1
|
Chen P, Long J, Hua T, Zheng Z, Xiao Y, Chen L, Yu K, Wu W, Zhang S. Transcriptome and open chromatin analysis reveals the process of myocardial cell development and key pathogenic target proteins in Long QT syndrome type 7. J Transl Med 2024; 22:307. [PMID: 38528561 PMCID: PMC10964537 DOI: 10.1186/s12967-024-05125-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 03/20/2024] [Indexed: 03/27/2024] Open
Abstract
OBJECTIVE Long QT syndrome type 7 (Andersen-Tawil syndrome, ATS), which is caused by KCNJ2 gene mutation, often leads to ventricular arrhythmia, periodic paralysis and skeletal malformations. The development, differentiation and electrophysiological maturation of cardiomyocytes (CMs) changes promote the pathophysiology of Long QT syndrome type 7(LQT7). We aimed to specifically reproduce the ATS disease phenotype and study the pathogenic mechanism. METHODS AND RESULTS We established a cardiac cell model derived from human induced pluripotent stem cells (hiPSCs) to the phenotypes and electrophysiological function, and the establishment of a human myocardial cell model that specifically reproduces the symptoms of ATS provides a reliable platform for exploring the mechanism of this disease or potential drugs. The spontaneous pulsation rate of myocardial cells in the mutation group was significantly lower than that in the repair CRISPR group, the action potential duration was prolonged, and the Kir2.1 current of the inward rectifier potassium ion channel was decreased, which is consistent with the clinical symptoms of ATS patients. Only ZNF528, a chromatin-accessible TF related to pathogenicity, was continuously regulated beginning from the cardiac mesodermal precursor cell stage (day 4), and continued to be expressed at low levels, which was identified by WGCNA method and verified with ATAC-seq data in the mutation group. Subsequently, it indicated that seven pathways were downregulated (all p < 0.05) by used single sample Gene Set Enrichment Analysis to evaluate the overall regulation of potassium-related pathways enriched in the transcriptome and proteome of late mature CMs. Among them, the three pathways (GO: 0008076, GO: 1990573 and GO: 0030007) containing the mutated gene KCNJ2 is involved that are related to the whole process by which a potassium ion enters the cell via the inward rectifier potassium channel to exert its effect were inhibited. The other four pathways are related to regulation of the potassium transmembrane pathway and sodium:potassium exchange ATPase (p < 0.05). ZNF528 small interfering (si)-RNA was applied to hiPSC-derived cardiomyocytes for CRISPR group to explore changes in potassium ion currents and growth and development related target protein levels that affect disease phenotype. Three consistently downregulated proteins (KCNJ2, CTTN and ATP1B1) associated with pathogenicity were verificated through correlation and intersection analysis. CONCLUSION This study uncovers TFs and target proteins related to electrophysiology and developmental pathogenicity in ATS myocardial cells, obtaining novel targets for potential therapeutic candidate development that does not rely on gene editing.
Collapse
Affiliation(s)
- Peipei Chen
- Department of Clinical Nutrition & Health Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Junyu Long
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tianrui Hua
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Zhifa Zheng
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ying Xiao
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Lianfeng Chen
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Kang Yu
- Department of Clinical Nutrition & Health Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Wei Wu
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Shuyang Zhang
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
2
|
Yang Y, Wang X, Tan Y, Xu Y, Guo X, Wu Y, Wang W, Jing R, Zhu F, Ye D, Zhang Q, Lu C, Kang J, Wang G. LncCMRR Plays an Important Role in Cardiac Differentiation by Regulating the Purb/Flk1 Axis. Stem Cells 2023; 41:11-25. [PMID: 36318802 DOI: 10.1093/stmcls/sxac077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 10/20/2022] [Indexed: 12/14/2022]
Abstract
As crucial epigenetic regulators, long noncoding RNAs (lncRNAs) play critical functions in development processes and various diseases. However, the regulatory mechanism of lncRNAs in early heart development is still limited. In this study, we identified cardiac mesoderm-related lncRNA (LncCMRR). Knockout (KO) of LncCMRR decreased the formation potential of cardiac mesoderm and cardiomyocytes during embryoid body differentiation of mouse embryonic stem (ES) cells. Mechanistic analyses showed that LncCMRR functionally interacted with the transcription suppressor PURB and inhibited its binding potential at the promoter region of Flk1, which safeguarded the transcription of Flk1 during cardiac mesoderm formation. We also carried out gene ontology term and signaling pathway enrichment analyses for the differentially expressed genes after KO of LncCMRR, and found significant correlation of LncCMRR with cardiac muscle contraction, dilated cardiomyopathy, and hypertrophic cardiomyopathy. Consistently, the expression level of Flk1 at E7.75 and the thickness of myocardium at E17.5 were significantly decreased after KO of LncCMRR, and the survival rate and heart function index of LncCMRR-KO mice were also significantly decreased as compared with the wild-type group. These findings indicated that the defects in early heart development led to functional abnormalities in adulthood heart of LncCMRR-KO mice. Conclusively, our findings elucidate the main function and regulatory mechanism of LncCMRR in cardiac mesoderm formation, and provide new insights into lncRNA-mediated regulatory network of mouse ES cell differentiation.
