1
|
Das A, Suar M, Reddy K. Hormones in malaria infection: influence on disease severity, host physiology, and therapeutic opportunities. Biosci Rep 2024; 44:BSR20240482. [PMID: 39492784 PMCID: PMC11581842 DOI: 10.1042/bsr20240482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 11/01/2024] [Accepted: 11/01/2024] [Indexed: 11/05/2024] Open
Abstract
Human malaria, caused by Plasmodium parasites, is a fatal disease that disrupts the host's physiological balance and affects the neuroendocrine system. This review explores how malaria influences and is influenced by hormones. Malaria activates the Hypothalamus-Pituitary-Adrenal axis, leading to increased cortisol, aldosterone, and epinephrine. Cortisol, while reducing inflammation, aids parasite survival, whereas epinephrine helps manage hypoglycemia. The Hypothalamus-Pituitary-Gonad and Hypothalamus-Pituitary-Thyroid axes are also impacted, resulting in lower sex and thyroid hormone levels. Malaria disrupts the renin-angiotensin-aldosterone system (RAAS), causing higher angiotensin-II and aldosterone levels, contributing to edema, hyponatremia and hypertension. Malaria-induced anemia is exacerbated by increased hepcidin, which impairs iron absorption, reducing both iron availability for the parasite and red blood cell formation, despite elevated erythropoietin. Hypoglycemia is common due to decreased glucose production and hyperinsulinemia, although some cases show hyperglycemia due to stress hormones and inflammation. Hypocalcemia, and hypophosphatemia are associated with low Vitamin D3 and parathyroid hormone but high calcitonin. Hormones such as DHEA, melatonin, PTH, Vitamin D3, hepcidin, progesterone, and erythropoietin protects against malaria. Furthermore, synthetic analogs, receptor agonists and antagonists or mimics of hormones like DHEA, melatonin, serotonin, PTH, vitamin D3, estrogen, progesterone, angiotensin, and somatostatin are being explored as potential antimalarial treatments or adjunct therapies. Additionally, hormones like leptin and PCT are being studied as probable markers of malaria infection.
Collapse
Affiliation(s)
- Aleena Das
- School of Biotechnology, Kalinga Institute of Industrial Technology (Deemed University), Bhubaneswar, 751024, India
| | - Mrutyunjay Suar
- School of Biotechnology, Kalinga Institute of Industrial Technology (Deemed University), Bhubaneswar, 751024, India
- Technology Business Incubator, Kalinga Institute of Industrial Technology (Deemed University), Bhubaneswar, 751024, India
| | - K Sony Reddy
- School of Biotechnology, Kalinga Institute of Industrial Technology (Deemed University), Bhubaneswar, 751024, India
| |
Collapse
|
2
|
Zhang X, Miao J, Song Y, Zhang J, Miao M. Review on effects and mechanisms of plant-derived natural products against breast cancer bone metastasis. Heliyon 2024; 10:e37894. [PMID: 39318810 PMCID: PMC11420494 DOI: 10.1016/j.heliyon.2024.e37894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/16/2024] [Accepted: 09/12/2024] [Indexed: 09/26/2024] Open
Abstract
Bone metastasis is the prevalent form of metastasis in breast cancer, resulting in severe pain, pathological fractures, nerve compression, hypercalcemia, and other complications that significantly impair patients' quality of life. The infiltration and colonization of breast cancer (BC) cells in bone tissue disrupt the delicate balance between osteoblasts and osteoclasts within the bone microenvironment, initiating a vicious cycle of bone metastasis. Once bone metastasis occurs, conventional medical therapy with bone-modifying agents is commonly used to alleviate bone-related complications and improve patients' quality of life. However, the utilization of bone-modifying agents may cause severe drug-related adverse effects. Plant-derived natural products such as terpenoids, alkaloids, coumarins, and phenols have anti-tumor, anti-inflammatory, and anti-angiogenic pharmacological properties with minimal side effects. Certain natural products that exhibit both anti-breast cancer and anti-bone metastasis effects are potential therapeutic agents for breast cancer bone metastasis (BCBM). This article reviewed the effects of plant-derived natural products against BCBM and their mechanisms to provide a reference for the research and development of drugs related to BCBM.
