1
|
Sun L, Yang K, Wang L, Wu S, Wen D, Wang J. LncRNA MIAT suppresses inflammation in LPS-induced J774A.1 macrophages by promoting autophagy through miR-30a-5p/SOCS1 axi. Sci Rep 2024; 14:22608. [PMID: 39349964 PMCID: PMC11442610 DOI: 10.1038/s41598-024-73607-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/19/2024] [Indexed: 10/04/2024] Open
Abstract
Accumulated data implicate that long noncoding RNA (lncRNA) plays a pivotal role in rheumatoid arthritis (RA), potentially serving as a competitive endogenous RNA (ceRNA) for microRNAs (miRNAs). The lncRNA myocardial infarction-associated transcript (MIAT) has been demonstrated to regulate inflammation. However, the role of MIAT in the inflammation of RA remains inadequately explored. This study aims to elucidate MIAT's role in the inflammation of lipopolysaccharide (LPS)-induced macrophages and to uncover the underlying molecular mechanisms. We observed heightened MIAT expression in LPS-induced J774A.1 cells and collagen-induced arthritis mouse models, in contrast to the expression pattern of miR-30a-5p. Silencing MIAT resulted in increased expression of the inflammatory cytokines IL-1β and TNF-α. Simultaneously, MIAT interference significantly impeded macrophage autophagy, evidenced by decreased expression of autophagy-related markers LC3-II and Beclin-1, alongside increased levels of p62 in LPS-induced J774A.1 cells. Notably, MIAT functioned as a ceRNA, sponging miR-30a-5p and exerting a negative regulatory influence on its expression. SOCS1 emerged as a target of miR-30a-5p, modulated by MIAT. Mechanistically, inhibiting miR-30a-5p reversed the impact of MIAT deficiency in promoting LPS-induced inflammation, while SOCS1 knockdown countered the cytokine inhibitory effect induced by silencing miR-30a-5p. In summary, this study indicates that lncRNA MIAT suppresses inflammation in LPS-induced J774A.1 macrophages by stimulating autophagy through the miR-30a-5p/SOCS1 axis. This suggests that MIAT holds promise as a potential therapeutic target for RA inflammation.
Collapse
Affiliation(s)
- Linqian Sun
- Department of Rheumatology & Clinical Immunology, Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Kun Yang
- Medical Research Center, Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Liqin Wang
- Department of Rheumatology & Clinical Immunology, Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Si Wu
- Department of Infectious Disease, Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Dawei Wen
- Department of Rheumatology & Clinical Immunology, Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Jibo Wang
- Department of Rheumatology & Clinical Immunology, Affiliated Hospital of Qingdao University, Qingdao, 266000, China.
| |
Collapse
|
2
|
Li HM, Wang LJ, Wang YP, Li XM, Pan HF. Differences in the expression of long noncoding RNAs in peripheral blood mononuclear cells indicate potential biomarkers for rheumatoid arthritis. Int Immunopharmacol 2024; 134:112218. [PMID: 38733828 DOI: 10.1016/j.intimp.2024.112218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/12/2024] [Accepted: 05/05/2024] [Indexed: 05/13/2024]
Abstract
OBJECTIVE Long noncoding RNAs (lncRNAs) play an increasingly important role in various autoimmune diseases. We aimed to characterize the expression profiles of lncRNAs in peripheral blood mononuclear cells (PBMCs) from RA patients and to assess the potential of these lncRNAs as RA biomarkers. METHODS Whole-transcriptome sequencing was used to establish a lncRNA expression profile. A total of 155 RA patients, 145 healthy controls, 59 systemic lupus erythematosus (SLE) patients and 59 primary Sjögren's syndrome (pSS) patients were recruited for this study. Four candidate lncRNAs (linc00152, lnc-ADM-1, ITSN1-2, and lnc-FTH1-7) were validated via qRT-PCR in independent samples, and their expression, association with RA clinical features and value as RA biomarkers were evaluated. RESULTS Linc00152 and lnc-ADM-1 exhibited upregulated expression (p = 0.001, p = 0.014, respectively), while ITSN1-2 and lnc-FTH1-7 exhibited downregulated expression (both p < 0.001, respectively) in RA patients compared to controls. Lnc-ADM-1 and lnc-FTH1-7 expression correlated positively with the C4 level (p = 0.016 and p = 0.012, respectively). ITSN1-2 levels were negatively associated with CRP levels (p = 0.024). Linc00152, lnc-ADM-1, ITSN1-2, and lnc-FTH1-7 showed potential as RA biomarkers, with the four-lncRNA panel distinguishing RA patients from controls, SLE patients, or pSS patients (AUC = 0.886, 0.746, and 0.749, respectively). CONCLUSION The altered expression of linc00152, lnc-ADM-1, ITSN1-2 and lnc-FTH1-7 in RA patients suggested that these genes may serve as potential biomarkers for RA and could be involved in its pathogenesis.
Collapse
Affiliation(s)
- Hong-Miao Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Li-Jun Wang
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yi-Ping Wang
- Westmead Institute for Medical Research, University of Sydney, Westmead, 2145 NSW, Australia
| | - Xiao-Mei Li
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
| | - Hai-Feng Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
3
|
Liu J, Song S, Zhao R, Zhang HY, Zhang SX. The functions and networks of non-coding RNAs in the pathogenesis of Rheumatoid Arthritis. Biomed Pharmacother 2023; 163:114707. [PMID: 37087979 DOI: 10.1016/j.biopha.2023.114707] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/05/2023] [Accepted: 04/12/2023] [Indexed: 04/25/2023] Open
Abstract
Rheumatoid Arthritis (RA) is a chronic autoimmune disease. Its main feature is inflammation of synovial tissue with irreversible joint damage and severe physical damage. Non-coding RNAs (ncRNAs) are a class of RNAs that do not have the ability to encode proteins but are vital regulators that mediate many fundamental cellular processes and play an essential role in the pathogenesis of RA. Multiple verified ncRNAs have been confirmed as a prospective biomarkers for diagnosing and treating RA. In this paper, we aim to sort out the role of ncRNAs in the pathogenesis of RA and provide new ideas for the diagnosis and treatment of RA.
Collapse
Affiliation(s)
- Jia Liu
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, China; Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, China
| | - Shan Song
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, China; Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, China
| | - Rong Zhao
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, China; Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, China
| | - He-Yi Zhang
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, China
| | - Sheng-Xiao Zhang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, China; Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, China.
| |
Collapse
|
4
|
Rheumatoid arthritis and non-coding RNAs; how to trigger inflammation. Life Sci 2023; 315:121367. [PMID: 36639050 DOI: 10.1016/j.lfs.2023.121367] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/31/2022] [Accepted: 12/31/2022] [Indexed: 01/12/2023]
Abstract
Rheumatoid arthritis (RA) is a systemic and chronic inflammatory disease categorized by continuous synovitis in the joints and systemic inflammatory responses that can cause lifelong disability. The major cause of RA is the dysregulation of the immune response. The development of RA disease includes multiplex association of several interleukins and cells, which leads to synovial cell growth, cartilage and bone damage. The primary stage of RA disease is related to the modification of both the innate and adaptive immune systems, which leads to the formation of autoantibodies. This process results in many damaged molecules and epitope spreading. Both the innate (e.g., dendritic cells, macrophages, and neutrophils) and acquired immune cells (e.g., T and B lymphocytes) will increase and continue the chronic inflammatory condition in the next stages of the RA disease. In recent years, non-coding RNAs have been proved as significant controllers of biological functions, especially immune cell expansion and reactions. Non-coding RNAs were primarily containing microRNA (miRNA), long non-coding RNA (lncRNA), and circular RNA (circRNA). Various studies confirmed non-coding RNAs as hopeful markers for diagnosing and curing RA. This review will describe and cover existing knowledge about RA pathogenesis, which might be favorable for discovering possible ncRNA markers for RA.
Collapse
|
5
|
Shu J, Su G, Zhang J, Liu Z, Chang R, Wang Q, Yang P. Analyses of circRNA and mRNA Profiles in Vogt-Koyanagi-Harada Disease. Front Immunol 2022; 12:738760. [PMID: 35003060 PMCID: PMC8727692 DOI: 10.3389/fimmu.2021.738760] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 12/03/2021] [Indexed: 01/26/2023] Open
Abstract
Recent studies revealed that circular RNAs (circRNAs) are important in numerous biological process and involved in autoimmune diseases. However, their role in Vogt-Koyanagi-Harada (VKH) disease, a classical autoimmune disease, is not yet known. This research aimed to study the expression profile of mRNAs, microRNAs (miRNAs) and circRNAs and investigate the influence of circRNAs on the pathogenesis of VKH disease. We identified circRNAs, miRNAs, and mRNAs expression profiles in CD4+ T cells between 4 VKH patients and 3 healthy controls using the whole-transcriptome sequencing (RNA-seq) technique. We discovered that a total of 5088 mRNAs, 451 circRNAs and 433 miRNAs were differently expressed. The GO and KEGG pathway enrichment analyses were performed for significantly differentially expressed circRNAs and mRNAs. GSEA was conducted for all mRNAs. The functional enrichment suggested that the inflammatory response, the adaptive immune response, NF-kappa B signaling pathway, Th17 cell differentiation, Th1 and Th2 cell differentiation and T cell receptor signaling pathway were associated with VKH disease. In addition, based on the immune-related genes we screened, the circRNA-miRNA-mRNA ceRNA network was analyzed and constructed. Ten differently expressed mRNAs (LAT, ZAP70, ITK, ICOS, RASGRP1, PAG1, PLCG1, PRKCQ, LCK, CARD11) and 5 differently expressed circRNAs (hsa_circ_0033144, hsa_circ_0000233, hsa_circ_0000396, hsa_circ_0001924, hsa_circ_0001320) were selected to be validated by Real-time qPCR (RT-qPCR). The results of RT-qPCR turned out to be consistent with RNA-seq data. Further analysis showed that hsa_circ_0001320 and hsa_circ_0001924 may serve as crucial candidate marker genes of VKH disease. These results reveal that circRNAs may have a crucial immunomodulatory function in the pathophysiological process of VKH disease.
Collapse
Affiliation(s)
- Jia Shu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Guannan Su
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Jun Zhang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Zhangluxi Liu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Rui Chang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Qingfeng Wang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Peizeng Yang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| |
Collapse
|
6
|
Han JJ, Wang XQ, Zhang XA. Functional Interactions Between lncRNAs/circRNAs and miRNAs: Insights Into Rheumatoid Arthritis. Front Immunol 2022; 13:810317. [PMID: 35197980 PMCID: PMC8858953 DOI: 10.3389/fimmu.2022.810317] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/06/2022] [Indexed: 12/14/2022] Open
Abstract
Rheumatoid arthritis (RA) is one of the most common autoimmune diseases that affect synovitis, bone, cartilage, and joint. RA leads to bone and cartilage damage and extra-articular disorders. However, the pathogenesis of RA is still unclear, and the lack of effective early diagnosis and treatment causes severe disability, and ultimately, early death. Accumulating evidence revealed that the regulatory network that includes long non-coding RNAs (lncRNAs)/circular RNAs (circRNAs), micro RNAs (miRNAs), and messenger RNAs (mRNA) plays important roles in regulating the pathological and physiological processes in RA. lncRNAs/circRNAs act as the miRNA sponge and competitively bind to miRNA to regulate the expression mRNA in synovial tissue, FLS, and PBMC, participate in the regulation of proliferation, apoptosis, invasion, and inflammatory response. Thereby providing new strategies for its diagnosis and treatment. In this review, we comprehensively summarized the regulatory mechanisms of lncRNA/circRNA-miRNA-mRNA network and the potential roles of non-coding RNAs as biomarkers and therapeutic targets for the diagnosis and treatment of RA.
