1
|
Xie T, Zhu F, Cheng R, Gao J, Hong Y, Deng P, Liu C, Xu Y. FLRT2 mediates chondrogenesis of nasal septal cartilage and mandibular condyle cartilage. Open Med (Wars) 2024; 19:20240902. [PMID: 38584835 PMCID: PMC10996939 DOI: 10.1515/med-2024-0902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 12/04/2023] [Accepted: 12/26/2023] [Indexed: 04/09/2024] Open
Abstract
Nasal septal cartilages (NSCs) and mandibular condyle cartilages (MCCs) are two important cartilages for craniomaxillofacial development. However, the role of FLRT2 in the formation of NSCs and MCCs remains undiscovered. NSCs and MCCs were used for immunocytochemistry staining of collagen II, toluidine blue staining, and alcian blue staining. Quantitative reverse transcription‑PCR and western blot were used to detect mRNA and protein expressions of FLRT2, N-cadherin, collagen II, aggrecan, and SOX9. Cell proliferation of MCCs and NSCs was tested by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and cell counting kit‑8 assay. Cell migration of MCCs and NSCs was examined by wound healing assay and Transwell. Chondrogenesis of MCCs and NSCs were similar in morphological characteristics, while different in cell proliferation, migration, and extracellular matrix. FLRT2 promotes the proliferation and migration of NSCs. There were up-regulation of N-cadherin and down-regulation of collagen II, aggrecan, and SOX9 in NSC with knock down FLRT2. The current study, as demonstrated by Xie et al., reveals that FLRT2 overexpression in Sprague-Dawley neonatal rats promotes the proliferation and migration of NSCs and MCCs, decreases N-cadherin while increases collagen II, aggrecan, and SOX9 in NSC and MCCs. Altogether, FLRT2 mediates chondrogenesis of NSCs and MCCs.
Collapse
Affiliation(s)
- Tao Xie
- Department of Orthodontics, Kunming Medical University Affiliated Stomatological Hospital, Yunnan Key Laboratory of Stomatology, Kunming650106, Yunnan, China
| | - Fangyong Zhu
- Department of Stomatology, Affiliated Hospital of Jiangnan University, Wuxi214000, Jiangsu, China
| | - Renyi Cheng
- Department of Orthodontics, Kunming Medical University Affiliated Stomatological Hospital, Yunnan Key Laboratory of Stomatology, Kunming650106, Yunnan, China
| | - Jing Gao
- Department of Stomatology, Panzhihua Central Hospital, Panzhihua617000, Sichuan, China
| | - Yuchen Hong
- Department of Orthodontics, Kunming Medical University Affiliated Stomatological Hospital, Yunnan Key Laboratory of Stomatology, Kunming650106, Yunnan, China
| | - Peishen Deng
- Department of Orthodontics, Kunming Medical University Affiliated Stomatological Hospital, Yunnan Key Laboratory of Stomatology, Kunming650106, Yunnan, China
| | - Chaofeng Liu
- Second Clinic, Kunming Medical University Affiliated Stomatological Hospital, Yunnan Key Laboratory of Stomatology, Kunming650106, Yunnan, China
| | - Yanhua Xu
- Party and Government Office, Kunming Medical University Affiliated Stomatological Hospital, Kunming650106, Yunnan, China
| |
Collapse
|
2
|
Jiang P, Ning J, Yu W, Rao T, Ruan Y, Cheng F. FLRT2 suppresses bladder cancer progression through inducing ferroptosis. J Cell Mol Med 2024; 28:e17855. [PMID: 37480224 PMCID: PMC10902570 DOI: 10.1111/jcmm.17855] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/05/2023] [Accepted: 07/10/2023] [Indexed: 07/23/2023] Open
Abstract
Bladder cancer is a common tumour worldwide and exhibits a poor prognosis. Fibronectin leucine rich transmembrane protein 2 (FLRT2) is associated with the regulation of multiple tumours; however, its function in human bladder cancer remain unclear. Herein, we found that FLRT2 level was reduced in human bladder cancer and that higher FLRT2 level predicted lower survival rate. FLRT2 overexpression inhibited, while FLRT2 silence facilitated tumour cell growth, migration and invasion. Mechanistic studies revealed that FLRT2 elevated acyl-CoA synthetase long-chain family member 4 (ACSL4) expression, increased lipid peroxidation and subsequently facilitated ferroptosis of human bladder cancer cells. In summary, we demonstrate that FLRT2 elevates ACSL4 expression to facilitate lipid peroxidation and subsequently triggers ferroptosis, thereby inhibiting the malignant phenotype of human bladder cancer cells. Overall, we identify FLRT2 as a tumour suppressor gene.
