1
|
Wu M, Cai J, Qiao G, Li X, Zhou J, Xu F, Ye Y, Wang Y, Xu X, Li J, Tian X, Shao Y, Dong C, Chen Z, Hao C, Yang Y, Zhang J. RNF149 modulates the type I IFN innate antiviral immune responses through degrading IRF3. PLoS Pathog 2025; 21:e1013051. [PMID: 40245000 PMCID: PMC12005527 DOI: 10.1371/journal.ppat.1013051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 03/18/2025] [Indexed: 04/19/2025] Open
Abstract
E3 ubiquitin ligases are key molecules in regulating the innate immune responses against virus. They catalyze the activation or degradation of various signaling proteins involved in the innate immune responses. Herein, we found the regulatory role of RNF149 in the host's innate immune responses against viral infection. Virus infection induced the expression of RNF149. Overexpression of RNF149 was associated with reduced production of IFN-β and enhanced viral replication. Mechanically, RNF149 interacted with IRF3 and downregulated its protein level. As an E3 ubiquitin ligase, RNF149 promoted the K27-linked ubiquitination of IRF3 at K409 and K33-linked ubiquitination at K366 and K409, which promoted IRF3 degradation through the proteasome pathway. Our results revealed the regulatory mechanism of RNF149 during viral infection and provided new insights into host cells responding to viral infection. Downregulating the expression of RNF149 may help enhance the antiviral ability of host cells and inhibit viral replication, thus providing a new strategy for the treatment of viral infection.
Collapse
Affiliation(s)
- Mengyun Wu
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Jiamin Cai
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Guodong Qiao
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Xiaoping Li
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
- Department of Clinical Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ji Zhou
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Fei Xu
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Yunfei Ye
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Yufeng Wang
- Department of Respiratory Medicine, Children’s Hospital of Soochow University, Suzhou, China
| | - Xuena Xu
- Department of Respiratory Medicine, Children’s Hospital of Soochow University, Suzhou, China
| | - Jiaoyang Li
- Department of Respiratory Medicine, Children’s Hospital of Soochow University, Suzhou, China
| | - Xiaoyu Tian
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Yu Shao
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Chunsheng Dong
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Zhengrong Chen
- Department of Respiratory Medicine, Children’s Hospital of Soochow University, Suzhou, China
| | - Chuangli Hao
- Department of Respiratory Medicine, Children’s Hospital of Soochow University, Suzhou, China
| | - Yi Yang
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Jinping Zhang
- The Fourth Affiliated Hospital, Institutes of Biology and Medical Science, SuZhou Medical College, Soochow University, Suzhou, China
| |
Collapse
|
2
|
Jiang H, Yang Z, Zeng Y, Xiong L, You S, Zhou H. Patchouli alcohol from Pogostemon cablin Benth inhibits H1N1 infection by repressing inflammasome and proptosis by targeting ubiquitin specific peptidase 18. Int J Biol Macromol 2025; 301:140670. [PMID: 39909257 DOI: 10.1016/j.ijbiomac.2025.140670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 02/01/2025] [Accepted: 02/02/2025] [Indexed: 02/07/2025]
Abstract
Influenza virus infection can cause lung inflammation and viral pneumonia in patients. Patchouli alcohol (PA), a tricyclic sesquiterpene derived from Pogostemonis Herba, has been shown to alleviate inflammation in various diseases. However, the molecular mechanism by which patchouli exerts its anti-inflammatory effects, particularly its role in mitigating influenza virus induced inflammation and pneumonia during H1N1 viral infection, remains largely unclear. Herein, we found that PA considerably reduced body weight loss, lung pathological index and attenuated lung histological damage in H1N1-infected mice. Mechanistically, PA reduced the production and secretion of inflammatory cytokines via inhibition of the NF-κB-signaling pathway and blocking inflammasome-mediated proptosis. Additionally, proteomic analysis identified several potential targets of PA, with ubiquitin-specific peptidase 18 (USP18) emerging as a key candidate. Further investigation revealed that PA binds to USP18, enhancing its stability and increasing its transcriptional and translational expression. Overall, our results emphasize the anti-inflammatory effects of PA during influenza virus infection. PA may alleviate lung inflammation and damage by targeting USP18, offering a potential therapeutic strategy for treating influenza-induced lung complications.
Collapse
Affiliation(s)
- Hui Jiang
- Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Zixuan Yang
- College of Medical Technology, Chengdu University of Traditional, Chengdu 611137, China
| | - Youqin Zeng
- Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Liang Xiong
- College of Medical Technology, Chengdu University of Traditional, Chengdu 611137, China
| | - Shengjie You
- Chongqing Taiji Industry (Group) Co., Ltd., 401123 Chongqing, China
| | - Hao Zhou
- Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; College of Medical Technology, Chengdu University of Traditional, Chengdu 611137, China.