Collapse
Affiliation(s)
- Juan-Juan Han
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Xue-Qiang Wang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
- Department of Rehabilitation Medicine, Shanghai Shangti Orthopaedic Hospital, Shanghai, China
- *Correspondence: Xin-An Zhang, ; Xue-Qiang Wang,
| | - Xin-An Zhang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
- College of Kinesiology, Shenyang Sport University, Shenyang, China
- *Correspondence: Xin-An Zhang, ; Xue-Qiang Wang,
| |
Collapse
|
7
|
Rahimizadeh P, Rezaieyazdi Z, Behzadi F, Hajizade A, Lim SI. Nanotechnology as a promising platform for rheumatoid arthritis management: Diagnosis, treatment, and treatment monitoring. Int J Pharm 2021; 609:121137. [PMID: 34592396 DOI: 10.1016/j.ijpharm.2021.121137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/16/2021] [Accepted: 09/23/2021] [Indexed: 12/18/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease that develops in about 5 per 1000 people. Over the past years, substantial progresses in knowledge of the disease's pathophysiology, effective diagnosis methods, early detection, and efficient treatment strategies have been made. Notably, nanotechnology has emerged as a game-changer in the efficacious management of many diseases, especially for RA. Joint replacement, photothermal therapy (PTT), photodynamic therapy (PDT), RA diagnosis, and treatment monitoring are nano-based avenues in RA management. Here, we present a brief overview of the pathogenesis of RA, risk factors, conventional diagnostic methods and treatment approaches, and then discuss the role of nanomedicine in RA diagnosis, treatment, and treatment monitoring with an emphasis on functional characteristics distinctive from other RA therapeutics.
Collapse
Affiliation(s)
- Parastou Rahimizadeh
- Department of Chemical Engineering, Pukyong National University, Busan 48513, South Korea
| | - Zahra Rezaieyazdi
- Rheumatic Disease Research Center, Mashhad University of Medical Science, Mashhad, Iran
| | - Faezeh Behzadi
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Abbas Hajizade
- Biology Research Centre, Faculty of Basic Sciences, Imam Hossein University, Tehran, Iran.
| | - Sung In Lim
- Department of Chemical Engineering, Pukyong National University, Busan 48513, South Korea.
| |
Collapse
|
8
|
Chang TK, Zhong YH, Liu SC, Huang CC, Tsai CH, Lee HP, Wang SW, Hsu CJ, Tang CH. Apelin Promotes Endothelial Progenitor Cell Angiogenesis in Rheumatoid Arthritis Disease via the miR-525-5p/Angiopoietin-1 Pathway. Front Immunol 2021; 12:737990. [PMID: 34659230 PMCID: PMC8511637 DOI: 10.3389/fimmu.2021.737990] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/13/2021] [Indexed: 12/13/2022] Open
Abstract
Angiogenesis is a critical process in the formation of new capillaries and a key participant in rheumatoid arthritis (RA) pathogenesis. The adipokine apelin (APLN) plays critical roles in several cellular functions, including angiogenesis. We report that APLN treatment of RA synovial fibroblasts (RASFs) increased angiopoietin-1 (Ang1) expression. Ang1 antibody abolished endothelial progenitor cell (EPC) tube formation and migration in conditioned medium from APLN-treated RASFs. We also found significantly higher levels of APLN and Ang1 expression in synovial fluid from RA patients compared with those with osteoarthritis. APLN facilitated Ang1-dependent EPC angiogenesis by inhibiting miR-525-5p synthesis via phospholipase C gamma (PLCγ) and protein kinase C alpha (PKCα) signaling. Importantly, infection with APLN shRNA mitigated EPC angiogenesis, articular swelling, and cartilage erosion in ankle joints of mice with collagen-induced arthritis. APLN is therefore a novel therapeutic target for RA.
Collapse
Affiliation(s)
- Ting-Kuo Chang
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan.,Division of Spine Surgery, Department of Orthopedic Surgery, MacKay Memorial Hospital, New Taipei, Taiwan
| | - You-Han Zhong
- Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan
| | - Shan-Chi Liu
- Department of Medical Education and Research, China Medical University Beigang Hospital, Yunlin, Taiwan
| | - Chien-Chung Huang
- School of Medicine, China Medical University, Taichung, Taiwan.,Division of Immunology and Rheumatology, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Chun-Hao Tsai
- Department of Sports Medicine, College of Health Care, China Medical University, Taichung, Taiwan.,Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Hsiang-Ping Lee
- School of Chinese Medicine, China Medical University, Taichung, Taiwan.,Department of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Shih-Wei Wang
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan.,Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan.,Institute of Biomedical Sciences, Mackay Medical College, Taipei, Taiwan
| | - Chin-Jung Hsu
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan.,School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Chih-Hsin Tang
- Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan.,School of Medicine, China Medical University, Taichung, Taiwan.,Chinese Medicine Research Center, China Medical University, Taichung, Taiwan.,Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan
| |
Collapse
|
9
|
Adiponectin Promotes VEGF Expression in Rheumatoid Arthritis Synovial Fibroblasts and Induces Endothelial Progenitor Cell Angiogenesis by Inhibiting miR-106a-5p. Cells 2021; 10:cells10102627. [PMID: 34685605 PMCID: PMC8534315 DOI: 10.3390/cells10102627] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/17/2021] [Accepted: 09/28/2021] [Indexed: 12/11/2022] Open
Abstract
Rheumatoid arthritis (RA) is an erosive polyarthritis that can lead to severe joint destruction and painful disability if left untreated. Angiogenesis, a critical pathogenic mechanism in RA, attracts inflammatory leukocytes into the synovium, which promotes production of proinflammatory cytokines and destructive proteases. Adipokines, inflammatory mediators secreted by adipose tissue, also contribute to the pathophysiology of RA. The most abundant serum adipokine is adiponectin, which demonstrates proinflammatory effects in RA, although the mechanisms linking adiponectin and angiogenic manifestations of RA are not well understood. Our investigations with the human MH7A synovial cell line have revealed that adiponectin dose- and time-dependently increases vascular endothelial growth factor (VEGF) expression, stimulating endothelial progenitor cell (EPC) tube formation and migration. These adiponectin-induced angiogenic activities were facilitated by MEK/ERK signaling. In vivo experiments confirmed adiponectin-induced downregulation of microRNA-106a-5p (miR-106a-5p). Inhibiting adiponectin reduced joint swelling, bone destruction, and angiogenic marker expression in collagen-induced arthritis (CIA) mice. Our evidence suggests that targeting adiponectin has therapeutic potential for patients with RA. Clinical investigations are needed.
Collapse
|
10
|
Wang M, Chen Y, Bi X, Luo X, Hu Z, Liu Y, Shi X, Weng W, Mo B, Lu Y, Pan Y. LncRNA NEAT1_1 suppresses tumor-like biologic behaviors of fibroblast-like synoviocytes by targeting the miR-221-3p/uPAR axis in rheumatoid arthritis. J Leukoc Biol 2021; 111:641-653. [PMID: 34254354 DOI: 10.1002/jlb.3a0121-067rrr] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Fibroblast-like synoviocytes (FLSs) are the predominant effector cells in the pathological progression of rheumatoid arthritis (RA). Therefore, elucidating the underlying molecular mechanism of the biologic behaviors in RA-FLSs will be helpful in developing the potent targets for the treatment of RA. We have previously documented that the tumor-like biologic behaviors of RA-FLSs are exacerbated by urokinase-type plasminogen activator receptor (uPAR), a specifically up-regulated receptor in RA-FLSs. Here, we investigate the further mechanism of uPAR and clarify its function in RA-FLSs. We demonstrate that miR-221-3p positively correlates to uPAR and regulates uPAR level in RA-FLSs. Simultaneously, one long noncoding RNA, nuclear paraspeckle assembly transcript 1_1 (NEAT1_1) is identified, which can predictively target miR-221-3p at three sites, indicating a strong possibility of being a competing endogenous RNA in RA-FLSs. Interestingly, NEAT1_1 and miR-221-3p can colocate in the nucleus and cytoplasm in RA-FLSs. Importantly, NEAT1_1 can act as a rheostat for the miR-221-3p/uPAR axis and the downstream JAK signaling. In line with the biologic function, NEAT1_1 negatively regulates the tumor-like characters, and cytokine secretions of RA-FLSs. Collectively, our data provide new insight into the mechanisms of NEAT1_1 in modulating RA-FLSs tumor-like behaviors. The targeting of NEAT1_1 and miR-221-3p/uPAR axis may have a promising therapeutic role in patients with RA.
Collapse
Affiliation(s)
- Manli Wang
- Division of Rheumatology, Department of Internal Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yixiong Chen
- Division of Rheumatology, Department of Internal Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xuan Bi
- Division of Rheumatology, Department of Internal Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiqing Luo
- Division of Rheumatology, Department of Internal Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zuoyu Hu
- Division of Rheumatology, Department of Internal Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yan Liu
- Division of Rheumatology, Department of Internal Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaoyi Shi
- Division of Rheumatology, Department of Internal Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Weizhen Weng
- Division of Rheumatology, Department of Internal Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Biyao Mo
- Division of Rheumatology, Department of Internal Medicine, Hainan General Hospital, Hainan affiliated Hospital of Hainan Medical University, Haikou, China
| | - Yan Lu
- Department of Clinical Immunology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yunfeng Pan
- Division of Rheumatology, Department of Internal Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
11
|
Miao C, Bai L, Yang Y, Huang J. Dysregulation of lncRNAs in Rheumatoid Arthritis: Biomarkers, Pathogenesis and Potential Therapeutic Targets. Front Pharmacol 2021; 12:652751. [PMID: 33776780 PMCID: PMC7994855 DOI: 10.3389/fphar.2021.652751] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 02/05/2021] [Indexed: 12/15/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease of unknown etiology, mainly manifested by persistent abnormal proliferation of fibroblast-like synoviocytes (FLSs), inflammation, synovial hyperplasia and cartilage erosion, accompanied by joint swelling and joint destruction. Abnormal expression or function of long noncoding RNAs (lncRNAs) are closely related to human diseases, including cancers, mental diseases, autoimmune diseases and others. The abnormal sequence and spatial structure of lncRNAs, the disorder expression and the abnormal interaction with the binding protein will lead to the change of gene expression in the way of epigenetic modification. Increasing evidence demonstrated that lncRNAs were involved in the activation of FLSs, which played a key role in the pathogenesis of RA. In this review, the research progress of lncRNAs in the pathogenesis of RA was systematically summarized, including the role of lncRNAs in the diagnosis of RA, the regulatory mechanism of lncRNAs in the pathogenesis of RA, and the intervention role of lncRNAs in the treatment of RA. Furthermore, the activated signal pathways, the role of DNA methylation and other mechanism have also been overview in this review.
