1
|
Ma Y, He Z, Wang J, Zheng P, Ma Z, Liang Q, Zhang Q, Zhao X, Huang J, Weng W, Jiang J, Feng J. Mild hypothermia promotes neuronal differentiation of human neural stem cells via RBM3-SOX11 signaling pathway. iScience 2024; 27:109435. [PMID: 38523796 PMCID: PMC10960102 DOI: 10.1016/j.isci.2024.109435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/06/2024] [Accepted: 03/04/2024] [Indexed: 03/26/2024] Open
Abstract
Both therapeutic hypothermia and neural stem cells (NSCs) transplantation have shown promise in neuroprotection and neural repair after brain injury. However, the effects of therapeutic hypothermia on neuronal differentiation of NSCs are not elucidated. In this study, we aimed to investigate whether mild hypothermia promoted neuronal differentiation in cultured and transplanted human NSCs (hNSCs). A significant increase in neuronal differentiation rate of hNSCs was found when exposed to 35°C, from 33% to 45% in vitro and from 7% to 15% in vivo. Additionally, single-cell RNA sequencing identified upregulation of RNA-binding motif protein 3 (RBM3) in neuroblast at 35°C, which stabilized the SRY-box transcription factor 11 (SOX11) mRNA and increased its protein expression, leading to an increase in neuronal differentiation of hNSCs. In conclusion, our study highlights that mild hypothermia at 35°C enhances hNSCs-induced neurogenesis through the novel RBM3-SOX11 signaling pathway, and provides a potential treatment strategy in brain disorders.
Collapse
Affiliation(s)
- Yuxiao Ma
- Brain Injury Center, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
- Shanghai Institute of Head Trauma, Shanghai 200127, China
| | - Zhenghui He
- Brain Injury Center, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
- Shanghai Institute of Head Trauma, Shanghai 200127, China
| | - Jiangchang Wang
- Brain Injury Center, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
- Shanghai Institute of Head Trauma, Shanghai 200127, China
| | - Ping Zheng
- Department of Neurosurgery, Shanghai Pudong New Area People’s Hospital, Shanghai 201299, China
| | - Zixuan Ma
- Brain Injury Center, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
- Shanghai Institute of Head Trauma, Shanghai 200127, China
| | - Qian Liang
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Qiao Zhang
- Brain Injury Center, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
- Shanghai Institute of Head Trauma, Shanghai 200127, China
| | - Xiongfei Zhao
- Shanghai Angecon Biotechnology Co., Ltd., Shanghai 201318, China
| | - Jialin Huang
- Brain Injury Center, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
- Shanghai Institute of Head Trauma, Shanghai 200127, China
| | - Weiji Weng
- Brain Injury Center, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
- Shanghai Institute of Head Trauma, Shanghai 200127, China
| | - Jiyao Jiang
- Brain Injury Center, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
- Shanghai Institute of Head Trauma, Shanghai 200127, China
| | - Junfeng Feng
- Brain Injury Center, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
- Shanghai Institute of Head Trauma, Shanghai 200127, China
| |
Collapse
|
2
|
Mellai M, Annovazzi L, Boldorini R, Bertero L, Cassoni P, De Blasio P, Biunno I, Schiffer D. SEL1L plays a major role in human malignant gliomas. JOURNAL OF PATHOLOGY CLINICAL RESEARCH 2019; 6:17-29. [PMID: 31111685 PMCID: PMC6966709 DOI: 10.1002/cjp2.134] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/30/2019] [Accepted: 05/07/2019] [Indexed: 12/22/2022]
Abstract
Suppressor of Lin-12-like (C. elegans) (SEL1L) participates in the endoplasmic reticulum-associated protein degradation pathway, malignant transformation and stem cell biology. We explored the role of SEL1L in 110 adult gliomas, of different molecular subtype and grade, in relation to cell proliferation, stemness, glioma-associated microglia/macrophages (GAMs), prognostic markers and clinical outcome. SEL1L protein expression was assessed by immunohistochemistry and Western blotting. Genetic and epigenetic alterations were detected by molecular genetics techniques. SEL1L was overexpressed in anaplastic gliomas (World Health Organization [WHO] grade III) and in glioblastoma (GB, WHO grade IV) with the highest labelling index (LI) in the latter. Immunoreactivity was significantly associated with histological grade (p = 0.002) and cell proliferation index Ki-67/MIB-1 (p = 0.0001). In GB, SEL1L co-localised with stemness markers Nestin and Sox2. Endothelial cells and vascular pericytes of proliferative tumour blood vessels expressed SEL1L suggesting a role in tumour neo-vasculature. GAMs consistently expressed SEL1L. SEL1L overexpression was significantly associated with TERT promoter mutations (p = 0.0001), EGFR gene amplification (p = 0.0013), LOH on 10q (p = 0.0012) but was mutually exclusive with IDH1/2 mutations (p = 0.0001). SEL1L immunoreactivity correlated with tumour progression and cell proliferation, conditioning poor patient survival and response to therapy. This study emphasises SEL1L as a potential biomarker for the most common subgroup of TERT mutant/EGFR amplified/IDH-WT GBs.
Collapse
Affiliation(s)
- Marta Mellai
- Dipartimento di Scienze della Salute, Scuola di Medicina, Università del Piemonte Orientale "A. Avogadro", Novara, Italy.,Fondazione Edo ed Elvo Tempia Valenta - ONLUS, Biella, Italy
| | - Laura Annovazzi
- Ex Centro Ricerche/Fondazione Policlinico di Monza, Vercelli, Italy
| | - Renzo Boldorini
- Dipartimento di Scienze della Salute, Scuola di Medicina, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Luca Bertero
- Dipartimento di Scienze Mediche, Università degli Studi di Torino/Città della Salute e della Scienza, Torino, Italy
| | - Paola Cassoni
- Dipartimento di Scienze Mediche, Università degli Studi di Torino/Città della Salute e della Scienza, Torino, Italy
| | | | - Ida Biunno
- ISENET Biobanking, Milano, Italy.,Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Milano, Italy
| | - Davide Schiffer
- Ex Centro Ricerche/Fondazione Policlinico di Monza, Vercelli, Italy
| |
Collapse
|
3
|
Barbieri A, Carra S, De Blasio P, Cotelli F, Biunno I. Sel1l knockdown negatively influences zebrafish embryos endothelium. J Cell Physiol 2018; 233:5396-5404. [PMID: 29215726 DOI: 10.1002/jcp.26366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 12/01/2017] [Indexed: 12/12/2022]
Abstract
SEL1L (suppressor/enhancer of Lin-12-like) is a highly conserved gene associated with the endoplasmic reticulum-associated degradation (ERAD) pathway and involved in mediating the balance between stem cells self-renewal and differentiation of neural progenitors. It has been recently shown that SEL1L KO mice are embryonic lethal and display altered organogenesis. To better characterize the function of SEL1L in the early stages of embryonic development, we turned to the zebrafish model (Danio rerio). After exploring sel1l expression by RT-PCR and in situ hybridization, we employed a morpholino-mediated down-regulation approach. Results showed extensive impairments in the vasculature, which supports the mice knock-out findings.
Collapse
Affiliation(s)
| | - Silvia Carra
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy
| | | | - Franco Cotelli
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy
| | - Ida Biunno
- IRGB-CNR, Milan, Italy.,IRCCS Multimedica, Milan, Italy
| |
Collapse
|