1
|
Wang X, Zheng W, Bai Z, Huang S, Jiang K, Liu H, Liu L. Mimicking bone matrix through coaxial electrospinning of core-shell nanofibrous scaffold for improving neurogenesis bone regeneration. BIOMATERIALS ADVANCES 2023; 145:213246. [PMID: 36549151 DOI: 10.1016/j.bioadv.2022.213246] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/22/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
There is a significant clinical demand for bone repair materials with high efficacy. This study was designed to fabricate nanofibrous scaffolds to promote bone defect regeneration using magnesium doped mesoporous bioactive glass (MBG), a fusion protein Osteocalcin-Osteopontin-Biglycan (OOB), silk fibroin (SF) and nerve growth factor (NGF) for facilitating accelerated bone formation. We found that MBG adsorbed with OOB (OOB@MBG) as core, and SF adsorbed with NGF (SF@NGF) as shell to fabricate the nanofibrous scaffolds (OOB@MBG/NGF@SF) through coaxial electrospinning. OOB@MBG/NGF@SF scaffolds could effectively mimic the component and structure of bone matrix. Interestingly, we observed that OOB@MBG/NGF@SF scaffolds could substantially promote bone mesenchymal stem cells (BMSCs) osteogenesis through stimulating Erk1/2 activated Runx2 and mTOR pathway, and it could also activate the expression level of various osteogenic marker genes. Intriguingly, OOB@MBG/NGF@SF scaffolds could also enhance BMSCs induced neural differentiation cells differentiated into neuron, and activate the expression of the different neuron specific marker genes. Moreover, it was found that OOB@MBG/NGF@SF scaffolds accelerated bone regeneration with neurogenesis, and new neurons were formed in Haversian canal in vivo. Consistent with these observations, we found that Erk1/2 and mTOR signaling pathways also regulated osteogenesis with the neurogenesis process from RNA sequencing result. Overall, our findings provided novel evidence suggesting that OOB@MBG/NGF@SF scaffolds could function as a potential biomaterial in accelerating bone defect regeneration with neurogenesis, as well as in recovering the motor ability and improving the quality of life of patients.
Collapse
Affiliation(s)
- Xiaoyan Wang
- Department of Biology and Chemistry, College of Science, National University of Defense Technology, Changsha, Hunan 410073, PR China.
| | - Weijia Zheng
- Department of Biology and Chemistry, College of Science, National University of Defense Technology, Changsha, Hunan 410073, PR China
| | - Zhenzu Bai
- Department of Biology and Chemistry, College of Science, National University of Defense Technology, Changsha, Hunan 410073, PR China
| | - Shan Huang
- Department of Biology and Chemistry, College of Science, National University of Defense Technology, Changsha, Hunan 410073, PR China
| | - Kai Jiang
- Department of Biology and Chemistry, College of Science, National University of Defense Technology, Changsha, Hunan 410073, PR China
| | - Haoming Liu
- Department of Biology and Chemistry, College of Science, National University of Defense Technology, Changsha, Hunan 410073, PR China
| | - Long Liu
- Department of Biology and Chemistry, College of Science, National University of Defense Technology, Changsha, Hunan 410073, PR China
| |
Collapse
|
2
|
Electroactive Hydroxyapatite/Carbon Nanofiber Scaffolds for Osteogenic Differentiation of Human Adipose-Derived Stem Cells. Int J Mol Sci 2022; 24:ijms24010530. [PMID: 36613973 PMCID: PMC9820130 DOI: 10.3390/ijms24010530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022] Open
Abstract
Traditional bone defect treatments are limited by an insufficient supply of autologous bone, the immune rejection of allogeneic bone grafts, and high medical costs. To address this medical need, bone tissue engineering has emerged as a promising option. Among the existing tissue engineering materials, the use of electroactive scaffolds has become a common strategy in bone repair. However, single-function electroactive scaffolds are not sufficient for scientific research or clinical application. On the other hand, multifunctional electroactive scaffolds are often complicated and expensive to prepare. Therefore, we propose a new tissue engineering strategy that optimizes the electrical properties and biocompatibility of carbon-based materials. Here, a hydroxyapatite/carbon nanofiber (HAp/CNF) scaffold with optimal electrical activity was prepared by electrospinning HAp nanoparticle-incorporated polyvinylidene fluoride (PVDF) and then carbonizing the fibers. Biochemical assessments of the markers of osteogenesis in human adipose-derived stem cells (h-ADSCs) cultured on HAp/CNF scaffolds demonstrate that the material promoted the osteogenic differentiation of h-ADSCs in the absence of an osteogenic factor. The results of this study show that electroactive carbon materials with a fibrous structure can promote the osteogenic differentiation of h-ADSCs, providing a new strategy for the preparation and application of carbon-based materials in bone tissue engineering.