Collapse
Affiliation(s)
- Chenggui Miao
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China.,Anhui Provincial Key Laboratory of Chinese Medicine Compound, Anhui University of Chinese Medicine, Hefei, China.,Department of Pharmacy, School of Life and Health Sciences, Anhui University of Science and Technology, Fengyang, China
| | - Liangliang Bai
- Department of Biomedical Engineering, School of Biomedical Engineering, Anhui Medical University, Hefei, China
| | - Yaru Yang
- Department of Pharmacy, First Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Jinling Huang
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
12
|
Chen M, Li M, Zhang N, Sun W, Wang H, Wei W. Mechanism of miR-218-5p in autophagy, apoptosis and oxidative stress in rheumatoid arthritis synovial fibroblasts is mediated by KLF9 and JAK/STAT3 pathways. J Investig Med 2021; 69:jim-2020-001437. [PMID: 33558275 PMCID: PMC8020083 DOI: 10.1136/jim-2020-001437] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2021] [Indexed: 12/23/2022]
Abstract
This study was aimed to investigate the effects of miR-218-5p on the proliferation, apoptosis, autophagy, and oxidative stress of rheumatoid arthritis synovial fibroblasts (RASFs), and the related mechanisms. Quantitative reverse transcription-PCR showed that the expression of miR-218-5p in rheumatoid arthritis synovial tissue was significantly higher than that in healthy synovial tissue. Compared with healthy synovial fibroblasts, miR-218-5p expression was obviously upregulated in RASFs, while KLF9 protein expression was markedly downregulated. Mechanistically, miR-218-5p could directly bind to the 3' untranslated region of KLF9 to inhibit the expression of KLF9. Additionally, transfection of miR-218-5p small interfering RNA (siRNA) inhibited the proliferation but promoted apoptosis and autophagy of RASFs. Simultaneously, miR-218-5p silencing reduced reactive oxygen species and malondialdehyde levels and increased superoxide dismutase and glutathione peroxidase activity to improve oxidative stress in RASFs. More importantly, the introduction of KLF9 siRNA reversed the effects of miR-218-5p siRNA transfection on RASF proliferation, apoptosis, autophagy, and oxidative stress. What is more, silencing miR-218-5p inhibited the activation of JAK2/STAT3 signaling pathway by targeting KLF9. Collectively, knockdown of miR-218-5p could regulate the proliferation, apoptosis, autophagy and oxidative stress of RASFs by increasing the expression of KLF9 and inhibiting the activation of the JAK2/STAT3 signaling pathway, which may provide a potential target for the mechanism research of RA.
Collapse
Affiliation(s)
- Ming Chen
- Immunology and Rheumatology Department, Tianjin Medical University General Hospital, Tianjin, China
| | - Minghui Li
- Immunology and Rheumatology Department, Tianjin Medical University General Hospital, Tianjin, China
| | - Na Zhang
- Immunology and Rheumatology Department, Tianjin Medical University General Hospital, Tianjin, China
| | - Wenwen Sun
- Immunology and Rheumatology Department, Tianjin Medical University General Hospital, Tianjin, China
| | - Hui Wang
- Immunology and Rheumatology Department, Tianjin Medical University General Hospital, Tianjin, China
| | - Wei Wei
- Immunology and Rheumatology Department, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
13
|
Su Y, Liu Y, Ma C, Guan C, Ma X, Meng S. Mesenchymal stem cell-originated exosomal lncRNA HAND2-AS1 impairs rheumatoid arthritis fibroblast-like synoviocyte activation through miR-143-3p/TNFAIP3/NF-κB pathway. J Orthop Surg Res 2021; 16:116. [PMID: 33549125 PMCID: PMC7866436 DOI: 10.1186/s13018-021-02248-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/18/2021] [Indexed: 02/07/2023] Open
Abstract
Background Long non-coding RNA heart and neural crest derivatives expressed 2-antisense RNA 1 (HAND2-AS1) was found to be elevated in rheumatoid arthritis (RA) fibroblast-like synoviocytes (RA-FLSs). However, whether HAND2-AS1 functions as an exosomal lncRNA related to mesenchymal stem cells (MSCs) in RA progression is unknown. Methods The expression of HAND2-AS1, microRNA (miR)-143-3p, and tumor necrosis factor alpha-inducible protein 3 (TNFAIP3) was detected using quantitative real-time polymerase chain reaction and Western blot. Cell proliferation, apoptosis, migration, and invasion were detected using cell counting kit-8, flow cytometry, and wound healing and transwell assays. The levels of tumor necrosis factor-α (TNF-α) and interleukins (IL)-6 were analyzed using enzyme-linked immunosorbent assay. The level of phosphorylated-p65 was examined by Western blot. The binding interaction between miR-143-3p and HAND2-AS1 or TNFAIP3 was confirmed by the dual-luciferase reporter and RIP assays. Exosomes were isolated by ultracentrifugation and qualified by transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA), and Western blot. Results HAND2-AS1 was lowly expressed in RA synovial tissues, and HAND2-AS1 re-expression suppressed the proliferation, motility, and inflammation and triggered the apoptosis in RA-FLSs via the inactivation of NF-κB pathway. Mechanistically, HAND2-AS1 directly sponged miR-143-3p and positively regulated TNFAIP3 expression, the target of miR-143-3p. Moreover, the effects of HAND2-AS1 on RA-FLSs were partially attenuated by miR-143-3p upregulation or TNFAIP3 knockdown. HAND2-AS1 could be packaged into hMSC-derived exosomes and absorbed by RA-FLSs, and human MSC-derived exosomal HAND2-AS1 also repressed above malignant biological behavior of RA-FLSs. Conclusion MSC-derived exosomes participated in the intercellular transfer of HAND2-AS1 and suppressed the activation of RA-FLSs via miR-143-3p/TNFAIP3/NF-κB pathway, which provided a novel insight into the pathogenesis and treatment of RA.
Collapse
Affiliation(s)
- Yuhua Su
- Department of Rheumatology and Immunology, Affiliated Hospital of Weifang Medical University, NO.2428 Yuhe Road, Kuiwen District, Weifang, 261000, Shandong, China
| | - Yajing Liu
- Department of Rheumatology and Immunology, Affiliated Hospital of Weifang Medical University, NO.2428 Yuhe Road, Kuiwen District, Weifang, 261000, Shandong, China
| | - Chao Ma
- Internal medicine, Yuncheng Hospital of traditional Chinese Medicine, Heze, 274700, Shandong, China
| | - Chunxiao Guan
- Department of Rheumatology and Immunology, Affiliated Hospital of Weifang Medical University, NO.2428 Yuhe Road, Kuiwen District, Weifang, 261000, Shandong, China
| | - Xiufen Ma
- Department of Rheumatology and Immunology, Affiliated Hospital of Weifang Medical University, NO.2428 Yuhe Road, Kuiwen District, Weifang, 261000, Shandong, China
| | - Shan Meng
- Department of Rheumatology and Immunology, Affiliated Hospital of Weifang Medical University, NO.2428 Yuhe Road, Kuiwen District, Weifang, 261000, Shandong, China.
| |
Collapse
|
14
|
Bure IV, Mikhaylenko DS, Kuznetsova EB, Alekseeva EA, Bondareva KI, Kalinkin AI, Lukashev AN, Tarasov VV, Zamyatnin AA, Nemtsova MV. Analysis of miRNA Expression in Patients with Rheumatoid Arthritis during Olokizumab Treatment. J Pers Med 2020; 10:jpm10040205. [PMID: 33142700 PMCID: PMC7712090 DOI: 10.3390/jpm10040205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 01/11/2023] Open
Abstract
Rheumatoid arthritis (RA) is the most common autoimmune disease worldwide. Epigenetic alternations of microRNAs (miRNAs) can contribute to its pathogenesis and progression. As the first line therapy with DMARDs is not always successful, other drugs and therapeutic targets should be applied. This study aims to measure the expression level of plasma miRNAs in RA patients treated with olokizumab and to evaluate their potential as prognostic biomarkers. The expression of 9 miRNAs was quantified in 103 RA patients before treatment and at weeks 12 and 24 of olokizumab therapy by reverse transcription-polymerase chain reaction (RT-PCR) assay and analyzed in groups of responders and non-responders. Almost all miRNAs changed their expression during therapy. The ROC curve analysis of the most prominent of them together with consequent univariate and multivariate regression analysis revealed statistically significant associations with the olokizumab therapy efficiency scores for miR-26b, miR-29, miR-451, and miR-522. Therefore, these miRNAs might be a potential therapeutic response biomarker.
Collapse
Affiliation(s)
- Irina V. Bure
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya str., 8-2, 119992 Moscow, Russia; (I.V.B.); (D.S.M.); (E.B.K.); (E.A.A.); (A.N.L.)
| | - Dmitry S. Mikhaylenko
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya str., 8-2, 119992 Moscow, Russia; (I.V.B.); (D.S.M.); (E.B.K.); (E.A.A.); (A.N.L.)
- Laboratory of Epigenetics, Research Centre for Medical Genetics, Moskvorechye str. 1, 115478 Moscow, Russia;
| | - Ekaterina B. Kuznetsova
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya str., 8-2, 119992 Moscow, Russia; (I.V.B.); (D.S.M.); (E.B.K.); (E.A.A.); (A.N.L.)
- Laboratory of Epigenetics, Research Centre for Medical Genetics, Moskvorechye str. 1, 115478 Moscow, Russia;
| | - Ekaterina A. Alekseeva
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya str., 8-2, 119992 Moscow, Russia; (I.V.B.); (D.S.M.); (E.B.K.); (E.A.A.); (A.N.L.)
- Laboratory of Epigenetics, Research Centre for Medical Genetics, Moskvorechye str. 1, 115478 Moscow, Russia;
| | - Kristina I. Bondareva
- Biostatistics Department, OCT Rus, Bolshaya Moskovskaya str., 8/2, 191002 Saint-Petersburg, Russia;
| | - Alexey I. Kalinkin
- Laboratory of Epigenetics, Research Centre for Medical Genetics, Moskvorechye str. 1, 115478 Moscow, Russia;
| | - Alexander N. Lukashev
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya str., 8-2, 119992 Moscow, Russia; (I.V.B.); (D.S.M.); (E.B.K.); (E.A.A.); (A.N.L.)
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov First Moscow State Medical University, 119435 Moscow, Russia
| | - Vadim V. Tarasov
- Department of Pharmacology and Pharmacy, Sechenov First Moscow State Medical University, 119991 Moscow, Russia;
| | - Andrey A. Zamyatnin
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya str., 8-2, 119992 Moscow, Russia; (I.V.B.); (D.S.M.); (E.B.K.); (E.A.A.); (A.N.L.)
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- Department of Biotechnology, Sirius University of Science and Technology, 1 Olympic Ave, 354340 Sochi, Russia
- Correspondence: (A.A.Z.J.); (M.V.N.)
| | - Marina V. Nemtsova
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya str., 8-2, 119992 Moscow, Russia; (I.V.B.); (D.S.M.); (E.B.K.); (E.A.A.); (A.N.L.)
