1
|
Bernardo VS, Torres FF, Zucão ACA, Chaves NA, Santana ILR, da Silva DGH. Disrupted homeostasis in sickle cells: Expanding the comprehension of metabolism adaptation and related therapeutic strategies. Tissue Cell 2025; 93:102717. [PMID: 39805212 DOI: 10.1016/j.tice.2024.102717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 12/02/2024] [Accepted: 12/29/2024] [Indexed: 01/16/2025]
Abstract
Sickle cell disease (SCD) is a hereditary hemolytic anemia associated with the alteration of the membrane composition of the sickle erythrocytes, the loss of glycolysis, dysregulation of the pyruvate phosphatase pathway, and changes in nucleotide metabolism of the sickle red blood cell (RBC). This review provides a comprehensive overview of the impact of the presence of Hb S, which leads to the disruption of the normal RBC metabolism. The intricate interplay between the redox and energetic balance in erythrocytic cells, where the glycolysis, pentose phosphate pathway, and methemoglobin reductase pathways are all altered in sickle RBC, is a key focus. Moreover, this review summarizes the current knowledge about the disease-modifying agents and their action mechanisms based on the sickle RBC alterations previously mentioned (i.e., their association with beneficial effects on the sickle cells' membrane, to their RBCs' energy metabolism, and to their oxidative status). Therefore, providing a comprehensive understanding of how sickle cells cope with the disruption of metabolic homeostasis and the most promising therapeutic agents able to ameliorate the various consequences of abnormal sickle RBC alterations.
Collapse
Affiliation(s)
| | | | | | - Nayara Alves Chaves
- Department of Biology, Universidade Estadual Paulista (UNESP), São Paulo, Brazil
| | | | - Danilo Grünig Humberto da Silva
- Department of Biology, Universidade Estadual Paulista (UNESP), São Paulo, Brazil; Campus de Três Lagoas, Universidade Federal de Mato Grosso do Sul (CPTL/UFMS), Mato Grosso do Sul, Brazil.
| |
Collapse
|
2
|
Rezazadeh H, Ghanati F, Bonfill M, Nasibi F, Mohammadi Ballakuti N. Enhancement of paclitaxel production by Neopestalotiopsis vitis via optimization of growth conditions. PLoS One 2024; 19:e0309325. [PMID: 39405307 PMCID: PMC11478870 DOI: 10.1371/journal.pone.0309325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 08/02/2024] [Indexed: 10/19/2024] Open
Abstract
Accessibility of paclitaxel and other taxoids from natural resources is restricted. Endophytic fungi are novel, rapidly growing resources for producing these compounds. Neopestalotiopsis vitis (N. vitis) has been recently isolated from Corylus avellana, and its ability to produce a variety of taxoids has been detected and confirmed by analytical methods. Simultaneous growth and high production of taxoids by application of different sorts and concentrations of carbon and nitrogen were targeted in the present research. These criteria were assessed in different acidities (pH 4.0-7.0), carbon sources (sucrose, fructose, glucose, mannitol, sorbitol, and malt extract), and nitrogen forms (urea, ammonium nitrate, potassium nitrate, ammonium phosphate, and ammonium sulfate) by testing one parameter at a time approach. The first analysis introduced pH 7.0 as the best acidity of the medium for N. vitis, where the highest paclitaxel yield was generated. Further analysis introduced 3% Malt extract as the best carbon-providing medium. In the next step, the effects of nitrogen forms on the growth rate, paclitaxel yield, alkaloids, and amino acid contents were evaluated. Based on the results of this experiment, 5 mM ammonium sulfate was selected as the best nitrogen source to obtain the maximum biomass and paclitaxel yield. Overall, the results introduce a medium containing 3% (w/v) malt extract and 5 mM ammonium sulfate at pH 7.0 as the best medium in which N. vitis produces the highest paclitaxel yield coincident with rapid and sustainable growth. The findings pave the way for industrial manufacturing of taxoids.
Collapse
Affiliation(s)
- Hamzeh Rezazadeh
- Department of Plant Biology, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | - Faezeh Ghanati
- Department of Plant Biology, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | - Mercedes Bonfill
- Department of Biology, Healthcare and the Environment, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Fatemeh Nasibi
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | | |
Collapse
|
3
|
Cannon M, Toma R, Ganeshan S, de Jesus Alvarez Varela E, Vuyisich M, Banavar G. Salivary Transcriptome and Mitochondrial Analysis of Autism Spectrum Disorder Children Compared to Healthy Controls. NEUROSCI 2024; 5:276-290. [PMID: 39483288 PMCID: PMC11467968 DOI: 10.3390/neurosci5030022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/22/2024] [Accepted: 07/28/2024] [Indexed: 11/03/2024] Open
Abstract
Autism rates have been reported to be increasing rapidly in industrialized societies. The pathology most often combines neurological symptoms associated with language and social impairments with gastrointestinal symptoms. This study aimed to measure differences in oral metatranscriptome and mitochondrial health between ASD children and neurotypical USA and Colombia ("Blue Zone") children. In addition, this study aimed to determine whether using prebiotics and probiotics would change the oral microbiome and mitochondrial health of ASD children. