1
|
Wang Z, Qi G, Li Z, Cui X, Guo S, Zhang Y, Cai P, Wang X. Effects of urolithin A on osteoclast differentiation induced by receptor activator of nuclear factor-κB ligand via bone morphogenic protein 2. Bioengineered 2022; 13:5064-5078. [PMID: 35164658 PMCID: PMC8974137 DOI: 10.1080/21655979.2022.2036893] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Urolithin A (UA) is an intestinal microbial metabolite derived from ellagitannins and a promising agent for treating osteoarthritis. However, its effects on osteoporosis are unclear. This study explored the effects of urolithin A (UA) on receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclasts and its underlying molecular mechanisms. RANKL treatment significantly increased tartrate-resistant acid phosphatase (TRACP) or osteoclast marker levels (P < 0.05), while adding UA decreased the RANKL-induced levels (P < 0.05) in RAW264.7 cells. Total RNA isolated from RANKL- or RANKL + UA-treated cells was sequenced, and the obtained transcriptome dataset revealed 2,399 differentially expressed genes. They were enriched in multiple pathways involved in rheumatoid arthritis, ERK1 and ERK2 cascade, regulation of inflammatory response, ECM-receptor interactions, and TNF signaling. Scanning electron microscopy showed that RANKL promoted bone resorption pits in bone biopsy specimens, whereas UA inhibited their formation. When bone morphogenic protein 2 (BMP2) was shRNA-silenced, the bone resorption pits were restored. Moreover, while RANKL significantly enhanced the levels of p-ERK2/ERK2, p-p38/p38, p-Akt1/Akt1, p-ERK1/ERK1, and osteoclast-related proteins (P < 0.05), UA reduced them. BMP2 silencing also reversed the UA inhibitory effect. Thus, UA represses the RANKL-induced osteoclast differentiation of RAW264.7 cells by regulating Akt1, p38, and ERK1/2 signaling, and BMP2 likely reverses the UA inhibitory effect via these pathways. We propose BMP2 as a potential drug target for treating bone metabolic diseases, such as osteoporosis.
Collapse
Affiliation(s)
- Zhe Wang
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai, China.,Department of Orthopedic Surgery, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Guobin Qi
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhuokai Li
- Department of Orthopedics, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Xu Cui
- Department of Orthopedics, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Shengyang Guo
- Department of Orthopedics, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Yueqi Zhang
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Pan Cai
- Department of Orthopedics, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Xiuhui Wang
- Department of Orthopedics, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| |
Collapse
|
2
|
Kuo CH, Chen JY, Chen CM, Huang CW, Liou YM. Effects of varying gelatin coating concentrations on RANKL induced osteoclastogenesis. Exp Cell Res 2021; 400:112509. [PMID: 33529711 DOI: 10.1016/j.yexcr.2021.112509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 01/23/2021] [Accepted: 01/26/2021] [Indexed: 01/21/2023]
Abstract
Here, we assessed the effects of varying concentrations of gelatin coating on Receptor Activator of Nuclear Factor κ-B Ligand (RANKL)-induced RAW264.7 murine macrophage differentiation into osteoclast (OC) via osteoclastogenesis. The microstructures of coating surfaces with different concentrations of gelatin were examined by scanning electron microscopy and atomic force microscopy. Increased gelatin coating concentrations led to decreased gel rigidity but increased surface adhesion force attenuated OC differentiation and the decreased actin ring formation in RANKL-induced osteoclastogenesis. The decreased actin ring formation is associated with decreased lysosomal-associated membrane protein 1 (LAMP1) activity and bone resorption in the differentiated OCs with different gelatin coating concentrations as compared to the cells differentiated without gelatin coatings. In addition, increasing concentrations of gelatin coating attenuated the medium TGF-β1 protein levels and the expression levels of TGF-β and type-I (R1) and type-II (R2) TGF-β receptors in OCs, suggesting the gelatin-induced suppression of TGF-β signaling for the regulation of RNAKL-induced OC differentiation. Taken together, these findings showed that changes in gelatin coating concentrations, which were associated with altered gel thickness and substrate rigidity, might attenuate TGF-β signaling events to modulate OC differentiation and concomitant actin ring formation and bone matrix resorption in RANKL-induced osteoclastogenesis.