Collapse
|
3
|
Asadi A, Goudarzi F, Ghanadian M, Mohammadalipour A. Evaluation of the osteogenic effect of apigenin on human mesenchymal stem cells by inhibiting inflammation through modulation of NF-κB/IκBα. Res Pharm Sci 2022; 17:697-706. [PMID: 36704428 PMCID: PMC9872176 DOI: 10.4103/1735-5362.359436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/31/2022] [Accepted: 08/13/2022] [Indexed: 11/06/2022] Open
Abstract
Background and purpose Apigenin has stimulatory effects on osteogenic differentiation of human mesenchymal stem cells (hMSCs) as well as anti-inflammatory properties. This study investigated the osteogenic differentiation of hMSCs in inflammatory conditions treated with apigenin focusing on nuclear factor kappa-light-chain-enhancer of activated B (NF-кB), nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha (IκBα) and nucleotide-binding oligomerization domain, leucine-rich repeat and pyrin domain containing 3 (NLRP3) inflammatory pathways. Experimental approach Along with osteogenic differentiation of the hMSCs, they became inflamed with lipopolysaccharide (LPS)/palmitic acid (PA) and treated with apigenin. Alizarin red staining, alkaline phosphatase (ALP) activity, and Runt-related transcription factor 2 (RUNX2) gene expression were used to determine the degree of differentiation. Also, gene expression of NLRP3 was performed along with protein expression of interleukin 1-beta (IL-1β), NF-кB, and IκBα. Findings / Results Apigenin was shown to be effective in neutralizing the inhibitory impact of LPS/PA on osteogenesis. Apigenin increased MSC osteogenic capacity by inhibiting NLRP3 expression and the activity of caspase-1. It was also associated with a considerable decrease in the protein expression of NF-κB and IκBα, as well as IL-1β, in these cells. Conclusion and implications The effects of apigenin on osteogenesis under inflammatory conditions were cautiously observed.
Collapse
Affiliation(s)
- Azita Asadi
- Department of Clinical Biochemistry and Isfahan Pharmaceutical Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Farjam Goudarzi
- Regenerative Medicine Research Center, Kermanshah University of Medical Sciences, Kermanshah, I.R. Iran
| | - Mustafa Ghanadian
- Department of Pharmacognosy and Isfahan Pharmaceutical Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Adel Mohammadalipour
- Department of Clinical Biochemistry and Isfahan Pharmaceutical Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, I.R. Iran,Corresponding author: A. Mohammadalipour Tel: +98-3137927043, Fax: +98-3136680011
| |
Collapse
|
4
|
Wahba NS, Saliem AO, Abd Allah EG, Mohammed MZ. Therapeutic efficacy of adipose-derived mesenchymal stem cells after chronic fluoxetine treatment on pars distalis in adult male albino rats. Tissue Cell 2022; 76:101770. [DOI: 10.1016/j.tice.2022.101770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 02/25/2022] [Accepted: 02/25/2022] [Indexed: 10/19/2022]
|
5
|
Russo C, Mannino G, Patanè M, Parrinello NL, Pellitteri R, Stanzani S, Giuffrida R, Lo Furno D, Russo A. Ghrelin peptide improves glial conditioned medium effects on neuronal differentiation of human adipose mesenchymal stem cells. Histochem Cell Biol 2021; 156:35-46. [PMID: 33728539 PMCID: PMC8277640 DOI: 10.1007/s00418-021-01980-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2021] [Indexed: 12/20/2022]
Abstract
The influences of ghrelin on neural differentiation of adipose-derived mesenchymal stem cells (ASCs) were investigated in this study. The expression of typical neuronal markers, such as protein gene product 9.5 (PGP9.5) and Microtubule Associated Protein 2 (MAP2), as well as glial Fibrillary Acid Protein (GFAP) as a glial marker was evaluated in ASCs in different conditions. In particular, 2 µM ghrelin was added to control ASCs and to ASCs undergoing neural differentiation. For this purpose, ASCs were cultured in Conditioned Media obtained from Olfactory Ensheathing cells (OEC-CM) or from Schwann cells (SC-CM). Data on marker expression were gathered after 1 and 7 days of culture by fluorescence immunocytochemistry and flow cytometry. Results