| |
Collapse
|
3
|
Tanikawa T, Fujii K, Sugie Y, Tsunekuni R. Ubiquitin-specific protease 18 in mallard (Anas platyrhynchos) interferes with type I interferon-mediated inhibition of high pathogenicity avian influenza virus replication. Virology 2022; 577:32-42. [PMID: 36270121 DOI: 10.1016/j.virol.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/29/2022] [Accepted: 10/01/2022] [Indexed: 11/19/2022]
Abstract
Ubiquitin-specific protease 18 (USP18) is a well-established innate immune factor in vertebrates. Although Anatidae birds rarely exhibit distinctive clinical signs during high pathogenicity avian influenza virus (HPAIV) infections, some virus strains cause deadly diseases. Here, we investigated the association between USP18 expression and pathogenicity during HPAIV infections in the Anatidae mallard Anas platyrhynchos. First, mallard USP18 gene (duUSP18) was cloned, and its transcriptional variants, with three different open reading frames, were characterized. Experimental infections with two different pathogenic strains, Miyazaki and Takeo, demonstrated an early induction of duUSP18 mRNA upon HPAIV infection in a bird's whole body in vivo and in primary duck cells in vitro, which was positively associated with pathogenicity in mallards. In addition, duUSP18 knockdown under interferon-β stimulation attenuated viral replication, regardless of pathogenicity. These results indicate a role for duUSP18 in favoring viral replication and virus resistance to type I interferon immunity in mallards.
Collapse
Affiliation(s)
- Taichiro Tanikawa
- National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Kannondai, Tsukuba, Ibaraki, 305-0856, Japan.
| | - Kotaro Fujii
- Toyama Prefectural Tobu Livestock Hygiene Service Center, 46 Mizuhashi-kanao-shin, Toyama, 939-3536, Japan.
| | - Yuji Sugie
- Shiga Prefectural Livestock Hygiene Service Center, 226-1, Nishihongou, Oumihachiman, Shiga, 523-0813, Japan.
| | - Ryota Tsunekuni
- National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Kannondai, Tsukuba, Ibaraki, 305-0856, Japan.
| |
Collapse
|
4
|
Ye H, Duan X, Yao M, Kang L, Li Y, Li S, Li B, Chen L. USP18 Mediates Interferon Resistance of Dengue Virus Infection. Front Microbiol 2021; 12:682380. [PMID: 34017322 PMCID: PMC8130619 DOI: 10.3389/fmicb.2021.682380] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 04/07/2021] [Indexed: 01/15/2023] Open
Abstract
Previous studies demonstrated that dengue virus (DENV) infection developed resistance to type-I interferons (IFNα/β). The underlying mechanism remains unclear. USP18 is a negative regulator of IFNα/β signaling, and its expression level is significantly increased following DENV infection in cell lines and patients’ blood. Our previous study revealed that increased USP18 expression contributed to the IFN-α resistance of Hepatitis C Virus (HCV). However, the role of USP18 in DENV replication and resistance to IFN-α is elusive. In this current study, we aimed to explore the role of USP18 in DENV-2 replication and resistance to IFN-α. The level of USP18 was up-regulated by plasmid transfection and down-regulated by siRNA transfection in Hela cells. USP18, IFN-α, IFN-β expression, and DENV-2 replication were monitored by qRT-PCR and Western blot. The activation of the Jak/STAT signaling pathway was assessed at three levels: p-STAT1/p-STAT2 (Western blot), interferon-stimulated response element (ISRE) activity (Dual-luciferase assay), and interferon-stimulated genes (ISGs) expression (qRT-PCR). Our data showed that DENV-2 infection increased USP18 expression in Hela cells. USP18 overexpression promoted DENV-2 replication, while USP18 silence inhibited DENV-2 replication. Silence of USP18 potentiated the anti-DENV-2 activity of IFN-α through activation of the IFN-α-mediated Jak/STAT signaling pathway as shown by increased expression of p-STAT1/p-STAT2, enhanced ISRE activity, and elevated expression of some ISGs. Our data indicated that USP18 induced by DENV-2 infection is a critical host factor utilized by DENV-2 to confer antagonism on IFN-α.