Collapse
Affiliation(s)
- Yiwei Yang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai, People's Republic of China
| | - Xing Wang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai, People's Republic of China
| | - Yu Tan
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai, People's Republic of China
| | - Yanxin Xu
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai, People's Republic of China
| | - Xudong Guo
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai, People's Republic of China
| | - Yukang Wu
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai, People's Republic of China
| | - Wuchan Wang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai, People's Republic of China
| | - Ruiqi Jing
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai, People's Republic of China
| | - Fugui Zhu
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai, People's Republic of China
| | - Dan Ye
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai, People's Republic of China
| | - Qingquan Zhang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai, People's Republic of China
| | - Chenqi Lu
- Department of Computational Biology, State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, People's Republic of China
| | - Jiuhong Kang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai, People's Republic of China
| | - Guiying Wang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai, People's Republic of China
| |
Collapse
|
3
|
Dang Le Q, Rodprasert W, Kuncorojakti S, Pavasant P, Osathanon T, Sawangmake C. In vitro generation of transplantable insulin-producing cells from canine adipose-derived mesenchymal stem cells. Sci Rep 2022; 12:9127. [PMID: 35650303 PMCID: PMC9160001 DOI: 10.1038/s41598-022-13114-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 05/20/2022] [Indexed: 11/27/2022] Open
Abstract
Canine mesenchymal stem cells (cMSCs) have potential applications for regenerative therapy, including the generation of insulin-producing cells (IPCs) for studying and treating diabetes. In this study, we established a useful protocol for generating IPCs from canine adipose mesenchymal stem cells (cAD-MSCs). Subsequently, in vitro preservation of pluronic F127-coated alginate (ALGPA)-encapsulated cAD-MSC-derived IPCs was performed to verify ready-to-use IPCs. IPCs were induced from cAD-MSCs with the modulated three-stepwise protocol. The first step of definitive endoderm (DE) induction showed that the cooperation of Chir99021 and Activin A created the effective production of Sox17-expressed DE cells. The second step for pancreatic endocrine (PE) progenitor induction from DE indicated that the treatment with taurine, retinoic acid, FGF2, EGF, TGFβ inhibitor, dorsomorphin, nicotinamide, and DAPT showed the significant upregulation of the pancreatic endocrine precursor markers Pdx1 and Ngn3. The last step of IPC production, the combination of taurine, nicotinamide, Glp-1, forskolin, PI3K inhibitor, and TGFβ inhibitor, yielded efficiently functional IPCs from PE precursors. Afterward, the maintenance of ALGPA-encapsulated cAD-MSC-derived IPCs with VSCBIC-1, a specialized medium, enhanced IPC properties. Conclusion, the modulated three-stepwise protocol generates the functional IPCs. Together, the encapsulation of cAD-MSC-derived IPCs and the cultivation with VSCBIC-1 enrich the maturation of generated IPCs.
Collapse
Affiliation(s)
- Quynh Dang Le
- International Program of Veterinary Science and Technology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Veterinary Pharmacology and Stem Cell Research Laboratory, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Veterinary Stem Cell and Bioengineering Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Watchareewan Rodprasert
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Veterinary Pharmacology and Stem Cell Research Laboratory, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Suryo Kuncorojakti
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Veterinary Pharmacology and Stem Cell Research Laboratory, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Department of Veterinary Science, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, Indonesia
| | - Prasit Pavasant
- Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Regenerative Dentistry (CERD), Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Thanaphum Osathanon
- Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- Dental Stem Cell Biology Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Chenphop Sawangmake
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Veterinary Pharmacology and Stem Cell Research Laboratory, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.
- Veterinary Stem Cell and Bioengineering Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.
- Department of Pharmacology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.