show that only weak effects were induced by the addition of only ghrelin. Instead, dynamic ghrelin-induced modifications were detected on the increased marker expression elicited by glial conditioned media. In fact, the combination of ghrelin and conditioned media consistently induced a further increase of PGP9.5 and MAP2 expression, especially after 7 days of treatment. The combination of ghrelin with SC-CM produced the most evident effects. Weak or no modifications were found on conditioned medium-induced GFAP increases. Observations on the ghrelin receptor indicate that its expression in control ASCs, virtually unchanged by the addition of only ghrelin, was considerably increased by CM treatment. These increases were enhanced by combining ghrelin and CM treatment, especially at 7 days. Overall, it can be assumed that ghrelin favors a neuronal rather than a glial ASC differentiation.
Collapse
Affiliation(s)
- Cristina Russo
- Physiology Section, Department of Biomedical and Biotechnological Sciences, University of Catania, via S. Sofia, 97, 95123 Catania, Italy
| | - Giuliana Mannino
- Physiology Section, Department of Biomedical and Biotechnological Sciences, University of Catania, via S. Sofia, 97, 95123 Catania, Italy
| | - Martina Patanè
- Physiology Section, Department of Biomedical and Biotechnological Sciences, University of Catania, via S. Sofia, 97, 95123 Catania, Italy
| | | | - Rosalia Pellitteri
- Institute for Biomedical Research and Innovation, Italian National Research Council, Via P. Gaifami, 18, 95126 Catania, Italy
| | - Stefania Stanzani
- Physiology Section, Department of Biomedical and Biotechnological Sciences, University of Catania, via S. Sofia, 97, 95123 Catania, Italy
| | - Rosario Giuffrida
- Physiology Section, Department of Biomedical and Biotechnological Sciences, University of Catania, via S. Sofia, 97, 95123 Catania, Italy
| | - Debora Lo Furno
- Physiology Section, Department of Biomedical and Biotechnological Sciences, University of Catania, via S. Sofia, 97, 95123 Catania, Italy
| | - Antonella Russo
- Physiology Section, Department of Biomedical and Biotechnological Sciences, University of Catania, via S. Sofia, 97, 95123 Catania, Italy
| |
Collapse
|
6
|
Zeng S, Zhao X, Zhang L, Pathak JL, Huang W, Li Y, Guan H, Zhao W, Ge L, Shu Y. Effect of ciliary neurotrophic factor on neural differentiation of stem cells of human exfoliated deciduous teeth. J Biol Eng 2020; 14:29. [PMID: 33298129 PMCID: PMC7724848 DOI: 10.1186/s13036-020-00251-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 11/23/2020] [Indexed: 01/06/2023] Open
Abstract
The stem cells of human exfoliated deciduous teeth (SHEDs) are considered to be one of the main sources of seed cells in stem cell therapy. The aim of this study was to examine the effect of ciliary neurotrophic factor (CNTF) on neurogenic differentiation of SHEDs. With the consent of parents, SHEDs from 6 to 8 year old children were isolated and cultured. The mesenchymal stemness and the potential of multidirectional (adipogenic and osteogenic) differentiation for the isolated SHEDs were firstly determined. The effect of CNTF on specific neurogenic differentiation of SHEDs was then examined by detecting the expression of marker genes and proteins via RT-PCR, immunoblotting, and immunofluorescence microscopy. The isolated SHEDs expressed specific surface markers of mesenchymal stem cells, and their potential of osteogenic and adipogenic differentiation were confirmed. CNTF promoted the differentiation of SHEDs into neuron-like cells with a high expression of acetylcholine transferase (CHAT), a marker of cholinergic neurons. The expression of other neuron markers including nestin, microtubule-associated protein 2 (MAP 2), and β-tublin III was also detected. Interestingly, the expression of neurogenic markers was maintained at a high level after neurogenic induction. SHEDs can be induced by CNTF to differentiate into cholinergic neuron-like cells under appropriate culture conditions. Our findings have laid a foundation for future use of SHEDs to treat neurological diseases.
