2 by immunohistochemistry and can be a more reliable and applicable method for the diagnostic detection of liver metastases and worse prognosis in patients with high AMIGO2-expressing CRC.
Collapse
|
6
|
Maverick EE, Leek AN, Tamkun MM. Kv2 channel-AMIGO β-subunit assembly modulates both channel function and cell adhesion molecule surface trafficking. J Cell Sci 2021; 134:jcs256339. [PMID: 34137443 PMCID: PMC8255027 DOI: 10.1242/jcs.256339] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 05/17/2021] [Indexed: 11/20/2022] Open
Abstract
The Kv2 channels encode delayed rectifier currents that regulate membrane potential in many tissues. They also have a non-conducting function to form stable junctions between the endoplasmic reticulum and plasma membranes, creating membrane contact sites that mediate functions distinct from membrane excitability. Therefore, proteins that interact with Kv2.1 and Kv2.2 channels can alter conducting and/or non-conducting channel properties. One member of the AMIGO family of proteins is an auxiliary β-subunit for Kv2 channels and modulates Kv2.1 electrical activity. However, the AMIGO family has two additional members of ∼50% similarity that have not yet been characterized as Kv2 β-subunits. In this work, we show that the surface trafficking and localization of all three AMIGOs are controlled by their assembly with both Kv2 channels. Additionally, assembly of each AMIGO with either Kv2.1 or Kv2.2 hyperpolarizes the channel activation midpoint by -10 mV. However, only AMIGO2 significantly slows inactivation and deactivation, leading to a prolonged open state of Kv2 channels. The co-regulatory effects of Kv2s and AMIGOs likely fine-tune both the electrical and non-electrical properties of the cells in which they are expressed.
Collapse
Affiliation(s)
- Emily E. Maverick
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
- Molecular, Cellular and Integrative Neuroscience Program, Colorado State University, Fort Collins, CO 80523, USA
| | - Ashley N. Leek
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
- Molecular, Cellular and Integrative Neuroscience Program, Colorado State University, Fort Collins, CO 80523, USA
| | - Michael M. Tamkun
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
- Molecular, Cellular and Integrative Neuroscience Program, Colorado State University, Fort Collins, CO 80523, USA
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
7
|
Roth JG, Muench KL, Asokan A, Mallett VM, Gai H, Verma Y, Weber S, Charlton C, Fowler JL, Loh KM, Dolmetsch RE, Palmer TD. 16p11.2 microdeletion imparts transcriptional alterations in human iPSC-derived models of early neural development. eLife 2020; 9:58178. [PMID: 33169669 PMCID: PMC7695459 DOI: 10.7554/elife.58178] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 11/09/2020] [Indexed: 12/18/2022] Open
Abstract
Microdeletions and microduplications of the 16p11.2 chromosomal locus are associated with syndromic neurodevelopmental disorders and reciprocal physiological conditions such as macro/microcephaly and high/low body mass index. To facilitate cellular and molecular investigations into these phenotypes, 65 clones of human induced pluripotent stem cells (hiPSCs) were generated from 13 individuals with 16p11.2 copy number variations (CNVs). To ensure these cell lines were suitable for downstream mechanistic investigations, a customizable bioinformatic strategy for the detection of random integration and expression of reprogramming vectors was developed and leveraged towards identifying a subset of ‘footprint’-free hiPSC clones. Transcriptomic profiling of cortical neural progenitor cells derived from these hiPSCs identified alterations in gene expression patterns which precede morphological abnormalities reported at later neurodevelopmental stages. Interpreting clinical information—available with the cell lines by request from the Simons Foundation Autism Research Initiative—with this transcriptional data revealed disruptions in gene programs related to both nervous system function and cellular metabolism. As demonstrated by these analyses, this publicly available resource has the potential to serve as a powerful medium for probing the etiology of developmental disorders associated with 16p11.2 CNVs.