Collapse
Affiliation(s)
- Pengcheng Jiang
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Jinzhuo Ning
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Weimin Yu
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Ting Rao
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Yuan Ruan
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Fan Cheng
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanChina
| |
Collapse
|
3
|
Tao Y, Yu X, Cong H, Li J, Zhu J, Ding H, Chen Q, Cai T. Identification of FLRT2 as a key prognostic gene through a comprehensive analysis of TMB and IRGPs in BLCA patients. Front Oncol 2024; 13:1229227. [PMID: 38486936 PMCID: PMC10937436 DOI: 10.3389/fonc.2023.1229227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 11/22/2023] [Indexed: 03/17/2024] Open
Abstract
Introduction The tumor immune environment and immune-related genes are instrumental in the development, progression, and prognosis of bladder cancer (BLCA). This study sought to pinpoint key immune-related genes influencing BLCA prognosis and decipher their mechanisms of action. Methods and results We analyzed differentially expressed genes (DEGs) between high- and low- tumor mutational burden (TMB) groups. Subsequently, we constructed a reliable prognostic model based on immune-related gene pairs (IRGPs) and analyzed DEGs between high- and low-risk groups. A total of 22 shared DEGs were identified across differential TMB and IRGPs-derived risk groups in BLCA patients. Through univariate Cox and multivariate Cox analyses, we highlighted five genes - FLRT2, NTRK2, CYTL1, ZNF683, PRSS41 - significantly correlated with BLCA patient prognosis. Notably, the FLRT2 gene emerged as an independent prognostic factor for BLCA, impacting patient prognosis via modulation of macrophage infiltration in immune microenvironment. Further investigation spotlighted methylation sites - cg25120290, cg02305242, and cg01832662 - as key regulators of FLRT2 expression. Discussion These findings identified pivotal prognostic genes in BLCA and illuminated the intricate mechanisms dictating patient prognosis. This study not only presents a novel prognostic marker but also carves out potential avenues for immunotherapy and targeted therapeutic strategies in BLCA. By demystifying the profound impact of immune-related genes and the tumor immune environment, this study augments the comprehension and prognostic management of bladder cancer.
Collapse
Affiliation(s)
- Yaling Tao
- Research Institute, Ningbo No.2 Hospital, Ningbo, China
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, China
| | - Xiaoling Yu
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, China
| | - Huaiwei Cong
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, China
| | - Jinpeng Li
- Research Institute, Ningbo No.2 Hospital, Ningbo, China
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, China
| | - Junqi Zhu
- Department of Research and Development, Thorgene Co., Ltd., Beijing, China
| | - Huaxin Ding
- Department of Pathology, Ningbo Clinical Pathology Diagnosis Center, Ningbo, China
| | - Qian Chen
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, China
- Department of Research and Development, Thorgene Co., Ltd., Beijing, China
- Research Institute, Ningbo Hangzhou Bay Hospital, Ningbo, China
| | - Ting Cai
- Research Institute, Ningbo No.2 Hospital, Ningbo, China
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, China
| |
Collapse
|
4
|
Yang S, Huang L, Liang H, Guo J, Liu L, Chen S, Cao M. Loss of flrt2 gene leads to microphthalmia in zebrafish. Biol Open 2023; 12:bio059784. [PMID: 37259881 PMCID: PMC10281255 DOI: 10.1242/bio.059784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 05/25/2023] [Indexed: 06/02/2023] Open
Abstract
As a member of the fibronectin leucine-rich transmembrane (flrt) gene family, fibronectin leucine-rich transmembrane 2 (flrt2) is strongly expressed in a subset of sclerotome cells, and the resultant protein interacts with FGFR1 in the FGF signaling pathway during development. Studies on flrt2 have focused mainly on its roles in the brain, heart and chondrogenesis. However, reports on its expression and function in the zebrafish retina are lacking. Here, we detected the high expression of flrt2 in zebrafish retina using in situ hybridization technique and developed an flrt2-knockout (KO) zebrafish line using CRISPR/Cas9 genome editing. Quantitative real-time PCR was used to measure the expression levels of flrt2, which results in an approximately 60% mRNA reduction. The flrt2-KO zebrafish eyes' altered morphological, cellular, and molecular events were identified using BrdU labeling, TUNEL assay, immunofluorescent staining, fluorescent dye injection and RNA sequencing. Abnormal eye development, known as microphthalmia, was found in flrt2-KO larvae, and the retinal progenitor cells exhibited increased apoptosis, perhaps owing to the combined effects of crx, neurod4, atoh7, and pcdh8 downregulation and Casp3a and Caspbl upregulation. In contrast, the retinal neural development, as well as retinal progenitor cell differentiation and proliferation, were not affected by the flrt2 deletion. Thus, flrt2 appears to play important roles in retinal development and function, which may provide the basis for further investigations into the molecular mechanisms of retinal development and evolution.
Collapse
Affiliation(s)
- Siyu Yang
- Department of Ophthalmology, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, China
| | - Lianggui Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Huiling Liang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Jingyi Guo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Liyue Liu
- China Zebrafish Resource Center, National Aquatic Biological Resource Center, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Shuyi Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Mingzhe Cao
- Department of Ophthalmology, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, China
| |
Collapse
|
5
|
Han J, Luo Z, Wang Y, Liang Y. LncRNA ZFAS1 protects chondrocytes from IL-1β-induced apoptosis and extracellular matrix degradation via regulating miR-7-5p/FLRT2 axis. J Orthop Surg Res 2023; 18:320. [PMID: 37098630 PMCID: PMC10131303 DOI: 10.1186/s13018-023-03802-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 04/14/2023] [Indexed: 04/27/2023] Open
Abstract
BACKGROUND Increasing evidence suggested that long non-coding RNAs (lncRNAs) played vital roles in osteoarthritis (OA) progression. In this study, we aimed to reveal the protective roles of lncRNA ZFAS1 in osteoarthritis (OA) and further investigated its underlying mechanism. METHODS The chondrocytes were stimulated by IL-1β to establish an in vitro OA model. Then, the expression of ZFAS1, miR-7-5p, and FLRT2 in chondrocytes was determined by qRT-PCR. Gain- and loss-of-function assays of ZFAS1, miR-7-5p and FLRT2 were conducted. CCK-8 assay and flow cytometry analysis were performed to detect cell viability and apoptosis rate. The expression levels of cartilage-related proteins, including MMP13, ADAMTS5, Collagen II, and Aggrecan, were measured by western blot analysis. The interaction between ZFAS1 and miR-7-5p, as well as miR-7-5p and FLRT2, was confirmed by dual-luciferase reporter assay and RNA immunoprecipitation assay. RESULTS The expression of ZFAS1 and FLRT2 was down-regulated, while the expression of miR-7-5p was up-regulated in chondrocytes exposed to IL-1β. ZFAS1 overexpression promoted cell viability and suppressed apoptosis in IL-1β-treated chondrocytes. Besides, ZFAS1 overexpression suppressed the expression of MMP13 and ADAMTS5, but promoted the expression of Collagen II and Aggrecan to suppress ECM degradation. The mechanistic study showed that ZFAS1 sponged miR-7-5p to regulate FLRT2 expression. Furthermore, the overexpression of miR-7-5p could neutralize the effect of ZFAS1 in IL-1β-treated chondrocytes, and suppression of FLRT2 counteracted the miR-7-5p down-regulation role in IL-1β-treated chondrocytes. CONCLUSIONS ZFAS1 could promote cell viability of IL-1β-treated chondrocytes via regulating miR-7-5p/FLRT2 axis. Trial registration Not applicable.