Collapse
Affiliation(s)
- Sujuan Zeng
- Department of Pediatric Dentistry, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, China
| | - Xuedan Zhao
- Department of Pediatric Dentistry, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, China
| | - Lingling Zhang
- Department of Pediatric Dentistry, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, China.,GuangDong Second Traditional Chinese Medicine Hospital, Guangzhou, 510095, China
| | - Janak L Pathak
- Department of Pediatric Dentistry, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, China
| | - Wenyan Huang
- Department of Pediatric Dentistry, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, China
| | - Yunyang Li
- Department of Pediatric Dentistry, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, China
| | - Hongbing Guan
- Department of Pediatric Dentistry, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, China
| | - Wanghong Zhao
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Lihong Ge
- Department of Pediatric Dentistry, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, China.
| | - Yan Shu
- Department of Pediatric Dentistry, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, China. .,Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, Baltimore, MD, USA.
| |
Collapse
|
7
|
Moayeri A, Darvishi M, Amraei M. Homing of Super Paramagnetic Iron Oxide Nanoparticles (SPIONs) Labeled Adipose-Derived Stem Cells by Magnetic Attraction in a Rat Model of Parkinson's Disease. Int J Nanomedicine 2020; 15:1297-1308. [PMID: 32161459 PMCID: PMC7049746 DOI: 10.2147/ijn.s238266] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 02/07/2020] [Indexed: 12/11/2022] Open
Abstract
Introduction Stem cell therapies for neurodegenerative diseases such as Parkinson’s disease (PD) are intended to replace lost dopaminergic neurons. The basis of this treatment is to guide the migration of transplanted cells into the target tissue or injury site. The aim of this study is an evaluation of the homing of superparamagnetic iron oxide nanoparticles (SPIONs) labeled adipose-derived stem cells (ADSC) by an external magnetic field in a rat model of PD. Methods ADSCs were obtained from perinephric regions of male adult rats and cultured in a DMEM medium. ADSC markers were assessed by immunostaining with CD90, CD105, CD49d, and CD45. The SPION was coated using poly-L-lysine hydrobromide and transfection was determined in rat ADSC using the GFP reporter gene. For this in vivo study, rats with PD were divided into five groups: a positive control group, a control group with PD (lesion with 6-HD injection), and three treatment groups: the PD/ADSC group (PD transplant with ADSCs transfected by BrdU), PD/ADSC/SPION group (PD transplant with ADSCs labeled with SPION and transfected by GFP), and the PD/ADSC/SPION/EM group (PD transplant with ADSCs labeled with SPION and transfected by GFP induced with external magnet). Results ADSCs were immunoreactive to fat markers CD90 (90.73±1.7), CD105 (87.4±2.9) and CD49d (79.6±2.6), with negative immunostaining at the hematopoietic stem cell marker (CD45: 1.4±0.4). The efficiency of cells with SPION/PLL was about 96% of ADSC. The highest number of GFP-positive cells was in the ADSC/SPION/EM group (54.5±1.3), which was significantly different from that in ADSC/SPION group (30.83±3 and P<0.01). Conclusion Transfection of ADSC by SPION/PLL is an appropriate protocol for cell therapy. External magnets can be used for the delivery and homing of transplanted stem cells in the target tissue.