Collapse
Affiliation(s)
- Julien G Roth
- Department of Neurosurgery and The Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, United States
| | - Kristin L Muench
- Department of Neurosurgery and The Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, United States
| | - Aditya Asokan
- Department of Neurosurgery and The Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, United States
| | - Victoria M Mallett
- Department of Neurosurgery and The Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, United States
| | - Hui Gai
- Department of Neurosurgery and The Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, United States.,Department of Neurobiology, Stanford University School of Medicine, Stanford, United States
| | - Yogendra Verma
- Department of Neurosurgery and The Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, United States
| | - Stephen Weber
- Department of Neurosurgery and The Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, United States
| | - Carol Charlton
- Department of Neurosurgery and The Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, United States
| | - Jonas L Fowler
- Department of Neurosurgery and The Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, United States
| | - Kyle M Loh
- Department of Neurosurgery and The Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, United States
| | - Ricardo E Dolmetsch
- Department of Neurobiology, Stanford University School of Medicine, Stanford, United States
| | - Theo D Palmer
- Department of Neurosurgery and The Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, United States
| |
Collapse
|
8
|
Regulation of Neurogenesis in Mouse Brain by HMGB1. Cells 2020; 9:cells9071714. [PMID: 32708917 PMCID: PMC7407245 DOI: 10.3390/cells9071714] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/11/2020] [Accepted: 07/15/2020] [Indexed: 12/11/2022] Open
Abstract
The High Mobility Group Box 1 (HMGB1) is the most abundant nuclear nonhistone protein that is involved in transcription regulation. In addition, HMGB1 has previously been found as an extracellularly acting protein enhancing neurite outgrowth in cultured neurons. Although HMGB1 is widely expressed in the developing central nervous system of vertebrates and invertebrates, its function in the developing mouse brain is poorly understood. Here, we have analyzed developmental defects of the HMGB1 null mouse forebrain, and further examined our findings in ex vivo brain cell cultures. We find that HMGB1 is required for the proliferation and differentiation of neuronal stem cells/progenitor cells. Enhanced apoptosis is also found in the neuronal cells lacking HMGB1. Moreover, HMGB1 depletion disrupts Wnt/β-catenin signaling and the expression of transcription factors in the developing cortex, including Foxg1, Tbr2, Emx2, and Lhx6. Finally, HMGB1 null mice display aberrant expression of CXCL12/CXCR4 and reduced RAGE signaling. In conclusion, HMGB1 plays a critical role in mammalian neurogenesis and brain development.
Collapse
|
9
|
Chow LWC, Leung YM. The versatile Kv channels in the nervous system: actions beyond action potentials. Cell Mol Life Sci 2020; 77:2473-2482. [PMID: 31894358 PMCID: PMC11104815 DOI: 10.1007/s00018-019-03415-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 11/16/2019] [Accepted: 12/09/2019] [Indexed: 12/22/2022]
Abstract
Voltage-gated K+ (Kv) channel opening repolarizes excitable cells by allowing K+ efflux. Over the last two decades, multiple Kv functions in the nervous system have been found to be unrelated to or beyond the immediate control of excitability, such as shaping action potential contours or regulation of inter-spike frequency. These functions include neuronal exocytosis and neurite formation, neuronal cell death, regulation of astrocyte Ca2+, glial cell and glioma proliferation. Some of these functions have been shown to be independent of K+ conduction, that is, they suggest the non-canonical functions of Kv channels. In this review, we focus on neuronal or glial plasmalemmal Kv channel functions which are unrelated to shaping action potentials or immediate control of excitability. Similar functions in other cell types will be discussed to some extent in appropriate contexts.