Collapse
Affiliation(s)
- Xiaolei Zhang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Jinxin Miao
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Yagang Song
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Jiawen Zhang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Mingsan Miao
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| |
Collapse
|
3
|
Shibahara D, Akanuma N, Kobayashi IS, Heo E, Ando M, Fujii M, Jiang F, Prin PN, Pan G, Wong K, Costa DB, Bararia D, Tenen DG, Watanabe H, Kobayashi SS. TIP60 is required for tumorigenesis in non-small cell lung cancer. Cancer Sci 2023; 114:2400-2413. [PMID: 36916958 PMCID: PMC10236639 DOI: 10.1111/cas.15785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 03/15/2023] Open
Abstract
Histone modifications play crucial roles in transcriptional activation, and aberrant epigenetic changes are associated with oncogenesis. Lysine (K) acetyltransferases 5 (TIP60, also known as KAT5) is reportedly implicated in cancer development and maintenance, although its function in lung cancer remains controversial. Here we demonstrate that TIP60 knockdown in non-small cell lung cancer cell lines decreased tumor cell growth, migration, and invasion. Furthermore, analysis of a mouse lung cancer model with lung-specific conditional Tip60 knockout revealed suppressed tumor formation relative to controls, but no apparent effects on normal lung homeostasis. RNA-seq and ChIP-seq analyses of inducible TIP60 knockdown H1975 cells relative to controls revealed transglutaminase enzyme (TGM5) as downstream of TIP60. Investigation of a connectivity map database identified several candidate compounds that decrease TIP60 mRNA, one that suppressed tumor growth in cell culture and in vivo. In addition, TH1834, a TIP60 acetyltransferase inhibitor, showed comparable antitumor effects in cell culture and in vivo. Taken together, suppression of TIP60 activity shows tumor-specific efficacy against lung cancer, with no overt effect on normal tissues. Our work suggests that targeting TIP60 could be a promising approach to treating lung cancer.
Collapse
Affiliation(s)
- Daisuke Shibahara
- Department of Medicine, Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
| | - Naoki Akanuma
- Department of Medicine, Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
- Department of PathologyUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Ikei S. Kobayashi
- Department of Medicine, Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
| | - Eunyoung Heo
- Department of Medicine, Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
- Department of Internal MedicineSMG‐SNU Boramae Medical CenterSeoulSouth Korea
| | - Mariko Ando
- Department of Medicine, Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
| | - Masanori Fujii
- Department of Medicine, Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
| | - Feng Jiang
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Department of Genetics and Genomic SciencesTisch Cancer Institute, Icahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - P. Nicholas Prin
- Department of Medicine, Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
| | - Gilbert Pan
- Department of Medicine, Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
| | - Kwok‐Kin Wong
- Perlmutter Cancer CenterNYU Langone Medical CenterNew YorkNew YorkUSA
| | - Daniel B. Costa
- Department of Medicine, Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
| | - Deepak Bararia
- Harvard Stem Cell Institute, Harvard Medical SchoolBostonMassachusettsUSA
| | - Daniel G. Tenen
- Harvard Stem Cell Institute, Harvard Medical SchoolBostonMassachusettsUSA
- Cancer Science Institute of SingaporeNational University of SingaporeSingaporeSingapore
| | - Hideo Watanabe
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Department of Genetics and Genomic SciencesTisch Cancer Institute, Icahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Susumu S. Kobayashi
- Department of Medicine, Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
- Harvard Stem Cell Institute, Harvard Medical SchoolBostonMassachusettsUSA
- Division of Translational Genomics, Exploratory Oncology Research and Clinical Trial CenterNational Cancer CenterKashiwaJapan
| |
Collapse
|
4
|
Exploring the Potential Mechanism of Artemisinin and Its Derivatives in the Treatment of Osteoporosis Based on Network Pharmacology and Molecular Docking. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:3976062. [PMID: 36590764 PMCID: PMC9800086 DOI: 10.1155/2022/3976062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/17/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022]
Abstract
Objective This study is aimed at predicting and contrasting the mechanisms of artemisinin (ARS), dihydroartemisinin (DHA), artesunate (ART), artemether (ARM), and arteether (ARE) in the treatment of osteoporosis (OP) using network pharmacology and molecular docking. Methods The targets of ARS, DHA, ART, ARM, and ARE were obtained from the SwissTargetPrediction. The targets related to OP were obtained from the TTD, DrugBank, Genecards, and DisGeNet databases. Then, the anti-OP targets of ARS, DHA, ART, ARM, and ARE were obtained and compared using the Venn diagram. Afterward, the protein-protein interaction (PPI) networks were built using the STRING database, and Cytoscape was used to select hub targets. Moreover, molecular docking validated the binding association between five molecules and hub targets. Finally, GO enrichment and KEGG pathway enrichment were conducted using the DAVID database. The common pathways of five molecules were analysed. Results A total of 28, 37, 36, 27, and 33 anti-OP targets of ARS, DHA, ART, ARM, and ARE were acquired. EGFR, EGFR, CASP3, MAPK8, and CASP3 act as the top 1 anti-OP targets of ARS, DHA, ART, ARM, and ARE, respectively. MAPK14 is the common target of five molecules. All five molecules can bind well with these hubs and common targets. Meanwhile, functional annotation showed that MAPK, Serotonergic synapse, AMPK, prolactin, and prolactin signaling pathways are the top 1 anti-OP pathway of ARS, DHA, ART, ARM, and ARE, respectively. IL-17 signaling pathway and prolactin signaling pathway are common anti-OP pathways of five molecules. Besides, GO enrichment showed five biological processes and three molecular functions are common anti-OP mechanisms of five molecules. Conclusion ARS, DHA, ART, ARM and ARE can treat OP through multi-targets and multi pathways, respectively. All five molecules can treat OP by targeting MAPK14 and acting on the IL-17 and prolactin signaling pathways.