- Laboratory of Epigenetics, Research Centre for Medical Genetics, Moskvorechye str. 1, 115478 Moscow, Russia;
- Correspondence: (A.A.Z.J.); (M.V.N.)
| |
Collapse
|
15
|
Yang J, Cheng M, Gu B, Wang J, Yan S, Xu D. CircRNA_09505 aggravates inflammation and joint damage in collagen-induced arthritis mice via miR-6089/AKT1/NF-κB axis. Cell Death Dis 2020; 11:833. [PMID: 33028811 PMCID: PMC7542153 DOI: 10.1038/s41419-020-03038-z] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 09/17/2020] [Accepted: 09/21/2020] [Indexed: 02/08/2023]
Abstract
A number of circular RNAs (circRNAs) have been implicated in rheumatoid arthritis (RA) pathogenesis; however, little is known about their function and hidden molecular mechanism in immune and inflammation regulation. We investigated the role and the underlying mechanism of circRNA_09505 in RA in this study. Real-time PCR and fluorescence in situ hybridization (FISH) are adopted to estimate the quantitative expression and localization of circRNA_09505 in macrophages. The altering effect of circRNA_09505 on inflammation is investigated in vitro and in vivo by use of macrophage cell models and collagen-induced arthritis (CIA) mice. Luciferase reporter assay and RNA-binding protein immunoprecipitation (RIP) are used to confirm the circRNA_09505/miR-6089 ceRNA network predicted by bioinformatics analysis. Compared with controls, the expression of circRNA_09505 is upregulated in peripheral blood mononuclear cells (PBMCs) from patients with RA. The proliferation and cell cycle are significantly promoted when circRNA_09505 is upregulated in macrophages, whereas knockdown of circRNA_09505 inhibits macrophage proliferation and cell- cycle progression. Besides, circRNA_09505 can act as a miRNA sponge for miR-6089 in macrophages, and promote the production of TNF-α, IL-6, and IL-12 through ceRNA mechanism. Moreover, AKT1 is a direct target of miR-6089. CircRNA_09505 can promote AKT1 expression by acting as a miR-6089 sponge via IκBα/NF-κB signaling pathway in macrophages. Most interestingly, knockdown of circRNA_09505 significantly alleviates arthritis and inflammation in vivo in CIA mice. These data support the hypothesis that circRNA_09505 can function as a miR-6089 sponge and regulate inflammation via miR-6089/AKT1/NF-κB axis in CIA mice.
Collapse
Affiliation(s)
- Jinghan Yang
- Department of Rheumatology & Central Laboratory of the First Affiliated Hospital, Weifang Medical University, Weifang, 261053, China
| | - Min Cheng
- Department of Physiology, Clinical Medicine College, Weifang Medical University, Weifang, 261053, China
| | - Bingjie Gu
- Department of Rheumatology and Immunology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Jinghua Wang
- Department of Rheumatology & Central Laboratory of the First Affiliated Hospital, Weifang Medical University, Weifang, 261053, China
| | - Shushan Yan
- Department of Gastrointestinal and Anal Diseases Surgery of the Affiliated Hospital, Weifang Medical University, Weifang, 261053, China.
| | - Donghua Xu
- Department of Rheumatology & Central Laboratory of the First Affiliated Hospital, Weifang Medical University, Weifang, 261053, China.
| |
Collapse
|
16
|
Xu YT, Leng YR, Liu MM, Dong RF, Bian J, Yuan LL, Zhang JG, Xia YZ, Kong LY. MicroRNA and long noncoding RNA involvement in gout and prospects for treatment. Int Immunopharmacol 2020; 87:106842. [DOI: 10.1016/j.intimp.2020.106842] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/19/2020] [Accepted: 07/23/2020] [Indexed: 02/08/2023]
|
17
|
Wen J, Liu J, Jiang H, Wan L, Xin L, Sun Y, Zhang P, Sun Y, Zhang Y, Du X, Wang X, Wang J. lncRNA expression profiles related to apoptosis and autophagy in peripheral blood mononuclear cells of patients with rheumatoid arthritis. FEBS Open Bio 2020; 10:1642-1654. [PMID: 32569434 PMCID: PMC7396444 DOI: 10.1002/2211-5463.12913] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/26/2020] [Accepted: 06/17/2020] [Indexed: 12/16/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are >200-bp molecules that do not generally code for proteins. Human lncRNAs have well-characterized roles in gene expression regulation, particularly with regard to protein-coding genes, and their dysregulation has been linked to disease. Here, we set out to investigate changes in the expression of lncRNAs related to apoptosis and autophagy in the peripheral blood mononuclear cells (PBMCs) of rheumatoid arthritis (RA). In addition, we aimed to correlate lncRNA expression profiles with clinical indexes and self-perception of patients (SPP). To this end, we employed RNA sequencing of lncRNAs in PBMCs from three patients with RA and three healthy controls. We used bioinformatics to screen several dysregulated lncRNAs related to apoptosis and autophagy. To validate key lncRNA candidates, we performed quantitative reverse transcriptase-PCR on 20 patients with RA and 20 healthy controls. We found the expression of seven lncRNAs (MAPKAPK5-AS1, ENST00000619282, C5orf17, LINC01189, LINC01006, DSCR9 and MIR22HG) was significantly altered in PBMCs of patients with RA. Receiver operating characteristic curve analysis suggested that MIR22HG [area under the curve (AUC) = 0.846, P = 0.000], DSCR9 (AUC = 0.783, P = 0.005), LINC01189 (AUC = 0.677, P = 0.034), MAPKAPK5-AS1 (AUC = 0.644, P = 0.025) and ENST00000619282 (AUC = 0.636, P = 0.043) are potential biomarkers of RA. Spearman's correlation analysis revealed selected lncRNAs correlated with clinical indexes and SPP. Therefore, we highlight that some lncRNAs related to apoptosis and autophagy may serve as potential biomarkers for diagnosis and monitoring of RA progression, which also correlate with several clinical indexes and SPP.
Collapse
Affiliation(s)
- Jianting Wen
- Anhui University of Traditional Chinese MedicineHefeiChina
| | - Jian Liu
- Department of Rheumatology and ImmunologyFirst Affiliated Hospital of Anhui University of Traditional Chinese MedicineHefeiChina
- Institute of RheumatologyAnhui College of Traditional Chinese MedicineHefeiChina
| | - Hui Jiang
- Department of Rheumatology and ImmunologyFirst Affiliated Hospital of Anhui University of Traditional Chinese MedicineHefeiChina
| | - Lei Wan
- Department of Rheumatology and ImmunologyFirst Affiliated Hospital of Anhui University of Traditional Chinese MedicineHefeiChina
- Institute of RheumatologyAnhui College of Traditional Chinese MedicineHefeiChina
| | - Ling Xin
- Department of Rheumatology and ImmunologyFirst Affiliated Hospital of Anhui University of Traditional Chinese MedicineHefeiChina
- Institute of RheumatologyAnhui College of Traditional Chinese MedicineHefeiChina
| | - Yue Sun
- Department of Rheumatology and ImmunologyFirst Affiliated Hospital of Anhui University of Traditional Chinese MedicineHefeiChina
- Institute of RheumatologyAnhui College of Traditional Chinese MedicineHefeiChina
| | - Pingheng Zhang
- Zhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Yanqiu Sun
- Anhui University of Traditional Chinese MedicineHefeiChina
| | - Ying Zhang
- Anhui University of Traditional Chinese MedicineHefeiChina
| | - Xinlei Du
- Anhui University of Traditional Chinese MedicineHefeiChina
| | - Xin Wang
- Anhui University of Traditional Chinese MedicineHefeiChina
| | - Jie Wang
- Anhui University of Traditional Chinese MedicineHefeiChina
| |
Collapse
|
18
|
Recent advances of long noncoding RNAs involved in the development of multiple sclerosis. Chin J Nat Med 2020; 18:36-46. [PMID: 31955822 DOI: 10.1016/s1875-5364(20)30003-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Indexed: 12/12/2022]
Abstract
Given the rapid increase of patients with autoimmune diseases and the lack of satisfactory therapies, the discovery of novel and effective therapeutic targets have been in an urgent demand. Recent studies have revealed that long noncoding RNAs (lncRNAs) play crucial roles in the development of multiple sclerosis (MS), which provides a new opportunity of uncovering novel mechanism associated with the progression of MS. This review highlights the dysregulation of lncRNAs in the development of MS in patients and animal models. Additionally, the potential clinical relevance of lncRNAs severed as therapeutic targets and diagnostic markers are discussed.
Collapse
|
19
|
Wang J, Zhao Q. LncRNA LINC-PINT increases SOCS1 expression by sponging miR-155-5p to inhibit the activation of ERK signaling pathway in rheumatoid arthritis synovial fibroblasts induced by TNF-α. Int Immunopharmacol 2020; 84:106497. [DOI: 10.1016/j.intimp.2020.106497] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/29/2020] [Accepted: 04/07/2020] [Indexed: 02/07/2023]
|
20
|
Inhibiting role of long non-coding RNA LINC01197 in inflammation in rheumatoid arthritis through the microRNA-150/THBS2 axis. Exp Cell Res 2020; 394:112136. [PMID: 32540401 DOI: 10.1016/j.yexcr.2020.112136] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 06/05/2020] [Accepted: 06/06/2020] [Indexed: 01/02/2023]
Abstract
PURPOSE Rheumatoid arthritis (RA) is a commonly diagnosed systemic autoimmune disease. Aberrant expression of long non-coding RNAs (lncRNAs) is closely linked to the development of RA. This study was conducted to explore the functions of the lncRNA LINC01197 in RA progression. METHODS Differentially expressed lncRNAs/microRNAs/mRNAs in patients with RA were analyzed using RNA microarrays. A mouse model with RA was established and RA-fibroblast-like synoviocytes (RA-FLS) were acquired for in vitro experiments. The function of LINC01197 in inflammation and RA progression in mice and its role in the viability of RA-FLS were determined by experiments involving its overexpression or suppression. The sub-cellular localization of LINC01197 was determined and the downstream molecules involved in LINC01197-mediated events were identified. RESULTS LINC01197 was poorly expressed in the synovial tissues in the RA model mice. Overexpression of LINC01197 reduced RA severity in mice and inhibited proliferation and inflammatory responses as well as promoted apoptosis in RA-FLS. Online predictions and dual luciferase reporter gene assays suggested that LINC01197 could bind to miR-150 and further regulate THBS2 expression. LINC01197 promoted THBS2 expression through miR-150 sponging and inactivated the TLR4/NF-κB signaling pathway, thus alleviating RA inflammation. CONCLUSION The current study suggested that LINC01197 sponged miR-150 to promote THBS2 expression, leading to TLR4/NF-κB inactivation, and ameliorated RA inflammation. These findings may offer new insights into RA treatment.
Collapse
|
21
|
Tsai MH, Chi MC, Hsu JF, Lee IT, Lin KM, Fang ML, Lee MH, Lee CW, Liu JF. Urban Particulate Matter Enhances ROS/IL-6/COX-II Production by Inhibiting MicroRNA-137 in Synovial Fibroblast of Rheumatoid Arthritis. Cells 2020; 9:cells9061378. [PMID: 32498294 PMCID: PMC7348867 DOI: 10.3390/cells9061378] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/27/2020] [Accepted: 05/30/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Rheumatoid arthritis (RA) has been associated with air pollution, possibly due to the augmentation of inflammatory effects. In this study, we aimed to determine the roles of inflammatory pathways and microRNA involved in the pathogenesis of RA fibroblast-like synoviocytes (FLS) inflammation induced by particulate matter. METHODS The inflammatory mediators, messenger RNAs, microRNAs and their interrelationships were investigated using western blotting, QPCR, ELISA and immunohistochemistry. RESULTS Particulate matter (PMs) induced an increase in the expression of interleukin-6 (IL-6) and cyclooxygenase-II (COX-II) in RA-FLS and microRNA-137 was found definitely to mediate the inflammatory pathways. PMs-induced generation of reactive oxygen species (ROS) in RA-FLS was attenuated by pretreatment with antioxidants. Nox-dependent ROS generation led to phosphorylation of ERK1/2, p38 and JNK, followed by downregulation of microRNA-137. In vivo studies, the joints of rats exposed to PMs revealed synovial fibroblast inflammation under pathologic examination and the expressions of IL-6 and COX-II were obviously increased. PMs exposure results in activated ROS-mediated mitogen-activated protein kinase (MAPK) signaling pathways and cause increased IL-6 and COX-II through downregulation of hsa-miRNA-137, which lead to inflammation and RA exacerbation. CONCLUSIONS microRNA-137 plays an important role in PMs-induced RA acute exacerbation through MAPK signaling pathways and IL-6/COX-II activation. Targeting these mechanisms can potentially be used to develop new therapeutic strategies and prevention of RA inflammation in the future.