Collapse
Affiliation(s)
- Chia-Hsiao Kuo
- Department of Orthopedics, Tungs' Taichung MetroHarbor Hospital, Taichung, 435, Taiwan
| | - Jiann-Yeu Chen
- Research Center for Sustainable Energy and Nanotechnology, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Chuan-Mu Chen
- Department of Life Sciences, National Chung Hsing University, Taichung, 40227, Taiwan; Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, 40227, Taiwan; The IEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Cian Wei Huang
- Department of Life Sciences, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Ying-Ming Liou
- Department of Life Sciences, National Chung Hsing University, Taichung, 40227, Taiwan; Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, 40227, Taiwan; The IEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, 40227, Taiwan.
| |
Collapse
|
3
|
Bai SB, Liu DZ, Cheng Y, Cui H, Liu M, Cui MX, Zhang BL, Mei QB, Zhou SY. Osteoclasts and tumor cells dual targeting nanoparticle to treat bone metastases of lung cancer. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 21:102054. [DOI: 10.1016/j.nano.2019.102054] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 02/16/2019] [Accepted: 06/30/2019] [Indexed: 01/01/2023]
|
4
|
Huang XL, Huang LY, Cheng YT, Li F, Zhou Q, Wu C, Shi QH, Guan ZZ, Liao J, Hong W. Zoledronic acid inhibits osteoclast differentiation and function through the regulation of NF-κB and JNK signalling pathways. Int J Mol Med 2019; 44:582-592. [PMID: 31173157 PMCID: PMC6605660 DOI: 10.3892/ijmm.2019.4207] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 05/13/2019] [Indexed: 12/20/2022] Open
Abstract
It is well known that extensive osteoclast formation plays a key role in osteoporosis in post‑menopausal women and the elderly. The suppression of extensive osteoclastogenesis and bone resorption may be an effective preventive strategy for osteoporosis. Zoledronic acid (ZOL) has been indicated to play an essential role in regulating bone mineral density and has already been used in large clinical trials. However, the effects of ZOL on osteoclastogenesis remain to be fully elucidated. Therefore, the present study aimed to determine the effects of ZOL on osteoclastogenesis, and to explore the corresponding signalling pathways. By using a cell viability assay, as well as in vitro osteoclastogenesis, immunofluorescence and resorption pit assays, we demonstrated that ZOL (0.1‑5 µM) suppressed receptor activator of nuclear factor‑κB ligand (RANKL)‑induced osteoclast differentiation and bone resorptive activity. Furthermore, western blot analysis and reverse transcription‑quantitative PCR indicated that ZOL inhibited the RANKL‑induced activation of NF‑κB and the phosphorylation of JNK in RAW264.7 cells, and subsequently decreased the expression of osteoclastogenesis‑associated genes, including calcitonin receptor, tartrate‑resistant acid phosphatase and dendritic cell‑specific transmembrane protein. ZOL inhibited osteoclast formation and resorption in vitro by specifically suppressing NF‑κB and JNK signalling. On the whole, the findings of this study indicate that ZOL may serve as a potential agent for the treatment of osteoclast‑associated diseases, including osteoporosis.