Collapse
|
5
|
Cheikh IA, El-Baba C, Youssef A, Saliba NA, Ghantous A, Darwiche N. Lessons learned from the discovery and development of the sesquiterpene lactones in cancer therapy and prevention. Expert Opin Drug Discov 2022; 17:1377-1405. [PMID: 36373806 DOI: 10.1080/17460441.2023.2147920] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/06/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022]
Abstract
INTRODUCTION Sesquiterpene lactones (SLs) are one of the most diverse bioactive secondary metabolites found in plants and exhibit a broad range of therapeutic properties . SLs have been showing promising potential in cancer clinical trials, and the molecular mechanisms underlying their anticancer potential are being uncovered. Recent evidence also points to a potential utility of SLs in cancer prevention. AREAS COVERED This work evaluates SLs with promising anticancer potential based on cell, animal, and clinical models: Artemisinin, micheliolide, thapsigargin dehydrocostuslactone, arglabin, parthenolide, costunolide, deoxyelephantopin, alantolactone, isoalantolactone, atractylenolide 1, and xanthatin as well as their synthetic derivatives. We highlight actionable molecular targets and biological mechanisms underlying the anticancer therapeutic properties of SLs. This is complemented by a unique assessment of SL mechanisms of action that can be exploited in cancer prevention. We also provide insights into structure-activity and pharmacokinetic properties of SLs and their potential use in combination therapies. EXPERT OPINION We extract seven major lessons learned and present evidence-based solutions that can circumvent some scientific limitations or logistic impediments in SL anticancer research. SLs continue to be at the forefront of cancer drug discovery and are worth a joint interdisciplinary effort in order to leverage their potential in cancer therapy and prevention.
Collapse
Affiliation(s)
- Israa A Cheikh
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
| | - Chirine El-Baba
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
| | - Ali Youssef
- Department of Chemistry, American University of Beirut, Beirut, Lebanon
| | - Najat A Saliba
- Department of Chemistry, American University of Beirut, Beirut, Lebanon
| | - Akram Ghantous
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, Lyon, France
| | - Nadine Darwiche
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
6
|
The Roles of Tumor-Associated Macrophages in Prostate Cancer. JOURNAL OF ONCOLOGY 2022; 2022:8580043. [PMID: 36117852 PMCID: PMC9473905 DOI: 10.1155/2022/8580043] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 08/20/2022] [Indexed: 11/18/2022]
Abstract
The morbidity of prostate cancer (PCa) is rising year by year, and it has become the primary cause of tumor-related mortality in males. It is widely accepted that macrophages account for 50% of the tumor mass in solid tumors and have emerged as a crucial participator in multiple stages of PCa, with the huge potential for further treatment. Oftentimes, tumor-associated macrophages (TAMs) in the tumor microenvironment (TME) behave like M2-like phenotypes that modulate malignant hallmarks of tumor lesions, ranging from tumorigenesis to metastasis. Several clinical studies indicated that mean TAM density was higher in human PCa cores versus benign prostatic hyperplasia (BPH), and increased biopsy TAM density potentially predicts worse clinicopathological characteristics as well. Therefore, TAM represents a promising target for therapeutic intervention either alone or in combination with other strategies to halt the “vicious cycle,” thus improving oncological outcomes. Herein, we mainly focus on the fundamental aspects of TAMs in prostate adenocarcinoma, while reviewing the mechanisms responsible for macrophage recruitment and polarization, which has clinical translational implications for the exploitation of potentially effective therapies against TAMs.