Collapse
Affiliation(s)
- Ming-Horng Tsai
- Department of Pediatrics, Division of Neonatology and Pediatric Hematology/Oncology, Chang Gung Memorial Hospital, Yunlin 638, Taiwan;
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Miao-Ching Chi
- Chronic Disease and Health Promotion Research Center, Chang Gung University of Science and Technology, Puzi City, Chiayi County 613, Taiwan;
- Division of Pulmonary and Critical Care Medicine, Chiayi Chang Gung Memorial Hospital, Puzi City, Chiayi County 613, Taiwan
- Department of Respiratory Care, Chang Gung University of Science and Technology, Puzi City, Chiayi County 613, Taiwan
| | - Jen-Fu Hsu
- Department of Pediatrics, Division of Neonatology, Chang Gung Memorial Hospital, Lin-Kou, New Taipei City 333, Taiwan;
| | - I-Ta Lee
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei City 111, Taiwan;
| | - Ko-Ming Lin
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Chang Gung Memorial Hospital, Puzi City, Chiayi County 613, Taiwan;
| | - Mei-Ling Fang
- Center for Environmental Toxin and Emerging-Contaminant Research, Cheng Shiu University, Kaohsiung 83347, Taiwan;
- Super Micro Research and Technology Center, Cheng Shiu University, Kaohsiung 83347, Taiwan
| | - Ming-Hsueh Lee
- Division of Neurosurgery, Department of Surgery, Chang Gung Memorial Hospital, Chia-Yi 61363, Taiwan;
| | - Chiang-Wen Lee
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Puzi City, Chiayi County 61363, Taiwan
- Department of Nursing, Division of Basic Medical Sciences, and Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Puzi City, Chiayi County 61363, Taiwan
- Department of Safety Health and Environmental Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan
- College of Medicine, Chang Gung University, Guishan Dist, Taoyuan City 33303, Taiwan
- Correspondence: (C.-W.L.); (J.-F.L.); Tel.: +886-4-2205-3366 (ext. 2128) (C.-W.L.); +886-2-2736-1661 (ext. 5110) (J.-F.L.); Fax: +886-4-22053764 (C.-W.L.)
| | - Ju-Fang Liu
- Translational Medicine Center, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei City 11101, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
- School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei City 11031, Taiwan
- Correspondence: (C.-W.L.); (J.-F.L.); Tel.: +886-4-2205-3366 (ext. 2128) (C.-W.L.); +886-2-2736-1661 (ext. 5110) (J.-F.L.); Fax: +886-4-22053764 (C.-W.L.)
| |
Collapse
|
22
|
Bagheri-Hosseinabadi Z, Imani D, Yousefi H, Abbasifard M. Vitamin D receptor (VDR) gene polymorphism and risk of rheumatoid arthritis (RA): systematic review and meta-analysis. Clin Rheumatol 2020; 39:3555-3569. [PMID: 32445089 DOI: 10.1007/s10067-020-05143-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/21/2020] [Accepted: 05/01/2020] [Indexed: 12/17/2022]
Abstract
Vitamin D is involved in immune system modulation as well as in calcium and bone homeostasis, hence plays a role in rheumatoid arthritis (RA) etiopathogenesis. A bulk of studies in different populations have assessed the association between the vitamin D receptor (VDR) gene polymorphisms and the risk of RA, reporting conflicting results. Therefore, we designed a meta-analysis to comprehensively evaluate the association of VDR gene polymorphisms and RA risk. All potential studies reporting the association between VDR gene polymorphisms and susceptibility to RA published till February 2020 were retrieved through systematic search of database, including Scopus and MEDLINE. Strength of pooled association was determined through calculating the pooled odds ratios (ORs) and 95% confidence intervals (CIs). Subgroup analysis was performed by stratifying the studies by population type. This meta-analysis included 23 eligible studies (21 articles) overall. We noticed that FokI SNP had a significant protective association with susceptibility to RA in the overall analysis as well as in Europeans and Asians. TaqI SNP decreased the RA risk in Africans and Arabs, but not in the overall analysis. Likewise, BsmI SNP and RA risk in the overall population analysis was not significant. Interestingly, BsmI polymorphism increased RA risk in Africans. This meta-analysis offers a significant association between VDR gene polymorphism and susceptibility to RA in both overall and ethnic-specific analysis. However, different polymorphisms acted inversely in increasing or decreasing RA risk in different populations.
Collapse
Affiliation(s)
- Zahra Bagheri-Hosseinabadi
- Department of Clinical Biochemistry, Faculty of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Molecular Medicine Research Center,Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Danyal Imani
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Hassan Yousefi
- Department of Biochemistry and Molecular Biology, School of Medicine, LSUHSC, New Orleans, LA, USA
| | - Mitra Abbasifard
- Molecular Medicine Research Center,Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
- Department of internal Medicine, Ali-Ibn Abi-Talib hospital, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| |
Collapse
|
23
|
Abstract
Advances in molecular genetics have identified several species of RNA that fail to translate - hence the non-coding RNAs. The two major groups within this class of nucleic acids are microRNAs (miRNA) and long non-coding RNAs (lncRNA). There is growing body of evidence supporting the view that these molecules have regulatory effect on both DNA and RNA. The objective of this brief review is to explain the molecular genetic of these molecules, to summarize their potential as mediators of disease, and to highlight their value as diagnostic markers and as tools in disease management.
Collapse
Affiliation(s)
- P Waller
- Department of Biomedical Sciences, University of Kingston, London, UK
| | - A D Blann
- Institute of Biomedical Science, London, UK
| |
Collapse
|
24
|
Lopez-Pedrera C, Barbarroja N, Patiño-Trives AM, Luque-Tévar M, Torres-Granados C, Aguirre-Zamorano MA, Collantes-Estevez E, Pérez-Sánchez C. Role of microRNAs in the Development of Cardiovascular Disease in Systemic Autoimmune Disorders. Int J Mol Sci 2020; 21:E2012. [PMID: 32188016 PMCID: PMC7139533 DOI: 10.3390/ijms21062012] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 12/11/2022] Open
Abstract
Rheumatoid Arthritis (RA), Systemic lupus erythematosus (SLE) and antiphospholipid syndrome (APS) are the systemic autoimmune diseases (SADs) most associated with an increased risk of developing cardiovascular (CV) events. Cardiovascular disease (CVD) in SADs results from a complex interaction between traditional CV-risk factors, immune deregulation and disease activity. Oxidative stress, dyslipidemia, endothelial dysfunction, inflammatory/prothrombotic mediators (cytokines/chemokines, adipokines, proteases, adhesion-receptors, NETosis-derived-products, and intracellular-signaling molecules) have been implicated in these vascular pathologies. Genetic and genomic analyses further allowed the identification of signatures explaining the pro-atherothrombotic profiles in RA, SLE and APS. However, gene modulation has left significant gaps in our understanding of CV co-morbidities in SADs. MicroRNAs (miRNAs) are emerging as key post-transcriptional regulators of a suite of signaling pathways and pathophysiological effects. Abnormalities in high number of miRNA and their associated functions have been described in several SADs, suggesting their involvement in the development of atherosclerosis and thrombosis in the setting of RA, SLE and APS. This review focusses on recent insights into the potential role of miRNAs both, as clinical biomarkers of atherosclerosis and thrombosis in SADs, and as therapeutic targets in the regulation of the most influential processes that govern those disorders, highlighting the potential diagnostic and therapeutic properties of miRNAs in the management of CVD.
Collapse
|
25
|
The Protective Effect of Different Polar Solvent Extracts of Er Miao San on Rats with Adjuvant Arthritis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:5305278. [PMID: 32148544 PMCID: PMC7053457 DOI: 10.1155/2020/5305278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 12/09/2019] [Accepted: 12/30/2019] [Indexed: 12/18/2022]
Abstract
Objective The aim of this study was to evaluate the antiarthritic effects of different polar solvent extracts of Er Miao San (EMS) on model rats with adjuvant arthritis (AA) and screen the effective pats of EMS in the treatment of arthritis. Methods Four different polar solvent extracts of EMS such as petroleum ether (PE), methylene chloride (CH2Cl2), ethyl acetate (EtOAc), and n-butanol (n-butanol ( Results Administration of EtOAc and CH2Cl2 parts remarkably inhibited the paw swelling, decreased the index of arthritis, decreased the body weight loss, and improved the changes of histopathology. Furthermore, the concentrations of proinflammatory cytokines (TNF-α, IL-1β, and IL-6) were significantly lower, while the anti-inflammatory cytokine (IL-10) was remarkably higher compared with that in the model group. And the result of UHPLC analysis indicated that the effective parts of EMS contain berberine and atractylodin. Conclusions EtOAc and CH2Cl2 are the effective parts of EMS that can improve arthritis. In particular, berberine and atractylodin may be responsible for the antiarthritic activity of EMS. This research provided pharmacological and chemical foundation for the application of EMS in treating rheumatoid arthritis (RA).
Collapse
|
26
|
Dinesh P, Kalaiselvan S, Sujitha S, Rasool M. MiR-145-5p mitigates dysregulated Wnt1/β-catenin signaling pathway in rheumatoid arthritis. Int Immunopharmacol 2020; 82:106328. [PMID: 32088641 DOI: 10.1016/j.intimp.2020.106328] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 02/04/2020] [Accepted: 02/14/2020] [Indexed: 12/28/2022]
Abstract
Fibroblast-like synoviocytes (FLS) lining the arthritic synovial joint region have been implicated to be a key player in bone remodeling. The uncontrolled proliferation of this cell subtype is strictly regulated by various molecular elements including microRNAs (miRNAs). The Wnt1/β-catenin signaling pathway plays a crucial role in the survival of FLS cells. This study explores the underlying mechanism of miR-145-5p towards the Wnt1/β-catenin pathway. MiR-145-5p depicted a strong binding affinity towards frizzled class receptor 4 (FZD4) 3' UTR, a key receptor complex essential for recognizing circulating Wnt1 molecules. Adjuvant induced arthritic fibroblast-like synoviocytes (AA-FLS) isolated from rats stimulated with Wnt1 (10 ng/ml) elicited active Wnt1/β-catenin signaling. Transfection of miR-145-5p mimic (50 pmol) to AA-FLS stimulated with Wnt1 elicited reduced expression levels of various factors of Wnt1/β-catenin signaling including low-density lipoprotein receptor-related protein 5 (LRP5), dishevelled segment polarity protein 1 (Dvl1) and β-catenin transcription factor. Moreover, pro-inflammatory cytokines (TNFα, IL-1β, IL-6 and IL-23) were regulated compared to the diseased groups. Furthermore, miR-145-5p counterbalanced the levels of receptor activator of nuclear factor kappa B ligand (RANKL) and osteoprotegerin (OPG) at the cellular level, essential for bone remodeling. Hence, we suggest that miR-145-5p regulates the survival/proliferation of FLS cells in RA disease condition through attenuation of Wnt1/β-catenin signaling.