Collapse
Affiliation(s)
- Jicheng Han
- Department of Orthopedics, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Zongjian Luo
- Department of Orthopedics, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Yifei Wang
- Department of Pathology, Jilin Cancer Hospital, Changchun, 130012, China
| | - Yantao Liang
- Surgery of Bone and Soft Tissue Tumors, Jilin Cancer Hospital, 1018 Huguang Road, Chaoyang District, Changchun, 130012, China.
| |
Collapse
|
6
|
Sun X, Shu XO, Lan Q, Laszkowska M, Cai Q, Rothman N, Wen W, Zheng W, Shu X. Prospective Proteomic Study Identifies Potential Circulating Protein Biomarkers for Colorectal Cancer Risk. Cancers (Basel) 2022; 14:3261. [PMID: 35805033 PMCID: PMC9265260 DOI: 10.3390/cancers14133261] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Proteomics-based technologies are emerging tools used for cancer biomarker discovery. Limited prospective studies have been conducted to evaluate the role of circulating proteins in colorectal cancer (CRC) development. METHODS A two-stage case-control proteomics study nested in the Shanghai Women's Health Study was conducted. A total of 1104 circulating proteins were measured in the discovery phase, consisting of 100 incident CRC cases and 100 individually matched controls. An additional 60 case-control pairs were selected for validation. Protein profiling at both stages was completed using the Olink platforms. Conditional logistic regression was used to evaluate the associations between circulating proteins and CRC risk. The elastic net method was employed to develop a protein score for CRC risk. RESULTS In the discovery set, 27 proteins showed a nominally significant association with CRC risk, among which 22 were positively and 5 were inversely associated. Six of the 27 protein markers were significantly associated with CRC risk in the validation set. In the analysis of pooled discovery and validation sets, odds ratios (ORs) per standard deviation (SD) increase in levels of these proteins were 1.54 (95% confidence interval (CI): 1.15-2.06) for CD79B; 1.71 (95% CI: 1.24-2.34) for DDR1; 2.04 (95% CI: 1.39-3.01) for EFNA4; 1.54 (95% CI: 1.16-2.02) for FLRT2; 2.09 (95% CI: 1.47-2.98) for LTA4H and 1.88 (95% CI: 1.35-2.62) for NCR1. Sensitivity analyses showed consistent associations for all proteins with the exclusion of cases diagnosed within the first two years after the cohort enrollment, except for CD79B. Furthermore, a five-protein score was developed based on the six proteins identified and showed significant associations with CRC risk in both discovery and validation sets (Discovery: OR1-SD = 2.46, 95% CI: 1.53-3.95; validation: OR1-SD = 4.16, 95% CI: 1.92-8.99). CONCLUSIONS A panel of five protein markers was identified as potential biomarkers for CRC risk. Our findings provide novel insights into the etiology of CRC and may facilitate the risk assessment of the malignancy.
Collapse
Affiliation(s)
- Xiaohui Sun
- Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY 10017, USA; (X.S.); (M.L.)
- Department of Epidemiology, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (X.-O.S.); (Q.C.); (W.W.); (W.Z.)
| | - Qing Lan
- Division of Cancer Epidemiology and Genetics, Occupational and Environmental Epidemiology Branch, National Cancer Institute, Rockville, MD 20850, USA; (Q.L.); (N.R.)
| | - Monika Laszkowska
- Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY 10017, USA; (X.S.); (M.L.)
| | - Qiuyin Cai
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (X.-O.S.); (Q.C.); (W.W.); (W.Z.)
| | - Nathaniel Rothman
- Division of Cancer Epidemiology and Genetics, Occupational and Environmental Epidemiology Branch, National Cancer Institute, Rockville, MD 20850, USA; (Q.L.); (N.R.)
| | - Wanqing Wen
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (X.-O.S.); (Q.C.); (W.W.); (W.Z.)