Collapse
|
7
|
Sankhuan D, Niramolyanun G, Kangwanrangsan N, Nakano M, Supaibulwatana K. Variation in terpenoids in leaves of Artemisia annua grown under different LED spectra resulting in diverse antimalarial activities against Plasmodium falciparum. BMC PLANT BIOLOGY 2022; 22:128. [PMID: 35313811 PMCID: PMC8935710 DOI: 10.1186/s12870-022-03528-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 03/14/2022] [Indexed: 05/31/2023]
Abstract
BACKGROUND Productivities of bioactive compounds in high-value herbs and medicinal plants are often compromised by uncontrollable environmental parameters. Recent advances in the development of plant factories with artificial lighting (PFAL) have led to improved qualitative and/or quantitative production of bioactive compounds in several medicinal plants. However, information concerning the effect of light qualities on plant pharmaceutical properties is limited. The influence of three different light-emitting diode (LED) spectra on leaf fresh weight (FW), bioactive compound production and bioactivity of Artemisia annua L. against the malarial parasite Plasmodium falciparum NF54 was investigated. Correlation between the A. annua metabolites and antimalarial activity of light-treated plant extracts were also determined. RESULTS Artemisia annua plants grown under white and blue spectra that intersected at 445 nm exhibited higher leaf FW and increased amounts of artemisinin and artemisinic acid, with enhanced production of several terpenoids displaying a variety of pharmacological activities. Conversely, the red spectrum led to diminished production of bioactive compounds and a distinct metabolite profile compared with other wavelengths. Crude extracts obtained from white and blue spectral treatments exhibited 2 times higher anti-Plasmodium falciparum activity than those subjected to the red treatment. Highest bioactivity was 4 times greater than those obtained from greenhouse-grown plants. Hierarchical cluster analysis (HCA) revealed a strong correlation between levels of several terpenoids and antimalarial activity, suggesting that these compounds might be involved in increasing antimalarial activity. CONCLUSIONS Results demonstrated a strategy to overcome the limitation of A. annua cultivation in Bangkok, Thailand. A specific LED spectrum that operated in a PFAL system promoted the accumulation of some useful phytochemicals in A. annua, leading to increased antimalarial activity. Therefore, the application of PFAL with appropriate light spectra showed promise as an alternative method for industrial production of A. annua or other useful medicinal plants with minimal environmental influence.
Collapse
Affiliation(s)
- Darunmas Sankhuan
- Department of Biotechnology, Faculty of Science, Mahidol University, 272 Rama VI Road, Ratchathewi District, Bangkok, 10400, Thailand
| | - Gamolthip Niramolyanun
- Department of Pathobiology, Faculty of Science, Mahidol University, 272 Rama VI Road, Ratchathewi District, Bangkok, 10400, Thailand
| | - Niwat Kangwanrangsan
- Department of Pathobiology, Faculty of Science, Mahidol University, 272 Rama VI Road, Ratchathewi District, Bangkok, 10400, Thailand
| | - Masaru Nakano
- Faculty of Agriculture, Niigata University, 2-8050, Ikarashi, Niigata, 9502181, Japan
| | - Kanyaratt Supaibulwatana
- Department of Biotechnology, Faculty of Science, Mahidol University, 272 Rama VI Road, Ratchathewi District, Bangkok, 10400, Thailand.
| |
Collapse
|
8
|
Farmanpour-Kalalagh K, Beyraghdar Kashkooli A, Babaei A, Rezaei A, van der Krol AR. Artemisinins in Combating Viral Infections Like SARS-CoV-2, Inflammation and Cancers and Options to Meet Increased Global Demand. FRONTIERS IN PLANT SCIENCE 2022; 13:780257. [PMID: 35197994 PMCID: PMC8859114 DOI: 10.3389/fpls.2022.780257] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 01/03/2022] [Indexed: 05/05/2023]
Abstract
Artemisinin is a natural bioactive sesquiterpene lactone containing an unusual endoperoxide 1, 2, 4-trioxane ring. It is derived from the herbal medicinal plant Artemisia annua and is best known for its use in treatment of malaria. However, recent studies also indicate the potential for artemisinin and related compounds, commonly referred to as artemisinins, in combating viral infections, inflammation and certain cancers. Moreover, the different potential modes of action of artemisinins make these compounds also potentially relevant to the challenges the world faces in the COVID-19 pandemic. Initial studies indicate positive effects of artemisinin or Artemisia spp. extracts to combat SARS-CoV-2 infection or COVID-19 related symptoms and WHO-supervised clinical studies on the potential of artemisinins to combat COVID-19 are now in progress. However, implementing multiple potential new uses of artemisinins will require effective solutions to boost production, either by enhancing synthesis in A. annua itself or through biotechnological engineering in alternative biosynthesis platforms. Because of this renewed interest in artemisinin and its derivatives, here we review its modes of action, its potential application in different diseases including COVID-19, its biosynthesis and future options to boost production.