Collapse
Affiliation(s)
- Louis W C Chow
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
- UNIMED Medical Institute, Hong Kong, China
- Organisation for Oncology and Translational Research, Hong Kong, China
| | - Yuk- Man Leung
- Department of Physiology, China Medical University, Taichung, 40402, Taiwan.
| |
Collapse
|
10
|
Hillen AEJ, Burbach JPH, Hol EM. Cell adhesion and matricellular support by astrocytes of the tripartite synapse. Prog Neurobiol 2018; 165-167:66-86. [PMID: 29444459 DOI: 10.1016/j.pneurobio.2018.02.002] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 07/25/2017] [Accepted: 02/07/2018] [Indexed: 12/18/2022]
Abstract
Astrocytes contribute to the formation, function, and plasticity of synapses. Their processes enwrap the neuronal components of the tripartite synapse, and due to this close interaction they are perfectly positioned to modulate neuronal communication. The interaction between astrocytes and synapses is facilitated by cell adhesion molecules and matricellular proteins, which have been implicated in the formation and functioning of tripartite synapses. The importance of such neuron-astrocyte integration at the synapse is underscored by the emerging role of astrocyte dysfunction in synaptic pathologies such as autism and schizophrenia. Here we review astrocyte-expressed cell adhesion molecules and matricellular molecules that play a role in integration of neurons and astrocytes within the tripartite synapse.
Collapse
Affiliation(s)
- Anne E J Hillen
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands; Department of Pediatrics/Child Neurology, VU University Medical Center, 1081 HV Amsterdam, The Netherlands
| | - J Peter H Burbach
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands
| | - Elly M Hol
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands; Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, 1098 XH Amsterdam, The Netherlands; Department of Neuroimmunology, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, The Netherlands.
| |
Collapse
|
11
|
Andersson CH, Hansson O, Minthon L, Andreasen N, Blennow K, Zetterberg H, Skoog I, Wallin A, Nilsson S, Kettunen P. A Genetic Variant of the Sortilin 1 Gene is Associated with Reduced Risk of Alzheimer's Disease. J Alzheimers Dis 2018; 53:1353-63. [PMID: 27392867 PMCID: PMC5147507 DOI: 10.3233/jad-160319] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disorder represented by the accumulation of intracellular tau protein and extracellular deposits of amyloid-β (Aβ) in the brain. The gene sortilin 1 (SORT1) has previously been associated with cardiovascular disease in gene association studies. It has also been proposed to be involved in AD pathogenesis through facilitating Aβ clearance by binding apoE/Aβ complexes prior to cellular uptake. However, the neuropathological role of SORT1 in AD is not fully understood. To evaluate the associations between gene variants of SORT1 and risk of AD, we performed genetic analyses in a Swedish case-control cohort. Ten single nucleotide polymorphisms (SNPs), covering the whole SORT1 gene, were selected and genotyped in 620 AD patients and 1107 controls. The SNP rs17646665, located in a non-coding region of the SORT1 gene, remained significantly associated with decreased risk of AD after multiple testing (pc = 0.0061). In addition, other SNPs were found to be nominally associated with risk of AD, as well as altered cognitive function and the CSF biomarker Aβ42, but these associations did not survive correction for multiple testing. The fact that SORT1 has been strongly associated with risk of cardiovascular disease is intriguing as cardiovascular disease is also regarded as a risk factor for AD. Finally, increased knowledge about SORT1 function has a potential to increase our understanding of APOE, the strongest risk factor for AD.