- Center of Excellence in Regenerative Dentistry (CERD), Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
4
|
Cheng H, Han Y, Zhang J, Zhang S, Zhai Y, An X, Li Q, Duan J, Zhang X, Li Z, Tang B, Shen H. Effects of dimethyl sulfoxide (DMSO) on DNA methylation and histone modification in parthenogenetically activated porcine embryos. Reprod Fertil Dev 2022; 34:598-607. [PMID: 35397781 DOI: 10.1071/rd21083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 12/20/2021] [Indexed: 12/18/2022] Open
Abstract
Epigenetic mechanisms play an important role in oogenesis and early embryo development in mammals. Dimethyl sulfoxide (DMSO) is frequently used as a solvent in biological studies and as a vehicle for drug therapy. Recent studies suggest that DMSO detrimentally affects porcine embryonic development, yet the mechanism of the process in parthenogenetically activated porcine embryos has not been reported. In this study, we found that treatment of embryos with 1.5% DMSO significantly decreased the cleavage and blastocyst rates, total cell number of blastocysts and the anti-apoptotic gene BCL-2 transcription level; however, the percentage of apoptotic cells and the expression levels of the pro-apoptotic gene BAX were not changed. Treatment with DMSO significantly decreased the expression levels of DNMT1 , DNMT3a , DNMT3b , TET1 , TET2 , TET3 , KMT2C , MLL2 and SETD3 in most of the stages of embryonic development and increased 5-mC signals, while the staining intensity for 5-hmC had no change in porcine preimplantation embryos from 2-cell to the blastocyst stages. Meanwhile, DMSO decreased the level of H3K4me3 during the development of parthenogenetically activated porcine embryos. After treatment with DMSO, expression levels of the pluripotency-related genes POU5F1 and NANOG decreased significantly (P <0.01), whereas the imprinted gene H19 did not change (P >0.05). In conclusion, these results suggest that DMSO can affect genome-wide DNA methylation and histone modification by regulating the expression of epigenetic modification enzymes, and DMSO also influences the expression level of pluripotent genes. These dysregulations lead to defects in embryonic development.
Collapse
Affiliation(s)
- Hui Cheng
- College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, China
| | - Yu Han
- College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, China
| | - Jian Zhang
- College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, China
| | - Sheng Zhang
- Academy of Translational Medicine, First Hospital, Jilin University, Changchun, Jilin 130021, China
| | - Yanhui Zhai
- College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, China
| | - Xinglan An
- Academy of Translational Medicine, First Hospital, Jilin University, Changchun, Jilin 130021, China
| | - Qi Li
- Academy of Translational Medicine, First Hospital, Jilin University, Changchun, Jilin 130021, China
| | - Jiahui Duan
- College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, China
| | - Xueming Zhang
- College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, China
| | - Ziyi Li
- Academy of Translational Medicine, First Hospital, Jilin University, Changchun, Jilin 130021, China
| | - Bo Tang
- College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, China
| | - Haiqing Shen
- College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, China
| |
Collapse
|
5
|
Effects of DMSO on the Pluripotency of Cultured Mouse Embryonic Stem Cells (mESCs). Stem Cells Int 2020; 2020:8835353. [PMID: 33123203 PMCID: PMC7584961 DOI: 10.1155/2020/8835353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/24/2020] [Accepted: 09/30/2020] [Indexed: 01/07/2023] Open
Abstract
DMSO is a commonly used solvent in biological studies, as it is an amphipathic molecule soluble in both aqueous and organic media. For that reason, it is the vehicle of choice for several water-insoluble substances used in research. At the molecular and cellular level, DMSO is a hydrogen-bound disrupter, an intercellular electrical uncoupler, and a cryoprotectant, among other properties. Importantly, DMSO often has overlooked side effects. In stem cell research, the literature is scarce, but there are reports on the effect of DMSO in human embryoid body differentiation and on human pluripotent stem cell priming towards differentiation, via modulation of cell cycle. However, in mouse embryonic stem cell (mESC) culture, there is almost no available information. Taking into consideration the almost ubiquitous use of DMSO in experiments involving mESCs, we aimed to understand the effect of very low doses of DMSO (0.0001%-0.2%), usually used to introduce pharmacological inhibitors/modulators, in mESCs cultured in two different media (2i and FBS-based media). Our results show that in the E14Tg2a mESC line used in this study, even the smallest concentration of DMSO had minor effects on the total number of cells in serum-cultured mESCs. However, these effects could not be explained by alterations in cell cycle or apoptosis. Furthermore, DMSO did not affect pluripotency or differentiation potential. All things considered, and although control experiments should be carried out in each cell line that is used, it is reasonable to conclude that DMSO at the concentrations used here has a minimal effect on this particular mESC line.