Collapse
Affiliation(s)
- Karim Farmanpour-Kalalagh
- Department of Horticultural Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Arman Beyraghdar Kashkooli
- Department of Horticultural Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
- *Correspondence: Arman Beyraghdar Kashkooli,
| | - Alireza Babaei
- Department of Horticultural Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Ali Rezaei
- Department of Horticultural Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | | |
Collapse
|
9
|
CTI-2 Inhibits Metastasis and Epithelial-Mesenchymal Transition of Breast Cancer Cells by Modulating MAPK Signaling Pathway. Int J Mol Sci 2021; 22:ijms222212229. [PMID: 34830111 PMCID: PMC8622910 DOI: 10.3390/ijms222212229] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/26/2021] [Accepted: 10/29/2021] [Indexed: 02/07/2023] Open
Abstract
Although some breast cancer patients die due to tumor metastasis rather than from the primary tumor, the molecular mechanism of metastasis remains unclear. Therefore, it is necessary to inhibit breast cancer metastasis during cancer treatment. In this case, after designing and synthesizing CTI-2, we found that CTI-2 treatment significantly reduced breast cancer cell metastasis in vivo and in vitro. Notably, with the treatment of CTI-2 in breast cancer cells, the expression level of E-cadherin increased, while the expression level of N-cadherin and vimentin decreased. In addition, after CTI-2 treatment, those outflow levels for p-ERK, p-p38, and p-JNK diminished, while no significant changes in the expression levels of ERK, JNK, or p38 were observed. Our conclusion suggested that CTI-2 inhibits the epithelial-mesenchymal transition (EMT) of breast carcinoma cells by inhibiting the activation of the mitogen-activated protein kinase (MAPK) signaling pathway, thereby inhibiting the metastasis of breast tumor cells. Therefore, we believe that CTI-2 is another candidate for breast tumor medication.
Collapse
|
10
|
Cheng X, Wei J, Ge Q, Xing D, Zhou X, Qian Y, Jiang G. The optimized drug delivery systems of treating cancer bone metastatic osteolysis with nanomaterials. Drug Deliv 2021; 28:37-53. [PMID: 33336610 PMCID: PMC7751395 DOI: 10.1080/10717544.2020.1856225] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Some cancers such as human breast cancer, prostate cancer, and lung cancer easily metastasize to bone, leading to osteolysis and bone destruction accompanied by a complicated microenvironment. Systemic administration of bisphosphonates (BP) or denosumab is the routine therapy for osteolysis but with non-negligible side effects such as mandibular osteonecrosis and hypocalcemia. Thus, it is imperative to exploit optimized drug delivery systems, and some novel nanotechnology and nanomaterials have opened new horizons for scientists. Targeted and local drug delivery systems can optimize biodistribution depending on nanoparticles (NPs) or microspheres (MS) and implantable biomaterials with the controllable property. Drug delivery kinetics can be optimized by smart and sustained/local drug delivery systems for responsive delivery and sustained delivery. These delicately fabricated drug delivery systems with special matrix, structure, morphology, and modification can minimize unexpected toxicity caused by systemic delivery and achieve desired effects through integrating multiple drugs or multiple functions. This review summarized recent studies about optimized drug delivery systems for the treatment of cancer metastatic osteolysis, aimed at giving some inspiration in designing efficient multifunctional drug delivery systems.