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (X.-O.S.); (Q.C.); (W.W.); (W.Z.)
| | - Xiang Shu
- Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY 10017, USA; (X.S.); (M.L.)
| |
Collapse
|
7
|
Clinical significance of novel DNA methylation biomarkers for renal clear cell carcinoma. J Cancer Res Clin Oncol 2021; 148:361-375. [PMID: 34689221 DOI: 10.1007/s00432-021-03837-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/14/2021] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Clear cell renal cell carcinoma (ccRCC) is the most common type of kidney tumor characterized by the highest mortality rate of the genitourinary cancers, and, therefore, new diagnostic and/or prognostic biomarkers are urgently needed. METHODS Based on genome-wide DNA methylation profiling in 11 pairs of ccRCC and non-cancerous renal tissues (NRT), the methylation at regulatory regions of ZNF677, FBN2, PCDH8, TFAP2B, TAC1, and FLRT2 was analyzed in 168 renal tissues and 307 urine samples using qualitative and quantitative methylation-specific PCR (MSP). RESULTS Significantly higher methylation frequencies for all genes were found in ccRCC tissues compared to NRT (33-60% vs. 0-11%). The best diagnostic performance demonstrated a panel of ZNF677, FBN2, PCDH8, TFAP2B & TAC1 with 82% sensitivity and 96% specificity. Hypermethylation of ZNF677 and PCDH8 in the tissue samples was significantly related to numerous adverse clinicopathologic parameters. For the urine-based ccRCC detection, the highest diagnostic power (AUC = 0.78) was observed for a panel of ZNF677 & PCDH8 (with or without FBN2 or FLRT2) with 69-78% sensitivity and 69-80% specificity, albeit with lower values in the validation cohort. Besides, methylation of PCDH8 was significantly related to higher tumor stage and fat invasion in the study and validation cohorts. Moreover, PCDH8 was strongly predictive for OS (HR, 5.7; 95% CI 1.16-28.12), and its prognostic power considerably increased in combination with ZNF677 (HR, 12.5; 95% CI 1.47-105.58). CONCLUSION In summary, our study revealed novel, potentially promising DNA methylation biomarkers of ccRCC with the possibility to be applied for non-invasive urine-based ccRCC detection and follow-up.
Collapse
|
8
|
Epigenetic Modulation of Radiation-Induced Diacylglycerol Kinase Alpha Expression Prevents Pro-Fibrotic Fibroblast Response. Cancers (Basel) 2021; 13:cancers13102455. [PMID: 34070078 PMCID: PMC8158145 DOI: 10.3390/cancers13102455] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/04/2021] [Accepted: 05/12/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary To reduce long-term fibrosis risk after radiotherapy, we demonstrated with different experimental approaches that modulation of the epigenetic pattern at the DGKA enhancer can attenuate pro-fibrotic reactions in human fibroblasts. We used (epi)genomic editing of the DGKA enhancer and administration of various epigenetic drugs and were able to modulate radiation-induced expression of DGKA and pro-fibrotic collagens. Based on our results, clinical application of bromodomain inhibitors will open promising ways to epigenetically modulate DGKA expression and might provide novel therapeutic options to prevent or even reverse radiotherapy-induced fibrotic reactions. Abstract Radiotherapy, a common component in cancer treatment, can induce adverse effects including fibrosis in co-irradiated tissues. We previously showed that differential DNA methylation at an enhancer of diacylglycerol kinase alpha (DGKA) in normal dermal fibroblasts is associated with radiation-induced fibrosis. After irradiation, the transcription factor EGR1 is induced and binds to the hypomethylated enhancer, leading to increased DGKA and pro-fibrotic marker expression. We now modulated this DGKA induction by targeted epigenomic and genomic editing of the DGKA enhancer and administering epigenetic drugs. Targeted DNA demethylation of the DGKA enhancer in HEK293T cells resulted in enrichment of enhancer-related histone activation marks and radiation-induced DGKA expression. Mutations of the EGR1-binding motifs decreased radiation-induced DGKA expression in BJ fibroblasts and caused dysregulation of multiple fibrosis-related pathways. EZH2 inhibitors (GSK126, EPZ6438) did not change radiation-induced DGKA increase. Bromodomain inhibitors (CBP30, JQ1) suppressed radiation-induced DGKA and pro-fibrotic marker expression. Similar drug effects were observed in donor-derived fibroblasts with low DNA methylation. Overall, epigenomic manipulation of DGKA expression may offer novel options for a personalized treatment to prevent or attenuate radiotherapy-induced fibrosis.