Collapse
Affiliation(s)
- Carl-Henrik Andersson
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Faculty of Medicine, Lund University, Sweden.,Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Lennart Minthon
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Faculty of Medicine, Lund University, Sweden.,Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Niels Andreasen
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden
| | - Kaj Blennow
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,UCL Institute of Neurology, Queen Square, London, United Kingdom
| | - Ingmar Skoog
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anders Wallin
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Staffan Nilsson
- Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, Sweden
| | - Petronella Kettunen
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Neuropathology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
12
|
Bishop HI, Cobb MM, Kirmiz M, Parajuli LK, Mandikian D, Philp AM, Melnik M, Kuja-Panula J, Rauvala H, Shigemoto R, Murray KD, Trimmer JS. Kv2 Ion Channels Determine the Expression and Localization of the Associated AMIGO-1 Cell Adhesion Molecule in Adult Brain Neurons. Front Mol Neurosci 2018; 11:1. [PMID: 29403353 PMCID: PMC5780429 DOI: 10.3389/fnmol.2018.00001] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/03/2018] [Indexed: 12/20/2022] Open
Abstract
Voltage-gated K+ (Kv) channels play important roles in regulating neuronal excitability. Kv channels comprise four principal α subunits, and transmembrane and/or cytoplasmic auxiliary subunits that modify diverse aspects of channel function. AMIGO-1, which mediates homophilic cell adhesion underlying neurite outgrowth and fasciculation during development, has recently been shown to be an auxiliary subunit of adult brain Kv2.1-containing Kv channels. We show that AMIGO-1 is extensively colocalized with both Kv2.1 and its paralog Kv2.2 in brain neurons across diverse mammals, and that in adult brain, there is no apparent population of AMIGO-1 outside of that colocalized with these Kv2 α subunits. AMIGO-1 is coclustered with Kv2 α subunits at specific plasma membrane (PM) sites associated with hypolemmal subsurface cisternae at neuronal ER:PM junctions. This distinct PM clustering of AMIGO-1 is not observed in brain neurons of mice lacking Kv2 α subunit expression. Moreover, in heterologous cells, coexpression of either Kv2.1 or Kv2.2 is sufficient to drive clustering of the otherwise uniformly expressed AMIGO-1. Kv2 α subunit coexpression also increases biosynthetic intracellular trafficking and PM expression of AMIGO-1 in heterologous cells, and analyses of Kv2.1 and Kv2.2 knockout mice show selective loss of AMIGO-1 expression and localization in neurons lacking the respective Kv2 α subunit. Together, these data suggest that in mammalian brain neurons, AMIGO-1 is exclusively associated with Kv2 α subunits, and that Kv2 α subunits are obligatory in determining the correct pattern of AMIGO-1 expression, PM trafficking and clustering.
Collapse
Affiliation(s)
- Hannah I Bishop
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, CA, United States
| | - Melanie M Cobb
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, CA, United States
| | - Michael Kirmiz
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, CA, United States
| | - Laxmi K Parajuli
- Center for Neuroscience, University of California, Davis, Davis, CA, United States.,Division of Cerebral Structure, National Institute for Physiological Sciences, Okazaki, Japan
| | - Danielle Mandikian
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, CA, United States
| | - Ashleigh M Philp
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, CA, United States
| | - Mikhail Melnik
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, CA, United States
| | | | - Heikki Rauvala
- Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Ryuichi Shigemoto
- Division of Cerebral Structure, National Institute for Physiological Sciences, Okazaki, Japan
| | - Karl D Murray
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, CA, United States.,Center for Neuroscience, University of California, Davis, Davis, CA, United States
| | - James S Trimmer
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, CA, United States.,Department Physiology and Membrane Biology, University of California, Davis, Davis, CA, United States
| |
Collapse
|
13
|
Raddatz BB, Spitzbarth I, Matheis KA, Kalkuhl A, Deschl U, Baumgärtner W, Ulrich R. Microarray-Based Gene Expression Analysis for Veterinary Pathologists: A Review. Vet Pathol 2017. [PMID: 28641485 DOI: 10.1177/0300985817709887] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
High-throughput, genome-wide transcriptome analysis is now commonly used in all fields of life science research and is on the cusp of medical and veterinary diagnostic application. Transcriptomic methods such as microarrays and next-generation sequencing generate enormous amounts of data. The pathogenetic expertise acquired from understanding of general pathology provides veterinary pathologists with a profound background, which is essential in translating transcriptomic data into meaningful biological knowledge, thereby leading to a better understanding of underlying disease mechanisms. The scientific literature concerning high-throughput data-mining techniques usually addresses mathematicians or computer scientists as the target audience. In contrast, the present review provides the reader with a clear and systematic basis from a veterinary pathologist's perspective. Therefore, the aims are (1) to introduce the reader to the necessary methodological background; (2) to introduce the sequential steps commonly performed in a microarray analysis including quality control, annotation, normalization, selection of differentially expressed genes, clustering, gene ontology and pathway analysis, analysis of manually selected genes, and biomarker discovery; and (3) to provide references to publically available and user-friendly software suites. In summary, the data analysis methods presented within this review will enable veterinary pathologists to analyze high-throughput transcriptome data obtained from their own experiments, supplemental data that accompany scientific publications, or public repositories in order to obtain a more in-depth insight into underlying disease mechanisms.