Collapse
|
6
|
Yi JK, Park S, Ha JJ, Kim DH, Huang H, Park SJ, Lee MH, Ryoo ZY, Kim SH, Kim MO. Effects of Dimethyl Sulfoxide on the Pluripotency and Differentiation Capacity of Mouse Embryonic Stem Cells. Cell Reprogram 2020; 22:244-253. [DOI: 10.1089/cell.2020.0006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Affiliation(s)
- Jun-Koo Yi
- Department of Embryo Transfer Research, Gyeongbuk Livestock Research Institute, Yeongju, Korea
| | - Song Park
- Core Protein Resources Center, DGIST, Daegu, Republic of Korea
| | - Jae-Jung Ha
- Department of Embryo Transfer Research, Gyeongbuk Livestock Research Institute, Yeongju, Korea
| | - Dae-Hyun Kim
- Department of Embryo Transfer Research, Gyeongbuk Livestock Research Institute, Yeongju, Korea
| | - Hai Huang
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Korea
| | - Si-Jun Park
- Department of Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Kyungpook National University, Daegu, Korea
| | - Mee-Hyun Lee
- College of Korean Medicine, Dongshin University, Naju, Jeollanamdo, Korea
- China-US (Henan) Hormel Cancer Institute, No. 127 Dongming Road, Zhengzhou, Henan, China
| | - Zae-Young Ryoo
- Department of Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Kyungpook National University, Daegu, Korea
| | - Sung-Hyun Kim
- Life Medicine Analysis Korea Polytechnics Institute, Nonsan, Korea
| | - Myoung-Ok Kim
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Korea
| |
Collapse
|
7
|
Wang Y, Yi N, Hu Y, Zhou X, Jiang H, Lin Q, Chen R, Liu H, Gu Y, Tong C, Lu M, Zhang J, Zhang B, Peng L, Li L. Molecular Signatures and Networks of Cardiomyocyte Differentiation in Humans and Mice. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 21:696-711. [PMID: 32769060 PMCID: PMC7412763 DOI: 10.1016/j.omtn.2020.07.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 05/05/2020] [Accepted: 07/06/2020] [Indexed: 12/23/2022]
Abstract
Cardiomyocyte differentiation derived from embryonic stem cells (ESCs) is a complex process involving molecular regulation of multiple levels. In this study, we first identify and compare differentially expressed gene (DEG) signatures of ESC-derived cardiomyocyte differentiation (ESCDCD) in humans and mice. Then, the multiscale embedded gene co-expression network analysis (MEGENA) of the human ESCDCD dataset is performed to identify 212 significantly co-expressed gene modules, which capture well the regulatory information of cardiomyocyte differentiation. Three modules respectively involved in the regulation of stem cell pluripotency, Wnt, and calcium pathways are enriched in the DEG signatures of the differentiation phase transition in the two species. Three human-specific cardiomyocyte differentiation phase transition modules are identified. Moreover, the potential regulation mechanisms of transcription factors during cardiomyocyte differentiation are also illustrated. Finally, several novel key drivers of ESCDCD are identified with the evidence of their expression during mouse embryonic cardiomyocyte differentiation. Using an integrative network analysis, the core molecular signatures and gene subnetworks (modules) underlying cardiomyocyte lineage commitment are identified in both humans and mice. Our findings provide a global picture of gene-gene co-regulation and identify key regulators during ESCDCD.
Collapse
Affiliation(s)
- Yumei Wang
- Key Laboratory of Arrhythmias, Ministry of Education, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Institute of Medical Genetics, Tongji University, Shanghai 200092, China; Department of Medical Genetics, Tongji University School of Medicine, Shanghai 200092, China; Heart Health Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Research Units of Origin and Regulation of Heart Rhythm, Chinese Academy of Medical Sciences, Shanghai 200092, China
| | - Na Yi
- Key Laboratory of Arrhythmias, Ministry of Education, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Institute of Medical Genetics, Tongji University, Shanghai 200092, China; Department of Medical Genetics, Tongji University School of Medicine, Shanghai 200092, China; Heart Health Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Research Units of Origin and Regulation of Heart Rhythm, Chinese Academy of Medical Sciences, Shanghai 200092, China
| | - Yi Hu
- Key Laboratory of Arrhythmias, Ministry of Education, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Institute of Medical Genetics, Tongji University, Shanghai 200092, China; Department of Medical Genetics, Tongji University School of Medicine, Shanghai 200092, China; Heart Health Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Research Units of Origin and Regulation of Heart Rhythm, Chinese Academy of Medical Sciences, Shanghai 200092, China
| | - Xianxiao Zhou
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Hanyu Jiang
- Key Laboratory of Arrhythmias, Ministry of Education, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Qin Lin
- Key Laboratory of Arrhythmias, Ministry of Education, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Institute of Medical Genetics, Tongji University, Shanghai 200092, China; Department of Medical Genetics, Tongji University School of Medicine, Shanghai 200092, China; Heart Health Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Research Units of Origin and Regulation of Heart Rhythm, Chinese Academy of Medical Sciences, Shanghai 200092, China
| | - Rou Chen
- Key Laboratory of Arrhythmias, Ministry of Education, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Huan Liu
- Key Laboratory of Arrhythmias, Ministry of Education, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Institute of Medical Genetics, Tongji University, Shanghai 200092, China; Department of Medical Genetics, Tongji University School of Medicine, Shanghai 200092, China; Heart Health Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Research Units of Origin and Regulation of Heart Rhythm, Chinese Academy of Medical Sciences, Shanghai 200092, China
| | - Yanqiong Gu
- Key Laboratory of Arrhythmias, Ministry of Education, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Chang Tong
- Key Laboratory of Arrhythmias, Ministry of Education, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Min Lu
- Key Laboratory of Arrhythmias, Ministry of Education, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Junfang Zhang
- Key Laboratory of Arrhythmias, Ministry of Education, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Department of Medical Genetics, Tongji University School of Medicine, Shanghai 200092, China
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Luying Peng
- Key Laboratory of Arrhythmias, Ministry of Education, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Institute of Medical Genetics, Tongji University, Shanghai 200092, China; Department of Medical Genetics, Tongji University School of Medicine, Shanghai 200092, China; Heart Health Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Research Units of Origin and Regulation of Heart Rhythm, Chinese Academy of Medical Sciences, Shanghai 200092, China.