Collapse
|
9
|
Guo X, Song C, Fang L, Li M, Yue L, Sun Q. FLRT2 functions as Tumor Suppressor gene inactivated by promoter methylation in Colorectal Cancer. J Cancer 2020; 11:7329-7338. [PMID: 33193897 PMCID: PMC7646184 DOI: 10.7150/jca.47558] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 10/11/2020] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is a leading cause of cancer death worldwide. Epigenetic alterations, especially DNA methylation, contribute to the initiation and progression of CRC. To identify novel methylated tumor suppressors in CRC, MethylRAD-Seq screening was performed. As the result, FLRT2 was found to be preferentially methylated. In the present study, we aimed to elucidate the epigenetic regulations and biological functions of FLRT2 in CRC. Significant FLRT2 hypermethylation was initially confirmed in CRC samples and cell lines. Meanwhile, downregulated expression of FLRT2 was observed in CRC, which is probably attributed to promoter methylation of FLRT2. Consistently, the expression of FLRT2 was restored after treatment with DNA demethylating agent 5-AZA. FLRT2 overexpression resulted in impaired cell viability and colony formation. Additionally, FLRT2 overexpression led to a reduction in cell migration and cell invasion. Furthermore, we also observed that FLRT2 induced cell cycle arrest. Mechanistically, these effects were associated with the downregulation of phosphor-AKT, phosphor-ERK, CDK2, Cyclin A, and MMP2, and upregulation of P21. Taken together, these results define a tumor-suppressor role of FLRT2 with epigenetic silencing in the pathogenesis of CRC. Moreover, FLRT2 promoter methylation may be a useful epigenetic biomarker for the prevention and treatment of CRC.
Collapse
Affiliation(s)
- Xiaohong Guo
- Department of Pathology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Chao Song
- Department of Pathology, Zibo Central Hospital, Zibo, Shandong, China
| | - Lei Fang
- Department of Pathology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Min Li
- Department of Pathology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Longtao Yue
- Department of Pathology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Qing Sun
- Department of Pathology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| |
Collapse
|
10
|
van den Akker GGH, Eijssen LMT, Richardson SM, Rhijn LWV, Hoyland JA, Welting TJM, Voncken JW. A Membranome-Centered Approach Defines Novel Biomarkers for Cellular Subtypes in the Intervertebral Disc. Cartilage 2020; 11:203-220. [PMID: 29629573 PMCID: PMC7097986 DOI: 10.1177/1947603518764260] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE Lack of specific marker-sets prohibits definition and functional distinction of cellular subtypes in the intervertebral disc (IVD), such as those from the annulus fibrosus (AF) and the nucleus pulposus (NP). DESIGN We recently generated immortalized cell lines from human NP and AF tissues; these comprise a set of functionally distinct clonal subtypes. Whole transcriptome analyses were performed of 12 phenotypically distinct clonal cell lines (4× NP-Responder, 4× NP-nonResponder, 2× AF-Sheet forming, and 2× AF-nonSheet forming). Data sets were filtered for membrane-associated marker genes and compared to literature. RESULTS Comparison of our immortal cell lines to published primary NP, AF, and articular chondrocytes (AC) transcriptome datasets revealed preservation of AF and NP phenotypes. NP-specific membrane-associated genes were defined by comparison to AF cells in both the primary dataset (46 genes) and immortal cell-lines (161 genes). Definition of AF-specific membrane-associated genes yielded 125 primary AF cell and 92 immortal cell-line markers. Overlap between primary and immortal NP cells yielded high-confidence NP-specific marker genes for NP-R (CLDN11, TMEFF2, CA12, ANXA2, CD44) and NP-nR (EFNA1, NETO2, SLC2A1). Overlap between AF and immortal AF subtypes yielded specific markers for AF-S (COLEC12, LPAR1) and AF-nS (CHIC1). CONCLUSIONS The current study provides a reference platform for preclinical evaluation of novel membrane-associated cell type-specific markers in the IVD. Future research will focus on their biological relevance for IVD function in development, homeostasis, and degenerate conditions.