Collapse
Affiliation(s)
- Barbara B Raddatz
- 1 Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany.,2 Center of Systems Neuroscience, Hannover, Germany
| | - Ingo Spitzbarth
- 1 Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany.,2 Center of Systems Neuroscience, Hannover, Germany
| | - Katja A Matheis
- 3 Department of Nonclinical Drug Safety, Boehringer Ingelheim Pharma GmbH & Co KG, Biberach (Riß), Germany
| | - Arno Kalkuhl
- 3 Department of Nonclinical Drug Safety, Boehringer Ingelheim Pharma GmbH & Co KG, Biberach (Riß), Germany
| | - Ulrich Deschl
- 3 Department of Nonclinical Drug Safety, Boehringer Ingelheim Pharma GmbH & Co KG, Biberach (Riß), Germany
| | - Wolfgang Baumgärtner
- 1 Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany.,2 Center of Systems Neuroscience, Hannover, Germany
| | - Reiner Ulrich
- 1 Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany.,2 Center of Systems Neuroscience, Hannover, Germany.,4 Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institute, Greifswald, Germany
| |
Collapse
|
14
|
Li Z, Khan MM, Kuja-Panula J, Wang H, Chen Y, Guo D, Chen ZJ, Lahesmaa R, Rauvala H, Tian L. AMIGO2 modulates T cell functions and its deficiency in mice ameliorates experimental autoimmune encephalomyelitis. Brain Behav Immun 2017; 62:110-123. [PMID: 28119027 DOI: 10.1016/j.bbi.2017.01.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 12/26/2016] [Accepted: 01/10/2017] [Indexed: 01/10/2023] Open
Abstract
The immune function of AMIGO2 is currently unknown. Here, we revealed novel roles of AMIGO2 in modulating T-cell functions and EAE using Amigo2-knockout (AMG2KO) mice. Amigo2 was abundantly expressed by murine T helper (Th) cells. Its deficiency impaired transplanted T-cell infiltration into the secondary lymphoid organs and dampened Th-cell activation, but promoted splenic Th-cell proliferation and abundancy therein. AMG2KO Th cells had respectively elevated T-bet in Th1- and GATA-3 in Th2-lineage during early Th-cell differentiation, accompanied with increased IFN-γ and IL-10 but decreased IL-17A production. AMG2KO mice exhibited ameliorated EAE, dampened spinal T-cell accumulation, decreased serum IL-17A levels and enhanced splenic IL-10 production. Adoptive transfer of encephalitogenic AMG2KO T cells induced milder EAE and dampened spinal Th-cell accumulation and Tnf expression. Mechanistically, Amigo2-overexpression in 293T cells dampened NF-kB transcriptional activity, while Amigo2-deficiency enhanced Akt but suppressed GSK-3β phosphorylation and promoted nuclear translocations of NF-kB and NFAT1 in Th-cells. Collectively, our data demonstrate that AMIGO2 is important in regulating T-cell functions and EAE, and may be harnessed as a potential therapeutic target for multiple sclerosis.