Collapse
Affiliation(s)
- Ardeshir Moayeri
- Department of Anatomy, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Marzieh Darvishi
- Department of Anatomy, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran.,Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
| | - Mansour Amraei
- Department of Physiology, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| |
Collapse
|
8
|
Wang C, Chi J, Che K, Ma X, Qiu M, Wang Z, Wang Y. The combined effect of mesenchymal stem cells and resveratrol on type 1 diabetic neuropathy. Exp Ther Med 2019; 17:3555-3563. [PMID: 30988737 PMCID: PMC6447822 DOI: 10.3892/etm.2019.7383] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 11/30/2018] [Indexed: 01/09/2023] Open
Abstract
Diabetic neuropathy (DN) is one of the most common diabetic complications that results in an increase in patient discomfort and pain. The present study demonstrated that mesenchymal stem cells (MSCs) or resveratrol (RSV) may improve diabetic hyperglycemia and neuropathy. The aim of the present study was to investigate the combined effect of MSCs and RSV on DN. A total of 100 non-obese diabetic mice were divided into the following six groups: Normal control, MSCs, RSV, MSCs + RSV, insulin and diabetic control groups. Following homologous therapy, the levels of blood glucose and C-peptide, islets, nuclear factor (NF)-κB, nerve growth factor (NGF) and myelin basic protein (MBP), and the sciatic nerve structure in each group were examined and evaluated. Following the administration of therapy, the levels of blood glucose and C-peptide in mice in the MSCs + RSV group were significantly improved when compared with the other diabetic groups, and the dosage of insulin therapy required was the lowest among the six experimental groups (P<0.05). The levels of NGF, MBP and NF-κB in the MSCs + RSV group were significantly improved compared with the MSCs and RSV groups (P<0.05). Furthermore, the diameter of the axon, number of myelinated nerve fibers and the depth of the myelin sheath in the MSCs + RSV group were greatest among the five examined groups (excluding the control). The combination of RSV and MSCs could relieve hyperglycemia and improve DN. This indicated that the combination of RSV and MSCs may be a novel therapeutic method for the treatment of DN.
Collapse
Affiliation(s)
- Chen Wang
- Endocrinology Department, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Jingwei Chi
- Laboratory of Thyroid Disease, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Kui Che
- Laboratory of Thyroid Disease, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Xiaolong Ma
- Endocrinology Department, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Mingyue Qiu
- Endocrinology Department, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Zhongchao Wang
- Endocrinology Department, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Yangang Wang
- Endocrinology Department, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| |
Collapse
|
9
|
Lo Furno D, Mannino G, Pellitteri R, Zappalà A, Parenti R, Gili E, Vancheri C, Giuffrida R. Conditioned Media From Glial Cells Promote a Neural-Like Connexin Expression in Human Adipose-Derived Mesenchymal Stem Cells. Front Physiol 2018; 9:1742. [PMID: 30555356 PMCID: PMC6282092 DOI: 10.3389/fphys.2018.01742] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 11/19/2018] [Indexed: 12/12/2022] Open
Abstract
The expression of neuronal and glial connexins (Cxs) has been evaluated in adipose-derived mesenchymal stem cells (ASCs) whose neural differentiation was promoted by a conditioned medium (CM) obtained from cultures of olfactory ensheathing cells (OECs) or Schwann cells (SCs). By immunocytochemistry and flow cytometer analysis it was found that Cx43 was already considerably expressed in naïve ASCs and further increased after 24 h and 7 days from CM exposition. Cx32 and Cx36 were significantly improved in conditioned cultures compared to control ASCs, whereas a decreased expression was noticed in the absence of CM treatments. Cx47 was virtually absent in any conditions. Altogether, high basal levels and induced increases of Cx43 expression suggest a potential attitude of ASCs toward an astrocyte differentiation, whereas the lack of Cx47 would indicate a poor propensity of ASCs to become oligodendrocytes. CM-evoked Cx32 and Cx36 increases showed that a neuronal- or a SC-like differentiation can be promoted by using this strategy. Results further confirm that environmental cues can favor an ASC neural differentiation, either as neuronal or glial elements. Of note, the use of glial products present in CM rather than the addition of chemical agents to achieve such differentiation would resemble "more physiological" conditions of differentiation. As a conclusion, the overexpression of typical neural Cxs would indicate the potential capability of neural-like ASCs to interact with neighboring neural cells and microenvironment.
Collapse
Affiliation(s)
- Debora Lo Furno
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Catania, Italy
| | - Giuliana Mannino
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Catania, Italy
| | - Rosalia Pellitteri
- Institute of Neurological Sciences, National Research Council, Catania, Italy
| | - Agata Zappalà
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Catania, Italy
| | - Rosalba Parenti
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Catania, Italy
| | - Elisa Gili
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Carlo Vancheri
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Rosario Giuffrida
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Catania, Italy
| |
Collapse
|