Collapse
Affiliation(s)
- Xi Cheng
- Department of Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Jinrong Wei
- Department of Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Qi Ge
- Department of Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Danlei Xing
- Department of Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Xuefeng Zhou
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, People's Republic of China
| | - Yunzhu Qian
- Center of Stomatology, The Second Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Guoqin Jiang
- Department of Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| |
Collapse
|
11
|
Khongsti K, Pasupuleti BG, Das B, Bez G. 1,2,3-Triazole tethered 1,2,4‑trioxane trimer induces apoptosis in metastatic cancer cells and inhibits their proliferation, migration and invasion. Bioorg Chem 2021; 112:104952. [PMID: 33971565 DOI: 10.1016/j.bioorg.2021.104952] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 04/20/2021] [Accepted: 04/24/2021] [Indexed: 12/24/2022]
Abstract
Artemisinin (ART) has been in use against different cancer cells and its derivatives and conjugates are more cytotoxic to iron-rich cancer cells. It is desirable to develop easily achievable synthetic 1,2,4-trioxanes having the same pharmacophore as that of ART. To explore more efficient compounds, a 1,2,3-triazole tethered 1,2,4‑trioxane trimer (4T) was synthesized and the anti-cancer effects of ART and 4T on MDA-MB-435 and MDA-MB-231 cells were investigated concerning regulation of osteopontin (OPN) expression, which is associated with cancer progression and malignancy. 1H NMR and 13C NMR, oxidative stress analysis, flow cytometry, western blot, Real-Time PCR, transfections, luciferase assay, cell viability, proliferation, migration and chemotactic invasion assays were used in this study. It was observed that the 4T induced apoptosis by inhibiting Bcl-2 (~0.6-fold) and cleavage of caspase-3 (intrinsic pathway) in these metastatic cancer cells, and also reduced colony formation, migration and invasion of these cancer cells. The treatment of 4T decreased the reduced glutathione level and increased the activities of glucose-6-phosphate dehydrogenase and glutathione reductase in the 4T treated cancer cells as compared to their respective controls. Further, the expression of OPN was diminished (~0.5-fold) by the 4T in these cell lines. It was also observed that the key mitogen-activated protein kinase pathway proteins, mitogen-activated protein kinase kinase1/2 (~1.8-fold) and extracellular signal-regulated kinase1/2 (~16-fold), were also activated following the treatment of the 4T. However, the phosphorylated c-Jun level, a component of activator protein-1, was significantly reduced in these cancer cells upon 4T treatment. Taken together, we hypothesize that 4T may be useful for controlling cancer progression and malignancy.
Collapse
Affiliation(s)
- Kitboklang Khongsti
- Department of Zoology, North-Eastern Hill University, Shillong 793022, India
| | | | - Bidyadhar Das
- Department of Zoology, North-Eastern Hill University, Shillong 793022, India.
| | - Ghanashyam Bez
- Department of Chemistry, North-Eastern Hill University, Shillong 793022, India.
| |
Collapse
|
12
|
Li Y, Zhou X, Liu J, Yuan X, He Q. Therapeutic Potentials and Mechanisms of Artemisinin and its Derivatives for Tumorigenesis and Metastasis. Anticancer Agents Med Chem 2021; 20:520-535. [PMID: 31958040 DOI: 10.2174/1871520620666200120100252] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/10/2019] [Accepted: 10/24/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND Tumor recurrence and metastasis are still leading causes of cancer mortality worldwide. The influence of traditional treatment strategies against metastatic tumors may still be limited. To search for novel and powerful agents against tumors has become a major research focus. In this study, Artemisinin (ARM), a natural compound isolated from herbs, Artemisia annua L., proceeding from drug repurposing methods, attracts more attention due to its good efficacy and tolerance in antimalarial practices, as well as newly confirmed anticancer activity. METHODS We have searched and reviewed the literatures about ARM and its derivatives (ARMs) for cancer using keywords "artemisinin" until May 2019. RESULTS In preclinical studies, ARMs can induce cell cycle arrest and cell death by apoptosis etc., to inhibit the progression of tumors, and suppress EMT and angiogenesis to inhibit the metastasis of tumors. Notably, the complex relationships of ARMs and autophagy are worth exploring. Inspired by the limitations of its antimalarial applications and the mechanical studies of artemisinin and cancer, people are also committed to develop safer and more potent ARM-based modified compounds (ARMs) or combination therapy, such as artemisinin dimers/ trimers, artemisinin-derived hybrids. Some clinical trials support artemisinins as promising candidates for cancer therapy. CONCLUSION ARMs show potent therapeutic potentials against carcinoma including metastatic tumors. Novel compounds derived from artemisinin and relevant combination therapies are supposed to be promising treatment strategies for tumors, as the important future research directions.