Collapse
Affiliation(s)
- Zhilin Li
- Neuroscience Center, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland.
| | - Mohd Moin Khan
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland.
| | - Juha Kuja-Panula
- Neuroscience Center, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland.
| | - Hongyun Wang
- College of Life Sciences, Wuhan University, Wuhan, China.
| | - Yu Chen
- College of Life Sciences, Wuhan University, Wuhan, China.
| | - Deyin Guo
- College of Life Sciences, Wuhan University, Wuhan, China; School of Basic Medical Sciences, Wuhan University, Wuhan, China.
| | - Zhi Jane Chen
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland.
| | - Riitta Lahesmaa
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland.
| | - Heikki Rauvala
- Neuroscience Center, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland.
| | - Li Tian
- Neuroscience Center, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland; Psychiatry Research Center, Beijing Huilongguan Hospital, Peking University, Beijing, China.
| |
Collapse
|
15
|
RAGE Expression and ROS Generation in Neurons: Differentiation versus Damage. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:9348651. [PMID: 27313835 PMCID: PMC4897723 DOI: 10.1155/2016/9348651] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 05/03/2016] [Indexed: 12/27/2022]
Abstract
RAGE is a multiligand receptor able to bind advanced glycation end-products (AGEs), amphoterin, calgranulins, and amyloid-beta peptides, identified in many tissues and cells, including neurons. RAGE stimulation induces the generation of reactive oxygen species (ROS) mainly through the activity of NADPH oxidases. In neuronal cells, RAGE-induced ROS generation is able to favor cell survival and differentiation or to induce death through the imbalance of redox state. The dual nature of RAGE signaling in neurons depends not only on the intensity of RAGE activation but also on the ability of RAGE-bearing cells to adapt to ROS generation. In this review we highlight these aspects of RAGE signaling regulation in neuronal cells.
Collapse
|
16
|
Alsina FC, Hita FJ, Fontanet PA, Irala D, Hedman H, Ledda F, Paratcha G. Lrig1 is a cell-intrinsic modulator of hippocampal dendrite complexity and BDNF signaling. EMBO Rep 2016; 17:601-16. [PMID: 26935556 DOI: 10.15252/embr.201541218] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 01/28/2016] [Indexed: 11/09/2022] Open
Abstract
Even though many extracellular factors have been identified as promoters of general dendritic growth and branching, little is known about the cell-intrinsic modulators that allow neurons to sculpt distinctive patterns of dendrite arborization. Here, we identify Lrig1, a nervous system-enriched LRR protein, as a key physiological regulator of dendrite complexity of hippocampal pyramidal neurons. Lrig1-deficient mice display morphological changes in proximal dendrite arborization and defects in social interaction. Specifically, knockdown of Lrig1 enhances both primary dendrite formation and proximal dendritic branching of hippocampal neurons, two phenotypes that resemble the effect of BDNF on these neurons. In addition, we show that Lrig1 physically interacts with TrkB and attenuates BDNF signaling. Gain and loss of function assays indicate that Lrig1 restricts BDNF-induced dendrite morphology. Together, our findings reveal a novel and essential role of Lrig1 in regulating morphogenic events that shape the hippocampal circuits and establish that the assembly of TrkB with Lrig1 represents a key mechanism for understanding how specific neuronal populations expand the repertoire of responses to BDNF during brain development.