| | - Li Li
- Key Laboratory of Arrhythmias, Ministry of Education, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Institute of Medical Genetics, Tongji University, Shanghai 200092, China; Department of Medical Genetics, Tongji University School of Medicine, Shanghai 200092, China; Heart Health Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Research Units of Origin and Regulation of Heart Rhythm, Chinese Academy of Medical Sciences, Shanghai 200092, China.
| |
Collapse
|
8
|
Hu H, Xue J, Dong R, Zhao Y, Song C, Zhao H, Hescheler J, Zhang Y, Liang H. STAT3 Phosphorylation Mediating DMSO's Function on Fetal Cardiomyocyte Proliferation with Developmental Changes. Int Heart J 2019; 60:392-399. [PMID: 30745528 DOI: 10.1536/ihj.18-206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Endogenous cardiac regeneration has been focused for decades as a potential therapy for heart diseases with cell loss, and dimethyl sulfoxide (DMSO) has been proposed as a treatment for many diseases. In this study, we aimed to investigate the function of DMSO on fetal cardiomyocyte proliferation. By tracing BrdU+/α actinin+ cells or Ki67+/α actinin+ cells with immunohistochemical staining, we found that DMSO remarkably promoted fetal cardiomyocytes proliferation, and at the late developmental stage (LDS), such effects were more efficient than that at early developmental stage (EDS). Western blot data revealed a significant increase in STAT3 phosphorylation under DMSO treatments at LDS, while not at EDS. Consistently, STAT3 phosphorylation blocker STA21 could greatly reverse DMSO's function at LDS whereas hardly at EDS. Moreover, hearts at the EDS had less total STAT3 protein, but relatively much higher level of phosphorylated STAT3. This suggests that DMSO promote fetal cardiomyocytes proliferation, and STAT3 phosphorylation play a pivotal role in DMSO's function. With maturation, DMSO exerted a better ability to favor cardiomyocyte proliferation depending on STAT3 phosphorylation. Therefore, DMSO could serve as an effective, economic, and safe therapy for heart diseases with cell loss.