Collapse
Affiliation(s)
- Yue Li
- Department of Clinical Laboratories, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Xiaoyan Zhou
- Department of Clinical Laboratories, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Jiali Liu
- Department of Clinical Laboratories, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Xiaohong Yuan
- Department of Clinical Laboratories, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Qian He
- Department of Clinical Laboratories, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| |
Collapse
|
13
|
Cao Y, Zhang Y, Zhang Y, Wang L, Lv L, Ma X, Zeng S, Wang H. Biodegradable functional chitosan membrane for enhancement of artemisinin purification. Carbohydr Polym 2020; 246:116590. [PMID: 32747249 DOI: 10.1016/j.carbpol.2020.116590] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 04/12/2020] [Accepted: 06/04/2020] [Indexed: 01/11/2023]
Abstract
Artemisinin is mainly derived from Artemisia annua L. Since the leaves composition is complex, artemisinin purification faces great challenges. In this work, functional chitosan membranes were fabricated by a one-step hydrolysis method through grafting long-chain alkyl group on the surface of chitosan to increase its hydrophobicity. The as-prepared membranes were used to adsorb wax oil (i.e., the impurity components) in Artemisia annua L. and to avoid co-precipitation of wax oil along with artemisinin using the crystallization technique for purification. Octyl-trimethoxysilane modified chitosan membrane (FCM-C8) showed excellent capability to intensify this purification process. The product purity could reach more than 98 % using one crystallization step under the optimal conditions, and in this case, adsorption capacity of FCM-C8 for wax oil was 478.9 mg/g. In addition, the adsorption kinetics and mechanism of wax oil on FCM-C8 were studied. The membrane can simultaneously adsorb multiple components in wax oil through interactions like electrostatic forces, hydrogen bondings.
Collapse
Affiliation(s)
- Yingying Cao
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing, 100190, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Yongqiang Zhang
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing, 100190, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Ying Zhang
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing, 100190, PR China
| | - Ling Wang
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing, 100190, PR China
| | - Lunchao Lv
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Xifei Ma
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing, 100190, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Shaojuan Zeng
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing, 100190, PR China
| | - Hui Wang
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing, 100190, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| |
Collapse
|
14
|
Tao S, Zhao Z, Zhang X, Guan X, Wei J, Yuan B, He S, Zhao D, Zhang J, Liu Q, Ding Y. The role of macrophages during breast cancer development and response to chemotherapy. Clin Transl Oncol 2020; 22:1938-1951. [PMID: 32279178 DOI: 10.1007/s12094-020-02348-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 03/21/2020] [Indexed: 12/14/2022]
Abstract
Macrophages play an important role in the immune system as a key host defense against pathogens. Non-polarized macrophages can differentiate into pro-inflammatory classical pathway-activated macrophages or anti-inflammatory alternative pathway-activated macrophages, both of which play central roles in breast cancer growth and progression in a process called polarization of macrophages. Classical pathway-activated and alternative pathway-activated macrophages can transform into each other and their transformational properties and orientation are determined by cytokines in the tumor microenvironment. Tumor-associated macrophages display many functions, such as tissue reforming, participating in inflammation and tumor growth in breast cancer progression. Some cytokines, such as interleukins and transcriptional activators, reside in the tumor microenvironment and influence tumor-associated macrophages. Chemotherapy is a common treatment for breast cancer and macrophages play an important role in mammary tumor cell migration, cancer invasion, and angiogenesis. This review summarizes the activities of tumor-associated macrophages in the mammary tumor, chemotherapeutic processes and some potential strategies for breast cancer therapy.
Collapse
Affiliation(s)
- S Tao
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, 130062, China
| | - Z Zhao
- The Second Clinical School of Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine-Zhuhai Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510120, Guangdong, China.,The 2nd Clinical School of Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510120, China.,The 85th Hospital of CPLA, Shanghai, 200040, China.,Guangdong Provincial Hospital of Chinese Medicine-Zhuhai Hospital, Zhuhai, 519015, China
| | - X Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - X Guan
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, 130062, China
| | - J Wei
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, 130062, China
| | - B Yuan
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, 130062, China
| | - S He
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, 130062, China
| | - D Zhao
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, 130062, China
| | - J Zhang
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, 130062, China.
| | - Q Liu
- The Second Clinical School of Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine-Zhuhai Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510120, Guangdong, China. .,Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China. .,The 2nd Clinical School of Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510120, China. .,Guangdong Provincial Hospital of Chinese Medicine-Zhuhai Hospital, Zhuhai, 519015, China.
| | - Y Ding
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, 130062, China.