Collapse
Affiliation(s)
- Fernando Cruz Alsina
- Division of Molecular and Cellular Neuroscience, Institute of Cell Biology and Neuroscience (IBCN)-CONICET School of Medicine University of Buenos Aires (UBA), Buenos Aires, Argentina
| | - Francisco Javier Hita
- Division of Molecular and Cellular Neuroscience, Institute of Cell Biology and Neuroscience (IBCN)-CONICET School of Medicine University of Buenos Aires (UBA), Buenos Aires, Argentina
| | - Paula Aldana Fontanet
- Division of Molecular and Cellular Neuroscience, Institute of Cell Biology and Neuroscience (IBCN)-CONICET School of Medicine University of Buenos Aires (UBA), Buenos Aires, Argentina
| | - Dolores Irala
- Division of Molecular and Cellular Neuroscience, Institute of Cell Biology and Neuroscience (IBCN)-CONICET School of Medicine University of Buenos Aires (UBA), Buenos Aires, Argentina
| | - Håkan Hedman
- Oncology Research Laboratory, Department of Radiation Sciences, Umeå University, Umeå, Sweden
| | - Fernanda Ledda
- Division of Molecular and Cellular Neuroscience, Institute of Cell Biology and Neuroscience (IBCN)-CONICET School of Medicine University of Buenos Aires (UBA), Buenos Aires, Argentina
| | - Gustavo Paratcha
- Division of Molecular and Cellular Neuroscience, Institute of Cell Biology and Neuroscience (IBCN)-CONICET School of Medicine University of Buenos Aires (UBA), Buenos Aires, Argentina
| |
Collapse
|
17
|
Bosten JM, Goodbourn PT, Lawrance-Owen AJ, Bargary G, Hogg RE, Mollon JD. A population study of binocular function. Vision Res 2015; 110:34-50. [PMID: 25771401 DOI: 10.1016/j.visres.2015.02.017] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 02/04/2015] [Accepted: 02/20/2015] [Indexed: 12/20/2022]
Abstract
As part of a genome-wide association study (GWAS) of perceptual traits in healthy adults, we measured stereo acuity, the duration of alternative percepts in binocular rivalry and the extent of dichoptic masking in 1060 participants. We present the distributions of the measures, the correlations between measures, and their relationships to other psychophysical traits. We report sex differences, and correlations with age, interpupillary distance, eye dominance, phorias, visual acuity and personality. The GWAS, using data from 988 participants, yielded one genetic association that passed a permutation test for significance: The variant rs1022907 in the gene VTI1A was associated with self-reported ability to see autostereograms. We list a number of other suggestive genetic associations (p<10(-5)).
Collapse
Affiliation(s)
- J M Bosten
- Department of Psychology, University of Cambridge, UK; School of Psychology, University of Sussex, Brighton, UK.
| | - P T Goodbourn
- Department of Psychology, University of Cambridge, UK; School of Psychology, University of Sydney, Australia
| | | | - G Bargary
- Department of Psychology, University of Cambridge, UK; Division of Optometry and Visual Science, City University, London, UK
| | - R E Hogg
- Department of Psychology, University of Cambridge, UK; Centre for Experimental Medicine, Queen's University Belfast, UK
| | - J D Mollon
- Department of Psychology, University of Cambridge, UK
| |
Collapse
|
18
|
Transcriptional analysis of glial cell differentiation in the postnatal murine spinal cord. Int J Dev Neurosci 2015; 42:24-36. [PMID: 25702526 DOI: 10.1016/j.ijdevneu.2015.02.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 01/28/2015] [Accepted: 02/14/2015] [Indexed: 11/20/2022] Open
Abstract
Postnatal murine spinal cord represents a good model system to study mammalian central nervous system myelination in vivo as a basis for further studies in demyelinating diseases. Transcriptional changes were analyzed in SJL/J mice on postnatal day 0, 14, 49 and 231 (P0, P14, P49, P231) employing Affymetrix GeneChip Mouse Genome 430 2.0 Arrays. Additionally, marker gene signatures for astrocyte and oligodendrocyte lineage-stages were defined to study their gene expression in more detail. In addition, immunohistochemistry was used to quantify the abundance of commonly used glial cell markers. 6092 differentially regulated genes (DEGs) were identified. The up-regulated DEGs at P14, P49 and P231 compared to P0 exhibited significantly enriched associations to gene ontology terms such as myelination and lipid metabolic transport and down-regulated DEGs to neurogenesis and axonogenesis. Expression values of marker gene signatures for neural stem cells, oligodendrocyte precursor cells, and developing astrocytes were constantly decreasing, whereas myelinating oligodendrocyte and mature astrocyte markers showed a steady increase. Molecular findings were substantiated by immunohistochemical observations. The transcriptional changes observed are an important reference for future analysis of degenerative and inflammatory conditions in the spinal cord.