Collapse
Affiliation(s)
- Haitao Hu
- Department of Physiology, Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, School of Basic Medicine, Huazhong University of Science and Technology.,Institute of Brain Research, Huazhong University of Science and Technology
| | - Jin Xue
- Department of Physiology, Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, School of Basic Medicine, Huazhong University of Science and Technology.,Institute of Brain Research, Huazhong University of Science and Technology.,Department of Pathology, School of Basic Medicine, Huazhong University of Science and Technology
| | - Renshun Dong
- Department of Physiology, Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, School of Basic Medicine, Huazhong University of Science and Technology.,Institute of Brain Research, Huazhong University of Science and Technology
| | - Yanan Zhao
- Department of Physiology, Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, School of Basic Medicine, Huazhong University of Science and Technology.,Institute of Brain Research, Huazhong University of Science and Technology
| | - Chunyan Song
- Department of Physiology, Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, School of Basic Medicine, Huazhong University of Science and Technology.,Institute of Brain Research, Huazhong University of Science and Technology
| | - Hongjian Zhao
- Department of Physiology, Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, School of Basic Medicine, Huazhong University of Science and Technology.,Institute of Brain Research, Huazhong University of Science and Technology
| | | | - Yan Zhang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
| | - Huamin Liang
- Department of Physiology, Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, School of Basic Medicine, Huazhong University of Science and Technology.,Institute of Brain Research, Huazhong University of Science and Technology
| |
Collapse
|
9
|
Identifying the Growth Factors for Improving Neointestinal Regeneration in Rats through Transcriptome Analysis Using RNA-Seq Data. BIOMED RESEARCH INTERNATIONAL 2019; 2018:4037865. [PMID: 30643803 PMCID: PMC6311312 DOI: 10.1155/2018/4037865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 09/26/2018] [Accepted: 10/09/2018] [Indexed: 11/17/2022]
Abstract
Using our novel surgical model of simultaneous intestinal adaptation "A" and neointestinal regeneration "N" conditions in individual rats to determine feasibility for research and clinical application, we further utilized next generation RNA sequencing (RNA-Seq) here in normal control tissue and both conditions ("A" and "N") across time to decipher transcriptome changes in neoregeneration and adaptation of intestinal tissue at weeks 1, 4, and 12. We also performed bioinformatics analyses to identify key growth factors for improving intestinal adaptation and neointestinal regeneration. Our analyses indicate several interesting phenomena. First, Gene Ontology and pathway analyses indicate that cell cycle and DNA replication processes are enhanced in week 1 "A"; however, in week 1 "N", many immune-related processes are involved. Second, we found some growth factors upregulated or downregulated especially in week 1 "N" versus "A". Third, based on each condition and time point versus normal control tissue, we found in week 1 "N" BMP2, BMP3, and NTF3 are significantly and specifically downregulated, indicating that the regenerative process may be inhibited in the absence of these growth factors. This study reveals complex growth factor regulation in small neointestinal regeneration and intestinal adaptation and provides potential applications in tissue engineering by introducing key growth factors identified here into the injury site.
Collapse
|
10
|
Li J, Narayanan C, Bian J, Sambo D, Brickler T, Zhang W, Chetty S. A transient DMSO treatment increases the differentiation potential of human pluripotent stem cells through the Rb family. PLoS One 2018; 13:e0208110. [PMID: 30540809 PMCID: PMC6291069 DOI: 10.1371/journal.pone.0208110] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 11/12/2018] [Indexed: 01/01/2023] Open
Abstract
The propensity for differentiation varies substantially across human pluripotent stem cell (hPSC) lines, greatly restricting the use of hPSCs for cell replacement therapy or disease modeling. Here, we investigate the underlying mechanisms and demonstrate that activation of the retinoblastoma (Rb) pathway in a transient manner is important for differentiation. In prior work, we demonstrated that pre-treating hPSCs with dimethylsulfoxide (DMSO) before directed differentiation enhanced differentiation potential across all three germ layers. Here, we show that exposure to DMSO improves the efficiency of hPSC differentiation through Rb and by repressing downstream E2F-target genes. While transient inactivation of the Rb family members (including Rb, p107, and p130) suppresses DMSO’s capacity to enhance differentiation across all germ layers, transient expression of a constitutively active (non-phosphorylatable) form of Rb increases the differentiation efficiency similar to DMSO. Inhibition of downstream targets of Rb, such as E2F signaling, also promotes differentiation of hPSCs. More generally, we demonstrate that the duration of Rb activation plays an important role in regulating differentiation capacity.
Collapse
Affiliation(s)
- Jingling Li
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California, United States of America
| | - Cyndhavi Narayanan
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California, United States of America
| | - Jing Bian
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California, United States of America
| | - Danielle Sambo
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California, United States of America
| | - Thomas Brickler
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California, United States of America
| | - Wancong Zhang
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California, United States of America
| | - Sundari Chetty
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California, United States of America
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
11
|
Kiamehr M, Alexanova A, Viiri LE, Heiskanen L, Vihervaara T, Kauhanen D, Ekroos K, Laaksonen R, Käkelä R, Aalto-Setälä K. hiPSC-derived hepatocytes closely mimic the lipid profile of primary hepatocytes: A future personalised cell model for studying the lipid metabolism of the liver. J Cell Physiol 2018; 234:3744-3761. [PMID: 30146765 DOI: 10.1002/jcp.27131] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 07/09/2018] [Indexed: 12/19/2022]
Abstract
Hepatocyte-like cells (HLCs) differentiated from human-induced pluripotent stem cells offer an alternative platform to primary human hepatocytes (PHHs) for studying the lipid metabolism of the liver. However, despite their great potential, the lipid profile of HLCs has not yet been characterized. Here, we comprehensively studied the lipid profile and fatty acid (FA) metabolism of HLCs and compared them with the current standard hepatocyte models: HepG2 cells and PHHs. We differentiated HLCs by five commonly used methods from three cell lines and thoroughly characterized them by gene and protein expression. HLCs generated by each method were assessed for their functionality and the ability to synthesize, elongate, and desaturate FAs. In addition, lipid and FA profiles of HLCs were investigated by both mass spectrometry and gas chromatography and then compared with the profiles of PHHs and HepG2 cells. HLCs resembled PHHs by expressing hepatic markers: secreting albumin, lipoprotein particles, and urea, and demonstrating similarities in their lipid and FA profile. Unlike HepG2 cells, HLCs contained low levels of lysophospholipids similar to the content of PHHs. Furthermore, HLCs were able to efficiently use the exogenous FAs available in their medium and simultaneously modify simple lipids into more complex ones to fulfill their needs. In addition, we propose that increasing the polyunsaturated FA supply of the culture medium may positively affect the lipid profile and functionality of HLCs. In conclusion, our data showed that HLCs provide a functional and relevant model to investigate human lipid homeostasis at both molecular and cellular levels.