Collapse
Affiliation(s)
- Palani Dinesh
- Immunopathology Lab, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632 014, Tamil Nadu, India
| | - Sowmiya Kalaiselvan
- Immunopathology Lab, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632 014, Tamil Nadu, India
| | - Sali Sujitha
- Immunopathology Lab, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632 014, Tamil Nadu, India
| | - Mahaboobkhan Rasool
- Immunopathology Lab, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632 014, Tamil Nadu, India.
| |
Collapse
|
27
|
Wang J, Yan S, Yang J, Lu H, Xu D, Wang Z. Non-coding RNAs in Rheumatoid Arthritis: From Bench to Bedside. Front Immunol 2020; 10:3129. [PMID: 32047497 PMCID: PMC6997467 DOI: 10.3389/fimmu.2019.03129] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 12/23/2019] [Indexed: 12/14/2022] Open
Abstract
Rheumatoid arthritis is a common systemic and autoimmune disease characterized by symmetrical and inflammatory destruction of distal joints. Its primary pathological characters are synovitis and vasculitis. Accumulating studies have implicated the critical role of non-coding RNAs (ncRNAs) in inflammation and autoimmune regulation, primarily including microRNA (miRNA), long non-coding RNA (lncRNA), and circular RNA (circRNA). NcRNAs are significant regulators in distinct physiological and pathophysiological processes. Many validated non-coding RNAs have been identified as promising biomarkers for the diagnosis and treatment of RA. This review will shed some light on RA pathogenesis and be helpful for identifying potential ncRNA biomarkers for RA.
Collapse
Affiliation(s)
- Jinghua Wang
- Clinical Medicine College, Weifang Medical University, Weifang, China.,Department of Rheumatology, The Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Shushan Yan
- Department of Gastrointestinal and Anal Diseases Surgery, The Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Jinghan Yang
- Clinical Medicine College, Weifang Medical University, Weifang, China.,Department of Rheumatology, The Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Hongying Lu
- Functional Laboratory, Clinical Medicine College of Weifang Medical University, Weifang, China
| | - Donghua Xu
- Clinical Medicine College, Weifang Medical University, Weifang, China.,Department of Rheumatology, The Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Zengyan Wang
- Department of Operating Room, Zhucheng People's Hospital, Zhucheng, China
| |
Collapse
|
28
|
Decreased H19, GAS5, and linc0597 Expression and Association Analysis of Related Gene Polymorphisms in Rheumatoid Arthritis. Biomolecules 2019; 10:biom10010055. [PMID: 31905737 PMCID: PMC7022387 DOI: 10.3390/biom10010055] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/18/2019] [Accepted: 12/26/2019] [Indexed: 01/06/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) widely participate in human diseases by regulating gene transcription, modulating protein function, or acting as ceRNAs. Yet, their roles in rheumatoid arthritis (RA) remain obscure. In this study, the expression of three lncRNAs (H19, GAS5, and linc0597) in peripheral blood mononuclear cells (PBMCs) were detected in 77 RA patients and 78 controls using quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR). The association of lncRNAs related gene polymorphisms with RA were evaluated in 828 RA patients and 780 controls using TaqMan single nucleotide polymorphism (SNP) genotyping assays. We observed that the expression levels of H19, GAS5 and linc0597 were down-regulated in PBMCs of RA patients, of which GAS5 level decreased in patients with hypocomplementemia, and negatively correlated with C-reactive protein (CRP) level in RA patients. Moreover, we highlighted two related potential functional SNPs, GAS5 rs6790 and linc0597 rs2680700 for associations with RA susceptibility. The precise roles of these lncRNAs in mechanism of RA remain to be further explored.
Collapse
|
29
|
Shaker OG, Golam RM, Ayoub S, Daker LI, Elguaad MKA, Said ES, Khalil MAF. Correlation between LincR-Gng2-5'and LincR-Epas1-3'as with the severity of multiple sclerosis in Egyptian patients. Int J Neurosci 2019; 130:515-521. [PMID: 31790618 DOI: 10.1080/00207454.2019.1695610] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Introduction: Multiple sclerosis (MS) is an immune-mediated disorder. Long noncoding RNAs (lncRNAs, LncR, Linc RNA) have role in many autoimmune and inflammatory disorders, including MS. LincR-Gng2-5 AS locus in T helper 1 cell (TH1) and LincR-Epas1-3AS in T helper 2 cell (TH2) cell were located in a genomic region rich in genes code for proteins with immune regulatory function. Our aim was to evaluate the LincR-Gng2-5' and LincR-Epas1-3'AS fold change in blood of MS patients versus healthy controls and correlate it with disease severity, assessed based on Expanded Disability Status Scale (EDSS).Material and Methods: Sixty MS patients 42 relapsing remitting (RR, RRMS), 18 Secondary progressive (SP, SPMS) and sixty controls (age-matched and sex-matched) were studied. Blood of patients and control group undergone the investigation of LincR-Gng2-5' and LincR-Epas1-3'AS fold change by real-time PCR. Fold change >2 and p < .05 represent significant result.Results: LincR-Gng2-5' was significantly upregulated in MS patients with mean fold change (2.559) and (p = .03). Meanwhile, LincR-Epas1-3'AS levels were significantly downregulated with mean fold change (0.5964) and (p < .004). Patients with SP showed a significantly higher level of LincR-Gng2-5-fold change (3.71 ± 0.7) than that of RR (1.33 ± 0.3). LincR-Epas1-3'AS was markedly reduced among SP (0.43 ± 0.2) than that of RR (0.66 ± 0.1) but with no significant difference. As regards disease severity (EDSS); there was a significant positive correlation with LincR-Gng2-5 and negative correlation with LincR-Epas1-3'AS. LincR- Gng2-5and LincR-Epas1-3'AS, both are dysregulated in MS patient suggesting a role in disease pathogenesis.Conclusion: LincR-Gng2-5 AS and LincR-Epas1-3'AS fold change are correlated to MS severity (EDSS).
Collapse
Affiliation(s)
- Olfat G Shaker
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Egypt
| | - Rehab M Golam
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Shymaa Ayoub
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Lamiaa I Daker
- Department of Neurology, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Mohamed K Abd Elguaad
- Department of Medical Physiology, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Eman S Said
- Department of Clinical Pharmacology, Faculty of Medicine, Fayoum University, Fayoum, Egypt.,Department of Pharmacology and Toxicology Collage of Pharmacy, Qassim University, Saudi Arabia
| | - Mahmoud A F Khalil
- Department of Microbiology and Immunology, Faculty of Pharmacy, Fayoum University, Fayoum, Egypt
| |
Collapse
|
30
|
Yan S, Wang P, Wang J, Yang J, Lu H, Jin C, Cheng M, Xu D. Long Non-coding RNA HIX003209 Promotes Inflammation by Sponging miR-6089 via TLR4/NF-κB Signaling Pathway in Rheumatoid Arthritis. Front Immunol 2019; 10:2218. [PMID: 31620132 PMCID: PMC6759987 DOI: 10.3389/fimmu.2019.02218] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 09/02/2019] [Indexed: 12/14/2022] Open
Abstract
Accumulating studies have suggested that long non-coding RNAs (lncRNAs) have drawn more and more attention in rheumatoid arthritis (RA), which can function as competitive endogenous RNAs (ceRNAs) in inflammation and immune disorders. Previously, we have found that lncRNA HIX003209 is differentially expressed in RA. However, the precise mechanism of lncRNA HIX003209 in RA is still vague. We aim to elucidate the role and its targeted microRNA of lncRNA HIX003209 in RA as ceRNA. Significantly increased expression of lncRNA HIX003209 was observed in the peripheral blood mononuclear cells (PBMCs) from RA cases. It was positively associated with TLR2 and TLR4 in RA. Besides, peptidoglycan (PGN) and lipopolysaccharide (LPS) could enhance the expression of lncRNA HIX003209, which reversely promoted the proliferation and activation of macrophages through IκBα/NF-κB signaling pathway. Moreover, HIX003209 was involved in TLR4-mediated inflammation via targeting miR-6089 in macrophages. LncRNA HIX003209 functions as a ceRNA and exaggerates inflammation by sponging miR-6089 through TLR4/NF-κB pathway in macrophages, which offers promising therapeutic strategies for RA.
Collapse
Affiliation(s)
- Shushan Yan
- Clinical Medicine College, Weifang Medical University, Weifang, China.,Department of Gastrointestinal and Anal Diseases Surgery, The Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Pingping Wang
- Department of Gynecology and Obstetrics, Weifang Hospital of Maternal and Child Health, Weifang, China
| | - Jinghua Wang
- Clinical Medicine College, Weifang Medical University, Weifang, China.,Department of Rheumatology, The Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Jinghan Yang
- Clinical Medicine College, Weifang Medical University, Weifang, China.,Department of Rheumatology, The Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Hongying Lu
- Functional Laboratory, Clinical Medicine College of Weifang Medical University, Weifang, China
| | - Chengwen Jin
- Functional Laboratory, Clinical Medicine College of Weifang Medical University, Weifang, China
| | - Min Cheng
- Department of Physiology, Weifang Medical University, Weifang, China
| | - Donghua Xu
- Clinical Medicine College, Weifang Medical University, Weifang, China.,Department of Rheumatology, The Affiliated Hospital of Weifang Medical University, Weifang, China
| |
Collapse
|
31
|
Ebrahimiyan H, Gharibdoost F, Aslani S, Kavosi H, Farsad F, Jamshidi A, Mahmoudi M. microRNAs are potentially regulating the survivin gene in PBMCs from systemic sclerosis patients. Mod Rheumatol 2019; 30:862-869. [PMID: 31441344 DOI: 10.1080/14397595.2019.1659545] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background: Survivin is an important anti-apoptotic protein and is involved in increasing auto-reactivity during the autoimmune diseases like systemic sclerosis (SSc).Aims: In the current study, we investigate the expression level of total survivin (survivin-TS) and its three important variants alongside with evaluation of the expression level of important microRNAs (miRNAs) that are involved in survivin expression regulation.Methods: Peripheral blood mononuclear cells (PBMCs) were isolated from 50 healthy controls, 25 diffuse cutaneous SSc (DcSSc), and 25 limited cutaneous SSc (LcSSc) patients. RNA was extracted and single-strand cDNA was synthesized. Quantitative real-time PCR was used to evaluate the expression level of survivin-TS and its variants as well the miRNAs.Results: Overexpression of survivin-2B and downregulation of survivin wild-type (survivin-WT) were found in total-SSc patients; however, expression level of survivin-TS had no significant difference. The expression levels of miR-335-5p, miR-485-5p, miR-16-5p, miR-150-5p, miR-34a-5p, miR-218-5p and miR-708-5p were higher in total-SSc patients. Significantly negative correlations were found between transcript levels of miR-150-5p, miR-16-5p, and miR-485-5p with survivin-TS mRNA expression.Conclusion: Survivin variants had altered expression in total-SSc patients. In addition, miRNAs might potentially and negatively regulate the survivin-TS expression. Altered expression of survivin, regulated by miRNAs, may result in apoptosis resistance and auto-reactivity in lymphocytes from patients and have important roles in SSc pathogenicity.