Collapse
|
19
|
Zhao X, Kuja-Panula J, Sundvik M, Chen YC, Aho V, Peltola MA, Porkka-Heiskanen T, Panula P, Rauvala H. Amigo adhesion protein regulates development of neural circuits in zebrafish brain. J Biol Chem 2014; 289:19958-75. [PMID: 24904058 DOI: 10.1074/jbc.m113.545582] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The Amigo protein family consists of three transmembrane proteins characterized by six leucine-rich repeat domains and one immunoglobulin-like domain in their extracellular moieties. Previous in vitro studies have suggested a role as homophilic adhesion molecules in brain neurons, but the in vivo functions remain unknown. Here we have cloned all three zebrafish amigos and show that amigo1 is the predominant family member expressed during nervous system development in zebrafish. Knockdown of amigo1 expression using morpholino oligonucleotides impairs the formation of fasciculated tracts in early fiber scaffolds of brain. A similar defect in fiber tract development is caused by mRNA-mediated expression of the Amigo1 ectodomain that inhibits adhesion mediated by the full-length protein. Analysis of differentiated neural circuits reveals defects in the catecholaminergic system. At the behavioral level, the disturbed formation of neural circuitry is reflected in enhanced locomotor activity and in the inability of the larvae to perform normal escape responses. We suggest that Amigo1 is essential for the development of neural circuits of zebrafish, where its mechanism involves homophilic interactions within the developing fiber tracts and regulation of the Kv2.1 potassium channel to form functional neural circuitry that controls locomotion.
Collapse
Affiliation(s)
| | | | - Maria Sundvik
- From the Neuroscience Center, Institute of Biomedicine/Anatomy, and
| | - Yu-Chia Chen
- From the Neuroscience Center, Institute of Biomedicine/Anatomy, and
| | - Vilma Aho
- Institute of Biomedicine/Physiology, University of Helsinki, Helsinki FIN-00014, Finland
| | | | - Tarja Porkka-Heiskanen
- Institute of Biomedicine/Physiology, University of Helsinki, Helsinki FIN-00014, Finland
| | - Pertti Panula
- From the Neuroscience Center, Institute of Biomedicine/Anatomy, and
| | | |
Collapse
|
20
|
Piras S, Furfaro AL, Piccini A, Passalacqua M, Borghi R, Carminati E, Parodi A, Colombo L, Salmona M, Pronzato MA, Marinari UM, Tabaton M, Nitti M. Monomeric Aβ1–42 and RAGE: key players in neuronal differentiation. Neurobiol Aging 2014; 35:1301-8. [DOI: 10.1016/j.neurobiolaging.2014.01.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 01/04/2014] [Indexed: 11/24/2022]
|
21
|
Winther M, Walmod PS. Neural cell adhesion molecules belonging to the family of leucine-rich repeat proteins. ADVANCES IN NEUROBIOLOGY 2014; 8:315-95. [PMID: 25300143 DOI: 10.1007/978-1-4614-8090-7_14] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Leucine-rich repeats (LRRs) are motifs that form protein-ligand interaction domains. There are approximately 140 human genes encoding proteins with extracellular LRRs. These encode cell adhesion molecules (CAMs), proteoglycans, G-protein-coupled receptors, and other types of receptors. Here we give a brief description of 36 proteins with extracellular LRRs that all can be characterized as CAMs or putative CAMs expressed in the nervous system. The proteins are involved in multiple biological processes in the nervous system including the proliferation and survival of cells, neuritogenesis, axon guidance, fasciculation, myelination, and the formation and maintenance of synapses. Moreover, the proteins are functionally implicated in multiple diseases including cancer, hearing impairment, glaucoma, Alzheimer's disease, multiple sclerosis, Parkinson's disease, autism spectrum disorders, schizophrenia, and obsessive-compulsive disorders. Thus, LRR-containing CAMs constitute a large group of proteins of pivotal importance for the development, maintenance, and regeneration of the nervous system.
Collapse
|