Collapse
Affiliation(s)
- Guus G. H. van den Akker
- Department of Orthopedic Surgery, Maastricht University Medical Centre, Maastricht, Netherlands
- Department of Molecular Genetics, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Lars M. T. Eijssen
- Department of Bioinformatics, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Stephen M. Richardson
- Centre for Regenerative Medicine, Institute of Inflammation and Repair, University of Manchester, Manchester, UK
| | - Lodewijk W. van Rhijn
- Department of Orthopedic Surgery, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Judith A. Hoyland
- Centre for Regenerative Medicine, Institute of Inflammation and Repair, University of Manchester, Manchester, UK
| | - Tim J. M. Welting
- Department of Orthopedic Surgery, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Jan Willem Voncken
- Department of Molecular Genetics, Maastricht University Medical Centre, Maastricht, Netherlands
| |
Collapse
|
11
|
Cicvaric A, Yang J, Bulat T, Zambon A, Dominguez-Rodriguez M, Kühn R, Sadowicz MG, Siwert A, Egea J, Pollak DD, Moeslinger T, Monje FJ. Enhanced synaptic plasticity and spatial memory in female but not male FLRT2-haplodeficient mice. Sci Rep 2018; 8:3703. [PMID: 29487336 PMCID: PMC5829229 DOI: 10.1038/s41598-018-22030-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 02/14/2018] [Indexed: 12/30/2022] Open
Abstract
The Fibronectin Leucine-Rich Transmembrane protein 2 (FLRT2) has been implicated in several hormone -and sex-dependent physiological and pathological processes (including chondrogenesis, menarche and breast cancer); is known to regulate developmental synapses formation, and is expressed in the hippocampus, a brain structure central for learning and memory. However, the role of FLRT2 in the adult hippocampus and its relevance in sex-dependent brain functions remains unknown. We here used adult single-allele FLRT2 knockout (FLRT2+/-) mice and behavioral, electrophysiological, and molecular/biological assays to examine the effects of FLRT2 haplodeficiency on synaptic plasticity and hippocampus-dependent learning and memory. Female and male FLRT2+/- mice presented morphological features (including body masses, brain shapes/weights, and brain macroscopic cytoarchitectonic organization), indistinguishable from their wild type counterparts. However, in vivo examinations unveiled enhanced hippocampus-dependent spatial memory recall in female FLRT2+/- animals, concomitant with augmented hippocampal synaptic plasticity and decreased levels of the glutamate transporter EAAT2 and beta estrogen receptors. In contrast, male FLRT2+/- animals exhibited deficient memory recall and decreased alpha estrogen receptor levels. These observations propose that FLRT2 can regulate memory functions in the adulthood in a sex-specific manner and might thus contribute to further research on the mechanisms linking sexual dimorphism and cognition.