Collapse
Affiliation(s)
- Haiyan Ye
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, China
| | - Xiaoqiong Duan
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, China
| | - Min Yao
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, China
| | - Lan Kang
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, China
| | - Yujia Li
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, China
| | - Shilin Li
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, China
| | - Bin Li
- Joint - Laboratory of Transfusion-Transmitted Infectious Diseases Between Institute of Blood Transfusion and Nanning Blood Center, Nanning Blood Center, Nanning, China
| | - Limin Chen
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, China.,Joint - Laboratory of Transfusion-Transmitted Infectious Diseases Between Institute of Blood Transfusion and Nanning Blood Center, Nanning Blood Center, Nanning, China.,Toronto General Research Institute, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
5
|
Pan A, Li Y, Guan J, Zhang P, Zhang C, Han Y, Zhang T, Cheng Y, Sun L, Lu S, Weng J, Ren Q, Fan S, Wang W, Wang J. USP18-deficiency in cervical carcinoma is crucial for the malignant behavior of tumor cells in an ERK signal-dependent manner. Oncol Lett 2021; 21:421. [PMID: 33850562 PMCID: PMC8025074 DOI: 10.3892/ol.2021.12682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 02/25/2021] [Indexed: 12/25/2022] Open
Abstract
Ubiquitin-specific peptidase (USP)18 belongs to the USP family, and is involved in cleaving and removing ubiquitin or ubiquitin-like molecules from their target molecules. Recently, increasing evidence has suggested that USP18 is constitutively expressed in different types of human tumors, and ectopic expression or downregulation of USP18 expression may contribute to tumorigenesis. However, the role of USP18 in uterine cervical cancer (UCC) remains unclear. Thus, the present study aimed to investigate USP18 expression in a human tissue microarray constructed using UCC and non-cancer cervical tissues, and to determine the potential role and molecular mechanism by which USP18 is implicated in the tumor biology of human UCC HeLa cells. Microarray analysis demonstrated that USP18 protein expression was downregulated in tumor tissues compared with in normal tissues. In addition, in vitro analysis revealed that USP18-knockdown markedly promoted the proliferation, colony formation, migration and aggressiveness of HeLa cells. Mechanistic analysis demonstrated that USP18-knockdown increased the levels of Bcl-2, STAT3 and phosphorylated-ERK in HeLa cells. Notably, USP18 silencing-induced malignant phenotypes were interrupted following exogenous administration of the ERK1/2 inhibitor PD98059. Overall, the results of the present study suggested that USP18 may be a potent inhibitor involved in UCC tumor-associated biological behaviors, which are associated with the ERK signaling pathway.
Collapse
Affiliation(s)
- Aonan Pan
- Department of Clinical Medicine, The Affiliated Second Hospital, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Yue Li
- Departments of Immunology and Etiology, Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang 154007, P.R. China
| | - Jian Guan
- Department of Maxillofacial Surgery, Stomatological College, Jiamusi University, Jiamusi, Heilongjiang 154002, P.R. China
| | - Pengxia Zhang
- Department of Biochemistry and Cell and Molecular Biology, Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang 154007, P.R. China
| | - Chunbin Zhang
- Department of Biochemistry and Cell and Molecular Biology, Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang 154007, P.R. China
| | - Yupeng Han
- Department of Gastroenterology, The First Affiliated Hospital, Jiamusi University, Jiamusi, Heilongjiang 154002, P.R. China
| | - Tao Zhang
- Departments of Immunology and Etiology, Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang 154007, P.R. China
| | - Yao Cheng
- Department of Clinical Laboratory, The First Affiliated Hospital, Jiamusi University, Jiamusi, Heilongjiang 154002, P.R. China
| | - Luo Sun
- Department of Clinical Laboratory, The First Affiliated Hospital, Jiamusi University, Jiamusi, Heilongjiang 154002, P.R. China
| | - Shizhen Lu
- Department of Biochemistry and Cell and Molecular Biology, Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang 154007, P.R. China
| | - Jinru Weng
- Department of Maxillofacial Surgery, Stomatological College, Jiamusi University, Jiamusi, Heilongjiang 154002, P.R. China
| | - Qiaosheng Ren
- Department of Maxillofacial Surgery, Stomatological College, Jiamusi University, Jiamusi, Heilongjiang 154002, P.R. China
| | - Shengjie Fan
- Department of Rehabilitation Medicine, Rehabilitation Medical College, Jiamusi University, Jiamusi, Heilongjiang 154007, P.R. China
| | - Weiqun Wang
- Department of Physiology, Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang 154007, P.R. China
| | - Jingtao Wang
- Department of Human Anatomy, Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang 154007, P.R. China
| |
Collapse
|
6
|
β-hydroxybutyrate Impedes the Progression of Alzheimer's Disease and Atherosclerosis in ApoE-Deficient Mice. Nutrients 2020; 12:nu12020471. [PMID: 32069870 PMCID: PMC7071244 DOI: 10.3390/nu12020471] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 02/11/2020] [Accepted: 02/12/2020] [Indexed: 01/05/2023] Open
Abstract
β-hydroxybutyrate (β-OHB) has been shown to exert an anti-inflammatory activity. Apolipoprotein-E (ApoE) is strongly associated with atherosclerosis and Alzheimer's disease (AD). This study aimed to explore the therapeutic effect of β-OHB in the brain and the aorta of high-fat diet (HFD)-fed ApoE-deficient mice. We found in Apo-E deficient mice that β-OHB attenuated lipid deposition in the choroid plexus (ChP) and decreased amyloid plaque in the substantia nigra pars compacta. We also found decreased CD68-positive macroglia infiltration of the ChP in β-OHB-treated ApoE-deficient mice. β-OHB treatment ameliorated IgG extravasation into the hippocampal region of the brain. In vitro study using ChP mice cell line revealed that β-OHB attenuated oxidized low-density lipoprotein-induced ApoE-specific differentially expressed inflammatory ChP genes. Treatment with β-OHB reduced aortic plaque formation without affecting blood lipid profiles and decreased serum production of resistin, a well-established risk factor for both AD and atherosclerosis. Thus, the current study suggests and describes the therapeutic potential of β-OHB for the treatment of AD and atherosclerosis.
Collapse
|