Collapse
Affiliation(s)
- Mostafa Kiamehr
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Anna Alexanova
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Leena E Viiri
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | | | | | | | - Kim Ekroos
- Lipidomics Consulting Ltd, Espoo, Finland
| | - Reijo Laaksonen
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland.,Zora Biosciences, Espoo, Finland
| | - Reijo Käkelä
- Faculty of Biology and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Katriina Aalto-Setälä
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland.,Heart Hospital, Tampere University Hospital, Tampere, Finland
| |
Collapse
|
12
|
Hemmi JJ, Mishra A, Hornsby PJ. Overcoming barriers to reprogramming and differentiation in nonhuman primate induced pluripotent stem cells. Primate Biol 2017; 4:153-162. [PMID: 32110703 PMCID: PMC7041531 DOI: 10.5194/pb-4-153-2017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 07/17/2017] [Indexed: 11/13/2022] Open
Abstract
Induced pluripotent stem cells (iPS cells) generated by cellular
reprogramming from nonhuman primates (NHPs) are of great significance for
regenerative medicine and for comparative biology. Autologously derived stem
cells would theoretically avoid any risk of rejection due to host–donor
mismatch and may bypass the need for immune suppression post-transplant. In
order for these possibilities to be realized, reprogramming methodologies
that were initially developed mainly for human cells must be translated to
NHPs. NHP studies have typically used pluripotent cells generated from young
animals and thus risk overlooking complications that may arise from
generating iPS cells from donors of other ages. When reprogramming is
extended to a wide range of NHP species, available donors may be middle- or
old-aged. Here we have pursued these questions by generating iPS cells from
donors across the life span of the common marmoset (Callithrix jacchus) and then subjecting them to a directed neural differentiation
protocol. The differentiation potential of different clonal cell lines was
assessed using the quantitative polymerase chain reaction. The results show
that cells derived from older donors often showed less neural marker
induction. These deficits were rescued by a 24 h pretreatment of the cells
with 0.5 % dimethyl sulfoxide. Another NHP that plays a key role in
biological research is the chimpanzee (Pan troglodytes). iPS cells
generated from the chimpanzee can be of great interest in comparative in
vitro studies. We investigated if similar deficits in differentiation
potential might arise in chimpanzee iPS cells reprogrammed using various
technologies. The results show that, while some deficits were observed in iPS
cell clones generated using three different technologies, there was no clear
association with the vector used. These deficits in differentiation were also
prevented by a 24 h pretreatment with 0.5 % dimethyl sulfoxide.