Collapse
Affiliation(s)
- Ana Cicvaric
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090, Vienna, Austria
| | - Jiaye Yang
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090, Vienna, Austria
| | - Tanja Bulat
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090, Vienna, Austria
| | - Alice Zambon
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090, Vienna, Austria
| | - Manuel Dominguez-Rodriguez
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090, Vienna, Austria
| | - Rebekka Kühn
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090, Vienna, Austria
| | - Michael G Sadowicz
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090, Vienna, Austria
| | - Anjana Siwert
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090, Vienna, Austria
| | - Joaquim Egea
- Molecular and Developmental Neurobiology Research Group, Universitat de Lleida - IRBLleida, Office 1.13, Lab. 1.06. Avda. Rovira Roure, 80, 25198, Lleida, Spain
| | - Daniela D Pollak
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090, Vienna, Austria
| | - Thomas Moeslinger
- Institute for Physiology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090, Vienna, Austria
| | - Francisco J Monje
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090, Vienna, Austria.
| |
Collapse
|
12
|
Epigenetically regulated Fibronectin leucine rich transmembrane protein 2 (FLRT2) shows tumor suppressor activity in breast cancer cells. Sci Rep 2017; 7:272. [PMID: 28325946 PMCID: PMC5428463 DOI: 10.1038/s41598-017-00424-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 02/21/2017] [Indexed: 12/20/2022] Open
Abstract
To identify dysregulated genes by abnormal methylation and expression in breast cancer, we genome-wide analyzed methylation and expression microarray data from the Gene Expression Omnibus and the Cancer Genome Atlas database. One of the genes screened in silico, FLRT2, showed hypermethylation and downregulation in the cancer dataset and the association was verified both in cultured cell lines and cancer patients’ tissue. To investigate the role of FLRT2 in breast cancer, its expression was knocked down and upregulated in mammary cell lines, and the effect was examined through three levels of approach: pathway analysis; cell activities such as proliferation, colony formation, migration, and adhesion; target gene expression. The top pathway was “Cellular growth and proliferation”, or “Cancer”-related function, with the majority of the genes deregulated in a direction pointing to FLRT2 as a potential tumor suppressor. Concordantly, downregulation of FLRT2 increased cell proliferation and cell migration, while overexpression of FLRT2 had the opposite effect. Notably, cell adhesion was significantly decreased by FLRT2 in the collagen I-coated plate. Taken together, our results provide insights into the role of FLRT2 as a novel tumor suppressor in the breast, which is inactivated by hypermethylation during tumor development.
Collapse
|
13
|
Rapid Alterations in Perirenal Adipose Tissue Transcriptomic Networks with Cessation of Voluntary Running. PLoS One 2015; 10:e0145229. [PMID: 26678390 PMCID: PMC4683046 DOI: 10.1371/journal.pone.0145229] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 11/30/2015] [Indexed: 12/20/2022] Open
Abstract
In maturing rats, the growth of abdominal fat is attenuated by voluntary wheel running. After the cessation of running by wheel locking, a rapid increase in adipose tissue growth to a size that is similar to rats that have never run (i.e. catch-up growth) has been previously reported by our lab. In contrast, diet-induced increases in adiposity have a slower onset with relatively delayed transcriptomic responses. The purpose of the present study was to identify molecular pathways associated with the rapid increase in adipose tissue after ending 6 wks of voluntary running at the time of puberty. Age-matched, male Wistar rats were given access to running wheels from 4 to 10 weeks of age. From the 10th to 11th week of age, one group of rats had continued wheel access, while the other group had one week of wheel locking. Perirenal adipose tissue was extracted, RNA sequencing was performed, and bioinformatics analyses were executed using Ingenuity Pathway Analysis (IPA). IPA was chosen to assist in the understanding of complex ‘omics data by integrating data into networks and pathways. Wheel locked rats gained significantly more fat mass and significantly increased body fat percentage between weeks 10–11 despite having decreased food intake, as compared to rats with continued wheel access. IPA identified 646 known transcripts differentially expressed (p < 0.05) between continued wheel access and wheel locking. In wheel locked rats, IPA revealed enrichment of transcripts for the following functions: extracellular matrix, macrophage infiltration, immunity, and pro-inflammatory. These findings suggest that increases in visceral adipose tissue that accompanies the cessation of pubertal physical activity are associated with the alteration of multiple pathways, some of which may potentiate the development of pubertal obesity and obesity-associated systemic low-grade inflammation that occurs later in life.
Collapse
|