Collapse
Affiliation(s)
- Xiao-Lin Huang
- School/Hospital of Stomatology and Key Laboratory of Endemic and Ethnic Diseases, Guizhou Medical University, Ministry of Education, Guiyang, Guizhou 550004, P.R. China
| | - Lie-Yu Huang
- Department of Medical Psychology, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Yu-Ting Cheng
- School/Hospital of Stomatology and Key Laboratory of Endemic and Ethnic Diseases, Guizhou Medical University, Ministry of Education, Guiyang, Guizhou 550004, P.R. China
| | - Fang Li
- School/Hospital of Stomatology and Key Laboratory of Endemic and Ethnic Diseases, Guizhou Medical University, Ministry of Education, Guiyang, Guizhou 550004, P.R. China
| | - Qian Zhou
- School/Hospital of Stomatology and Key Laboratory of Endemic and Ethnic Diseases, Guizhou Medical University, Ministry of Education, Guiyang, Guizhou 550004, P.R. China
| | - Chao Wu
- School/Hospital of Stomatology and Key Laboratory of Endemic and Ethnic Diseases, Guizhou Medical University, Ministry of Education, Guiyang, Guizhou 550004, P.R. China
| | - Qian-Hui Shi
- School/Hospital of Stomatology and Key Laboratory of Endemic and Ethnic Diseases, Guizhou Medical University, Ministry of Education, Guiyang, Guizhou 550004, P.R. China
| | - Zhi-Zhong Guan
- School/Hospital of Stomatology and Key Laboratory of Endemic and Ethnic Diseases, Guizhou Medical University, Ministry of Education, Guiyang, Guizhou 550004, P.R. China
| | - Jian Liao
- School/Hospital of Stomatology and Key Laboratory of Endemic and Ethnic Diseases, Guizhou Medical University, Ministry of Education, Guiyang, Guizhou 550004, P.R. China
| | - Wei Hong
- School/Hospital of Stomatology and Key Laboratory of Endemic and Ethnic Diseases, Guizhou Medical University, Ministry of Education, Guiyang, Guizhou 550004, P.R. China
| |
Collapse
|
5
|
Chan CL, Chen JY, Shih MC, Wang CLA, Liou YM. L-caldesmon alters cell spreading and adhesion force in RANKL-induced osteoclasts. J Biomed Sci 2019; 26:12. [PMID: 30678675 PMCID: PMC6345023 DOI: 10.1186/s12929-019-0505-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 01/18/2019] [Indexed: 01/21/2023] Open
Abstract
Background Osteoclasts (OCs) are motile multinucleated cells derived from differentiation and fusion of hematopoietic progenitors of the monocyte-macrophage lineage that undergo a multistep process called osteoclastogenesis. The biological function of OCs is to resorb bone matrix for controlling bone strength and integrity, which is essential for bone development. The bone resorption function is based on the remodelling of the actin cytoskeleton into an F-actin-rich structure known as the sealing zone for bone anchoring and matrix degradation. Non-muscle caldesmon (l-CaD) is known to participate in the regulation of actin cytoskeletal remodeling, but its function in osteoclastogenesis remains unclear. Methods/results In this study, gain and loss of the l-CaD level in RAW264.7 murine macrophages followed by RANKL induction was used as an experimental approach to examine the involvement of l-CaD in the control of cell fusion into multinucleated OCs in osteoclastogenesis. In comparison with controls, l-CaD overexpression significantly increased TRAP activity, actin ring structure and mineral substrate resorption in RANKL-induced cells. In contrast, gene silencing against l-CaD decreased the potential for RANKL-induced osteoclastogenesis and mineral substrate resorption. In addition, OC precursor cells with l-CaD overexpression and gene silencing followed by RANKL induction caused 13% increase and 24% decrease, respectively, in cell fusion index. To further understand the mechanistic action of l-CaD in the modulation of OC fusion, atomic force microscopy was used to resolve the mechanical changes of cell spreading and adhesion force in RANKL-induced cells with and without l-CaD overexpression or gene silencing. Conclusions l-CaD plays a key role in the regulation of actin cytoskeletal remodeling for the formation of actin ring structure at the cell periphery, which may in turn alter the mechanical property of cell-spreading and cell surface adhesion force, thereby facilitating cell-cell fusion into multinucleated OCs during osteoclastogenesis. Electronic supplementary material The online version of this article (10.1186/s12929-019-0505-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chu-Lung Chan
- Department of Life Sciences, National Chung-Hsing University, Taichung, 40227, Taiwan
| | - Jiann-Yeu Chen
- Research Center for Sustainable Energy and Nanotechnology, National Chung-Hsing University, Taichung, 40227, Taiwan
| | - Ming-Chih Shih
- Department of Physics, National Chung-Hsing University, Taichung, 40227, Taiwan
| | | | - Ying-Ming Liou
- Department of Life Sciences, National Chung-Hsing University, Taichung, 40227, Taiwan. .,The iEGG and Animal Biotechnology Center, and Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, 40227, Taiwan.
| |
Collapse
|