Collapse
Affiliation(s)
- Jacob J Hemmi
- Barshop Institute and Department of Physiology, University of Texas Health Science Center San Antonio, San Antonio, TX 78245, USA
| | - Anuja Mishra
- Barshop Institute and Department of Physiology, University of Texas Health Science Center San Antonio, San Antonio, TX 78245, USA
| | - Peter J Hornsby
- Barshop Institute and Department of Physiology, University of Texas Health Science Center San Antonio, San Antonio, TX 78245, USA
| |
Collapse
|
13
|
Ge Z, Li B, Zhou X, Yang Y, Zhang J. Basic fibroblast growth factor activates β-catenin/RhoA signaling in pulmonary fibroblasts with chronic obstructive pulmonary disease in rats. Mol Cell Biochem 2016; 423:165-174. [DOI: 10.1007/s11010-016-2834-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 09/23/2016] [Indexed: 12/23/2022]
|
14
|
Transplantation of Immortalized CD34+ and CD34- Adipose-Derived Stem Cells Improve Cardiac Function and Mitigate Systemic Pro-Inflammatory Responses. PLoS One 2016; 11:e0147853. [PMID: 26840069 PMCID: PMC4740491 DOI: 10.1371/journal.pone.0147853] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 01/08/2016] [Indexed: 01/18/2023] Open
Abstract
Adipose-derived stem cells (ADSCs) have the potential to differentiate into various cell lineages and they are easily obtainable from patients, which makes them a promising candidate for cell therapy. However, a drawback is their limited life span during in vitro culture. Therefore, hTERT-immortalized CD34+ and CD34- mouse ADSC lines (mADSCshTERT) tagged with GFP were established. We evaluated the proliferation capacity, multi-differentiation potential, and secretory profiles of CD34+ and CD34- mADSCshTERTin vitro, as well as their effects on cardiac function and systemic inflammation following transplantation into a rat model of acute myocardial infarction (AMI) to assess whether these cells could be used as a novel cell source for regeneration therapy in the cardiovascular field. CD34+ and CD34- mADSCshTERT demonstrated phenotypic characteristics and multi-differentiation potentials similar to those of primary mADSCs. CD34+ mADSCshTERT exhibited a higher proliferation ability compared to CD34- mADSCshTERT, whereas CD34- mADSCshTERT showed a higher osteogenic differentiation potential compared to CD34+ mADSCshTERT. Primary mADSCs, CD34+, and CD34- mADSCshTERT primarily secreted EGF, TGF-β1, IGF-1, IGF-2, MCP-1, and HGFR. CD34+ mADSCshTERT had higher secretion of VEGF and SDF-1 compared to CD34- mADSCshTERT. IL-6 secretion was severely reduced in both CD34+ and CD34- mADSCshTERT compared to primary mADSCs. Transplantation of CD34+ and CD34- mADSCshTERT significantly improved the left ventricular ejection fraction and reduced infarct size compared to AMI-induced rats after 28 days. At 28 days after transplantation, engraftment of CD34+ and CD34- mADSCshTERT was confirmed by positive Y chromosome staining, and differentiation of CD34+ and CD34- mADSCshTERT into endothelial cells was found in the infarcted myocardium. Significant decreases were observed in circulating IL-6 levels in CD34+ and CD34- mADSCshTERT groups compared to the AMI-induced control group. Transplantation of CD34- mADSCshTERT significantly reduced circulating MCP-1 levels compared to the AMI control and CD34+ mADSCshTERT groups. GFP-tagged CD34+ and CD34- mADSCshTERT are valuable resources for cell differentiation studies in vitro as well as for regeneration therapy in vivo.
Collapse
|
15
|
Morphological Changes within the Rat Lateral Ventricle after the Administration of Proteasome Inhibitors. PLoS One 2015; 10:e0140536. [PMID: 26479862 PMCID: PMC4610704 DOI: 10.1371/journal.pone.0140536] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 09/28/2015] [Indexed: 01/07/2023] Open
Abstract
The broad variety of substances that inhibit the action of the ubiquitin-proteasome system (UPS)—known as proteasome inhibitors—have been used extensively in previous studies, and they are currently frequently proposed as a novel form of cancer treatment and as a protective factor in intracerebral hemorrhage treatment. The experimental data on the safest route of proteasome inhibitor administration, their associated side effects, and the possible ways of minimizing these effects have recently become a very important topic. The aim of our present study was to determine the effects of administering of MG-132, lactacystin and epoxomicin, compounds belonging to three different classes of proteasome inhibitors, on the ependymal walls of the lateral ventricle. Observations were made 2 and 8 weeks after the intraventricular administration of the studied substances dissolved in dimethyl sulfoxide (DMSO) into the lateral ventricle of adult Wistar rats. Qualitative and quantitative analysis of brain sections stained with histochemical and inmmunofluorescence techniques showed that the administration of proteasome inhibitors caused a partial occlusion of the injected ventricle in all of the studied animals. The occlusion was due to ependymal cells damage and subsequent ependymal discontinuity, which caused direct contact between the striatum and the lateral nuclei of the septum, mononuclear cell infiltration and the formation of a glial scar between these structures (with the activation of astroglia, microglia and oligodendroglia). Morphologically, the ubiquitin-positive aggregates corresponded to aggresomes, indicating impaired activity of the UPS and the accumulation and aggregation of ubiquitinated proteins that coincided with the occurrence of glial scars. The most significant changes were observed in the wall covering the striatum in animals that were administered epoxomicin, and milder changes were observed in animals administered lactacystin and MG-132. Interestingly, DMSO administration also caused damage to some of the ependymal cells, but the aggresome-like structures were not formed. Our results indicate that all of the studied classes of proteasome inhibitors are detrimental to ependymal cells to some extent, and may cause severe changes in the ventricular system. The safety implications of their usage in therapeutic strategies to attenuate intracerebral hemorrhagic injury and in brain cancer treatment will require further studies.
Collapse
|