Collapse
Affiliation(s)
- Hamidreza Ebrahimiyan
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Rheumatology Expert Group (REG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Farhad Gharibdoost
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeed Aslani
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Rheumatology Expert Group (REG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hoda Kavosi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Faraneh Farsad
- Department of Rheumatology, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ahmadreza Jamshidi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Mahmoudi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Rheumatology Expert Group (REG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
32
|
Dolcino M, Tinazzi E, Puccetti A, Lunardi C. Long Non-Coding RNAs Target Pathogenetically Relevant Genes and Pathways in Rheumatoid Arthritis. Cells 2019; 8:cells8080816. [PMID: 31382516 PMCID: PMC6721587 DOI: 10.3390/cells8080816] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/16/2019] [Accepted: 07/31/2019] [Indexed: 12/14/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease driven by genetic, environmental and epigenetic factors. Long non-coding RNAs (LncRNAs) are a key component of the epigenetic mechanisms and are known to be involved in the development of autoimmune diseases. In this work we aimed to identify significantly differentially expressed LncRNAs (DE-LncRNAs) that are functionally connected to modulated genes strictly associated with RA. In total, 542,500 transcripts have been profiled in peripheral blood mononuclear cells (PBMCs) from four patients with early onset RA prior any treatment and four healthy donors using Clariom D arrays. Results were confirmed by real-time PCR in 20 patients and 20 controls. Six DE-LncRNAs target experimentally validated miRNAs able to regulate differentially expressed genes (DEGs) in RA; among them, only FTX, HNRNPU-AS1 and RP11-498C9.15 targeted a large number of DEGs. Most importantly, RP11-498C9.15 targeted the largest number of signalling pathways that were found to be enriched by the global amount of RA-DEGs and that have already been associated with RA and RA-synoviocytes. Moreover, RP11-498C9.15 targeted the most highly connected genes in the RA interactome, thus suggesting its involvement in crucial gene regulation. These results indicate that, by modulating both microRNAs and gene expression, RP11-498C9.15 may play a pivotal role in RA pathogenesis.
Collapse
Affiliation(s)
- Marzia Dolcino
- Department of Medicine, University of Verona, 37134 Verona, Italy
| | - Elisa Tinazzi
- Department of Medicine, University of Verona, 37134 Verona, Italy
| | - Antonio Puccetti
- Department of Experimental Medicine-Section of Histology, University of Genova, 16132 Genova, Italy
| | - Claudio Lunardi
- Department of Medicine, University of Verona, 37134 Verona, Italy.
| |
Collapse
|
33
|
Zhang CW, Wu X, Liu D, Zhou W, Tan W, Fang YX, Zhang Y, Liu YQ, Li GQ. Long non-coding RNA PVT1 knockdown suppresses fibroblast-like synoviocyte inflammation and induces apoptosis in rheumatoid arthritis through demethylation of sirt6. J Biol Eng 2019; 13:60. [PMID: 31303891 PMCID: PMC6604378 DOI: 10.1186/s13036-019-0184-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 06/03/2019] [Indexed: 12/18/2022] Open
Abstract
Background As a type of chronic autoimmune joint disease, rheumatoid arthritis (RA) is a disorder, characterized by a variety of physical symptoms as well as RA fibroblast-like synoviocyte (RA-FLS) proliferation. More recently, long non-coding RNAs (lncRNAs) have been implicated in the progression of various diseases including the progression of RA. Hence, the aim of the current study was to investigate the role by which the lncRNA, plasmacytoma variant translocation 1 (PVT1), influences RA-FLSs and its ability to modulate the methylation of sirtuin 6 (sirt6). Methods RA rat models were initially established to determine the expression of PVT1 and sirt6 in synovial tissues and RA-FLSs. Elevation or depletion of PVT1 or sirt6 was achieved by means of transformation with plasmids in order to investigate their effects on RA-FLS proliferation, inflammation and apoptosis. The localization of PVT1 and its binding ability to the sirt6 promoter region were also explored in an attempt to elucidate the correlation between PVT1 and sirt6 methylation. Results High expression of PVT1 and low expression of sirt6 were detected in the synovial tissues and RA-FLSs of the rat models. RA-FLSs treated with sh-PVT1 or oe-sirt6 exhibited suppressed cell proliferation, inflammation and induced apoptosis. PVT1 was predominately localized in the nucleus while evidence was obtained indicating that it could bind to the sirt6 promoter to induce sirt6 methylation, thus inhibiting sirt6 transcription. PVT1 knockdown was observed to restore sirt6 expression through decreasing sirt6 methylation, thereby alleviating RA. Conclusion The key findings of the study provide evidence suggesting that, PVT1 knockdown is able to restrain RA progression by inhibiting sirt6 methylation to restore its expression.
Collapse
Affiliation(s)
- Chun-Wang Zhang
- 1Department of Rheumatology, Affiliated Hospital of Yangzhou University, No. 368, Hangjiang Road, Yangzhou, 225000 Jiangsu Province People's Republic of China.,2Clinical Medical College, Dalian Medical University, Dalian, 116044 People's Republic of China
| | - Xia Wu
- 1Department of Rheumatology, Affiliated Hospital of Yangzhou University, No. 368, Hangjiang Road, Yangzhou, 225000 Jiangsu Province People's Republic of China.,2Clinical Medical College, Dalian Medical University, Dalian, 116044 People's Republic of China
| | - Dan Liu
- 3Department of Pathology, Clinical Medical College, Yangzhou University, Yangzhou, 225000 People's Republic of China
| | - Wei Zhou
- 1Department of Rheumatology, Affiliated Hospital of Yangzhou University, No. 368, Hangjiang Road, Yangzhou, 225000 Jiangsu Province People's Republic of China
| | - Wei Tan
- 1Department of Rheumatology, Affiliated Hospital of Yangzhou University, No. 368, Hangjiang Road, Yangzhou, 225000 Jiangsu Province People's Republic of China
| | - Yu-Xuan Fang
- 1Department of Rheumatology, Affiliated Hospital of Yangzhou University, No. 368, Hangjiang Road, Yangzhou, 225000 Jiangsu Province People's Republic of China.,2Clinical Medical College, Dalian Medical University, Dalian, 116044 People's Republic of China
| | - Yu Zhang
- 4Medical College of Yangzhou University, Yangzhou, 225000 People's Republic of China
| | - Yan-Qing Liu
- 4Medical College of Yangzhou University, Yangzhou, 225000 People's Republic of China
| | - Guo-Qing Li
- 1Department of Rheumatology, Affiliated Hospital of Yangzhou University, No. 368, Hangjiang Road, Yangzhou, 225000 Jiangsu Province People's Republic of China
| |
Collapse
|
34
|
Li GQ, Fang YX, Liu Y, Meng FR, Wu X, Zhang CW, Zhang Y, Liu D, Gao B. MALAT1-Driven Inhibition of Wnt Signal Impedes Proliferation and Inflammation in Fibroblast-Like Synoviocytes Through CTNNB1 Promoter Methylation in Rheumatoid Arthritis. Hum Gene Ther 2019; 30:1008-1022. [PMID: 30909750 DOI: 10.1089/hum.2018.212] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Fibroblast-like synoviocytes (FLSs) participate in the pathogenesis of rheumatoid arthritis (RA). Emerging evidence has highlighted the role of long non-coding RNA metastasis associated lung adenocarcinoma transcript 1 (MALAT1) and its potential involvement in RA. In this study, we test the hypothesis that the MALAT1 might inhibit proliferation and inflammatory response of FLSs in RA. The expression of MALAT1 was examined in synovial tissues from patients with RA. The effect of MALAT1 on cultured FLSs was analyzed by introducing overexpressed MALAT1 or short hairpin RNA (shRNA) against MALAT1. To validate whether methylation of CTNNB1 promoter was affected by MALAT1 alternation, we assessed the recruitment of DNA methyltransferases to CTNNB1 promoter. In cultured FLSs with shRNA-mediated CTNNB1 knockdown or activated Wnt signaling, we found the interaction between CTNNB1 and Wnt signaling. MALAT1 expression was reduced in synovial tissues of RA. MALAT1 could bind to CTNNB1 promoter region and recruit methyltransferase to promote CTNNB1 promoter methylation, thereby inhibiting CTNNB1. Notably, MALAT1 could suppress the transcription and expression of CTNNB1, thereby modulating the Wnt signaling pathway. Silenced MALAT1 stimulated the nucleation of β-catenin and the secretion of inflammatory cytokines including interleukin-6, interleukin-10, and tumor necrosis factor-α. Additionally, shRNA-mediated MALAT1 silencing elevated proliferation and suppressed apoptosis of FLSs accompanied. These findings provide evidence for the inhibitory effect of MALAT1 on proliferation and inflammation of FLSs by promoting CTNNB1 promoter methylation and inhibiting the Wnt signaling pathway. Therefore, this study provides a candidate therapeutic target for RA.
Collapse
Affiliation(s)
- Guo-Qing Li
- 1Department of Rheumatology, Affiliated Hospital of Yangzhou University, Yangzhou, P.R. China
| | - Yu-Xuan Fang
- 1Department of Rheumatology, Affiliated Hospital of Yangzhou University, Yangzhou, P.R. China.,2Clinical Medical College, Dalian Medical University, Dalian, P.R. China
| | - Ying Liu
- 1Department of Rheumatology, Affiliated Hospital of Yangzhou University, Yangzhou, P.R. China.,2Clinical Medical College, Dalian Medical University, Dalian, P.R. China
| | - Fan-Ru Meng
- 1Department of Rheumatology, Affiliated Hospital of Yangzhou University, Yangzhou, P.R. China.,2Clinical Medical College, Dalian Medical University, Dalian, P.R. China
| | - Xia Wu
- 1Department of Rheumatology, Affiliated Hospital of Yangzhou University, Yangzhou, P.R. China.,2Clinical Medical College, Dalian Medical University, Dalian, P.R. China
| | - Chun-Wang Zhang
- 1Department of Rheumatology, Affiliated Hospital of Yangzhou University, Yangzhou, P.R. China.,2Clinical Medical College, Dalian Medical University, Dalian, P.R. China
| | - Yu Zhang
- 1Department of Rheumatology, Affiliated Hospital of Yangzhou University, Yangzhou, P.R. China
| | - Dan Liu
- 1Department of Rheumatology, Affiliated Hospital of Yangzhou University, Yangzhou, P.R. China
| | - Bo Gao
- 3Department of Rheumatology, Affiliated Changzhou Second Hospital of Nanjing Medical University, Changzhou, P.R. China
| |
Collapse
|
35
|
Mohammadi FS, Aslani S, Mostafaei S, Jamshidi A, Riahi P, Mahmoudi M. Are genetic variations in IL-21-IL-23R-IL-17A cytokine axis involved in a pathogenic pathway of rheumatoid arthritis? Bayesian hierarchical meta-analysis. J Cell Physiol 2019; 234:17159-17171. [PMID: 30924147 DOI: 10.1002/jcp.28495] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 02/16/2019] [Accepted: 02/20/2019] [Indexed: 12/24/2022]
Abstract
Inflammatory cytokines have been established to be involved in the pathogenesis of rheumatoid arthritis (RA). The genetic polymorphisms in the interleukin (IL) 23 receptor (IL23R), IL21, and IL17 have been associated with RA risk. However, there is no conclusive understanding of the genes encoding the immunoinflammatory IL-21-IL-23R-IL-17A pathway in RA aetiopathogenesis. This meta-analysis was conducted to attain this goal. A comprehensive literature search was conducted in Scopus and PubMed to look for the relevant case-control studies up until 2018. A Bayesian hierarchical meta-analysis was carried out to assess the association between the polymorphisms and the risk of RA. The association was estimated by calculating the logarithm of odds ratio (Log OR) and 95% credible interval (95% CI). In this meta-analysis, 37 case-control studies comprising 23,506 RA patients and 25,984 healthy individuals were found for analyzing the IL23R, IL21, and IL1A gene polymorphism and risk of RA. In the IL23R gene rs1343151 SNP, the minor A allele significantly increased the risk of RA (Log OR = 0.085, 95% CI = 0.008, 0.156). Moreover, the minor AA genotype was significantly associated with increased RA risk (Log OR = 0.176, 95% CI = 0.028, 0.321). In addition, the C allele of the IL23R gene rs2201841 SNP significantly decreased the disease risk (Log OR = -0.544, 95% CI = -1.0, -0.065). Since Bayesian meta-analysis is a powerful strategy to pool the data, it can be mentioned that genetic polymorphisms of IL23R, but not IL21 and IL17A, are involved in susceptibility to RA.