| |
Collapse
|
15
|
Luo H, Vong CT, Chen H, Gao Y, Lyu P, Qiu L, Zhao M, Liu Q, Cheng Z, Zou J, Yao P, Gao C, Wei J, Ung COL, Wang S, Zhong Z, Wang Y. Naturally occurring anti-cancer compounds: shining from Chinese herbal medicine. Chin Med 2019; 14:48. [PMID: 31719837 PMCID: PMC6836491 DOI: 10.1186/s13020-019-0270-9] [Citation(s) in RCA: 318] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 10/23/2019] [Indexed: 12/24/2022] Open
Abstract
Numerous natural products originated from Chinese herbal medicine exhibit anti-cancer activities, including anti-proliferative, pro-apoptotic, anti-metastatic, anti-angiogenic effects, as well as regulate autophagy, reverse multidrug resistance, balance immunity, and enhance chemotherapy in vitro and in vivo. To provide new insights into the critical path ahead, we systemically reviewed the most recent advances (reported since 2011) on the key compounds with anti-cancer effects derived from Chinese herbal medicine (curcumin, epigallocatechin gallate, berberine, artemisinin, ginsenoside Rg3, ursolic acid, silibinin, emodin, triptolide, cucurbitacin B, tanshinone I, oridonin, shikonin, gambogic acid, artesunate, wogonin, β-elemene, and cepharanthine) in scientific databases (PubMed, Web of Science, Medline, Scopus, and Clinical Trials). With a broader perspective, we focused on their recently discovered and/or investigated pharmacological effects, novel mechanism of action, relevant clinical studies, and their innovative applications in combined therapy and immunomodulation. In addition, the present review has extended to describe other promising compounds including dihydroartemisinin, ginsenoside Rh2, compound K, cucurbitacins D, E, I, tanshinone IIA and cryptotanshinone in view of their potentials in cancer therapy. Up to now, the evidence about the immunomodulatory effects and clinical trials of natural anti-cancer compounds from Chinese herbal medicine is very limited, and further research is needed to monitor their immunoregulatory effects and explore their mechanisms of action as modulators of immune checkpoints.
Collapse
Affiliation(s)
- Hua Luo
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Chi Teng Vong
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Hanbin Chen
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Yan Gao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Peng Lyu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Ling Qiu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Mingming Zhao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Qiao Liu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Zehua Cheng
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Jian Zou
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Peifen Yao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Caifang Gao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Jinchao Wei
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Carolina Oi Lam Ung
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Shengpeng Wang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Zhangfeng Zhong
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Yitao Wang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| |
Collapse
|
16
|
Luo Y, Sun X, Huang L, Yan J, Yu BY, Tian J. Artemisinin-Based Smart Nanomedicines with Self-Supply of Ferrous Ion to Enhance Oxidative Stress for Specific and Efficient Cancer Treatment. ACS APPLIED MATERIALS & INTERFACES 2019; 11:29490-29497. [PMID: 31355624 DOI: 10.1021/acsami.9b07390] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Though abundant researches report that artemisinin could inhibit cancer cell growth via generating toxic reactive oxygen species (ROS), the therapeutic efficiency of artemisinin for cancer treatment is still limited owing to the insufficient intracellular ferrous ion and defensive effect of intracellular glutathione. Herein, we report a cathepsin B-controllable smart nanomedicine based on the structural and pharmacodynamic characteristics of artemisinin, which employed transferrin-peptide-modified mesoporous silica to codeliver artemisinin and buthionine-sulfoximine, a glutathione scavenger, into cancer cells. As a gatekeeper, the transferrin-peptide can not only target the cancer cells but also supply the extra ferrous iron to catalyze artemisinin to produce excessive ROS to kill cancer cells efficiently. Once the designed nanomedicine attack into lysosome of tumor cells, the cargos of nanomedicine can be released in the presence of cathepsin B to immediately activate self-amplification of oxidative stress by simultaneously elevating the levels of ROS and weakening the levels of glutathione. We anticipate that this rational design strategy provides innovative opportunities for artemisinin in the clinical application of cancer.
Collapse
Affiliation(s)
- Yingping Luo
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy , China Pharmaceutical University , Nanjing 211198 , P. R. China
| | - Xian Sun
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy , China Pharmaceutical University , Nanjing 211198 , P. R. China
| | - Liwei Huang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy , China Pharmaceutical University , Nanjing 211198 , P. R. China
| | - Jin Yan
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy , China Pharmaceutical University , Nanjing 211198 , P. R. China
| | - Bo-Yang Yu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy , China Pharmaceutical University , Nanjing 211198 , P. R. China
| | - Jiangwei Tian
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy , China Pharmaceutical University , Nanjing 211198 , P. R. China
| |
Collapse
|