Collapse
Affiliation(s)
| | - Saeed Aslani
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Shayan Mostafaei
- Department of Community Medicine, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ahmadreza Jamshidi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Parisa Riahi
- Department of Biostatistics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mahdi Mahmoudi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
36
|
Karami J, Aslani S, Jamshidi A, Garshasbi M, Mahmoudi M. Genetic implications in the pathogenesis of rheumatoid arthritis; an updated review. Gene 2019; 702:8-16. [PMID: 30904715 DOI: 10.1016/j.gene.2019.03.033] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 03/09/2019] [Accepted: 03/17/2019] [Indexed: 01/11/2023]
Abstract
Three important factors, including genetics, environment factors and autoimmunity play a role in the pathogenesis of rheumatoid arthritis (RA). The heritability of RA has been accounted to be 50-60%, while the HLA involvement in heritability of the disease has been accounted to be 10-40%. It has been documented that shared epitope (SE) alleles, such as HLA-DRB1*01 and DRB1*04, some HLA alleles like HLA-DRB1*13 and DRB1*15 are connected to RA susceptibility. An advanced classification of SE categorizes SE alleles into four main groups namely, S1, S2, S3D, and S3P. The S2 and S3P groups have been linked to susceptibility of seropositive RA. Various genome-wide association studies (GWAS) have discovered many susceptibility loci implicated in pathogenesis of RA. Some of the important single nucleotide polymorphisms (SNPs) linked to RA are TRAF1, STAT4, CTLA4, IRF5, CCR6, PTPN22, IL23R, and PADI4. HLA and non-HLA genes may discriminate anti-cyclic citrullinated peptide (anti-CCP) antibody-positive and anti-CCP-negative RA groups. Furthermore, risk of the disease has also been linked to environmental agents, mainly cigarette smoking. Pharmacogenomics has also confirmed SNPs or genetic patterns that might be linked to drugs responses. Different aspects of genetic involvement in the pathogenesis, etiology, and RA complications are reviewed in this article.
Collapse
Affiliation(s)
- Jafar Karami
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Saeed Aslani
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmadreza Jamshidi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoud Garshasbi
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mahdi Mahmoudi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
37
|
Li J, Huang L, Li Z, Zhong X, Tai S, Jiang X, Cui Y. Functions and roles of long noncoding RNA in cholangiocarcinoma. J Cell Physiol 2019; 234:17113-17126. [PMID: 30888066 DOI: 10.1002/jcp.28470] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 02/20/2019] [Indexed: 02/06/2023]
Abstract
Cholangiocarcinoma (CCA) is one of the most fatal cancers in humans, with a gradually increasing incidence worldwide. The efficient diagnostic and therapeutic measures for CCA to reduce mortality are urgently needed. Long noncoding RNAs (lncRNAs) may provide the potential diagnostic and therapeutic option for suppressing the CCA development. LncRNAs are a type of non-protein-coding RNAs, which are larger than 200 nucleotides in length. Increasing evidence reveals that lncRNAs exhibit critical roles in the carcinogenesis and development of CCA. Deregulation of lncRNAs impacts the proliferation, migration, invasion, and antiapoptosis of CCA cells by multiple sophisticated mechanisms. Consequently, lncRNAs likely represent promising biomarkers or intervention targets of CCA. In this review, we summarize current studies regarding the biological functions and regulatory mechanisms of diverse lncRNAs in CCA.
Collapse
Affiliation(s)
- Jinglin Li
- Department of HPB Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Lining Huang
- Department of HPB Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Zhenglong Li
- Department of HPB Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xiangyu Zhong
- Department of HPB Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Sheng Tai
- Department of HPB Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xingming Jiang
- Department of HPB Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yunfu Cui
- Department of HPB Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
38
|
Ebrahimiyan H, Rezaei N, Vojdanian M, Aslani S, Jamshidi A, Mahmoudi M. microRNA involvement in the regulation of survivin in peripheral blood mononuclear cells from rheumatoid arthritis patients. Int J Rheum Dis 2019; 22:1107-1114. [PMID: 30834699 DOI: 10.1111/1756-185x.13520] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 01/13/2019] [Accepted: 02/01/2019] [Indexed: 12/13/2022]
Abstract
AIM Impaired regulation of immune tolerance results in autoimmune diseases, such as rheumatoid arthritis (RA). Survivin is an anti-apoptotic protein and can induce cellular mitosis. In the current study, we assessed the transcript level of total survivin (survivin-TS) and its three major variants and evaluated the expression level of important micro RNAs (miRNAs) involved in survivin expression regulation in RA patients. METHOD Peripheral blood mononuclear cells (PBMCs) were isolated from 50 healthy controls and 50 RA-active patients. RNA extraction was performed and then single-strand complementary DNA was synthesized. Quantitative real-time polymerase chain reaction was used to assess the expression level of survivin-TS and its variants with effective miRNAs in PBMCs. RESULTS Overexpression of survivin-2B (fold change = 1.57, P = 0.005), survivn-ΔEx3 (fold change = 1.93, P = 0.009) and downregulation of survivin-WT (fold change = 0.64, P = 0.0002) were found in PBMCs of patients, while messenger RNA (mRNA) expression of survivin-TS had no significant difference between RA patients and controls. Expression levels of miR-335-5p, miR-485-5p, miR-16-5p, miR-150-5p, miR-34a-5p, and miR-203a-3p were significantly increased in PBMCs from patients compared with healthy controls. In a correlation study, dysregulation of these miRNAs were not correlated with mRNA expression level of survivin. CONCLUSION While survivin-TS was not differently expressed in RA patients, its variants had altered expression. Although miRNAs were aberrantly expressed in PBMCs from RA subjects, they did not regulate survivin-TS. miRNAs might be involved in RA pathogenesis, but not through controlling survivin.
Collapse
Affiliation(s)
| | - Nima Rezaei
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Sheffield, UK
| | - Mahdi Vojdanian
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeed Aslani
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Rheumatology Expert Group (REG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Ahmadreza Jamshidi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Mahmoudi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Rheumatology Expert Group (REG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
39
|
Aghaei H, Mostafaei S, Aslani S, Jamshidi A, Mahmoudi M. Association study between KIR polymorphisms and rheumatoid arthritis disease: an updated meta-analysis. BMC MEDICAL GENETICS 2019; 20:24. [PMID: 30696403 PMCID: PMC6352331 DOI: 10.1186/s12881-019-0754-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 01/15/2019] [Indexed: 12/14/2022]
Abstract
Background Currently published studies investigating association between the killer cell immunoglobulin-like receptor (KIR) gene polymorphisms and rheumatoid arthritis (RA) reported inconsistent and contradictory results. Hence, we aim to carry out this comprehensive meta-analysis of all eligible studies meeting the inclusion criteria to achieve precise and comprehensive relationships between genetic variations in KIR gene cluster and risk of RA. Methods Databases of Medline/PubMed and Scopus were searched to investigate case-control studies prior to May 2018. The associations between KIR gene polymorphisms and RA susceptibility were analyzed by computing the odds ratio (OR) and 95% confidence interval (95% CI) for each study. Results A total of 11 comparative case-control studies involving 1847 RA patients and 2409 healthy individuals were included in this meta-analysis. Four significant associations of 2DL3 (OR = 0.591, 95% CI = 0.351–0.994; P = 0.047), 2DL5 (OR = 0.716, 95% CI = 0.601–0.853; P < 0.001), 2DS5 (OR = 0.623, 95% CI = 0.393–0.988; P = 0.045), and 3DL3 (OR = 0.324, 95% CI = 0.129–0.814; P = 0.016) genes with decreased RA risk were discovered in this meta-analysis. Although, other KIR receptors including 2DL1, 2DL2, 2DL4, 3DL1, 3DL2, 3DS1, 2DS1-2DS4, and two pseudo gens of 2DP1 and 3DP1 displayed no significant association with predisposition to RA. Conclusions These findings provide reliable evidence that 2DL3, 2DL5, 3DL3, and 2DS5 might have a potential protective role for RA.
Collapse
Affiliation(s)
- Hamideh Aghaei
- Rheumatology Research Center, Tehran University of Medical Sciences, PO Box: 1411713137, Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shayan Mostafaei
- Department of Community Medicine, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Saeed Aslani
- Rheumatology Research Center, Tehran University of Medical Sciences, PO Box: 1411713137, Tehran, Iran
| | - Ahmadreza Jamshidi
- Rheumatology Research Center, Tehran University of Medical Sciences, PO Box: 1411713137, Tehran, Iran
| | - Mahdi Mahmoudi
- Rheumatology Research Center, Tehran University of Medical Sciences, PO Box: 1411713137, Tehran, Iran.
| |
Collapse
|
40
|
Long noncoding RNA CYTOR sponges miR-195 to modulate proliferation, migration, invasion and radiosensitivity in nonsmall cell lung cancer cells. Biosci Rep 2018; 38:BSR20181599. [PMID: 30487160 PMCID: PMC6435535 DOI: 10.1042/bsr20181599] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 11/13/2018] [Accepted: 11/14/2018] [Indexed: 01/16/2023] Open
Abstract
Nonsmall cell lung cancer (NSCLC) is one of the most frequent malignancies worldwide. Long noncoding RNAs (LncRNAs) play critical roles in cancer initiation and progression. Previous studies have demonstrated that overexpression of cytoskeleton regulator RNA (CYTOR) predicates poor prognosis and promotes tumor progression. However, the functional roles and underlying mechanism of CYTOR in NSCLC remain unknown. In the present study, we found that CYTOR promoted cell proliferation, migration and invasion ability, and induced radioresistance in NSCLC cells. Mechanistically, CYTOR could directly interact with miR-195 and increase its targets. Thus, CYTOR played an oncogenic role in NSCLC progression through sponging miR-195. Together, our study elucidates the role of CYTOR as a microRNA sponge in NSCLC, and CYTOR may be used as a promising therapeutic target for NSCLC treatment.
Collapse
|
41
|
Strategies toward rheumatoid arthritis therapy; the old and the new. J Cell Physiol 2018; 234:10018-10031. [DOI: 10.1002/jcp.27860] [Citation(s) in RCA: 150] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 11/14/2018] [Indexed: 12/12/2022]
|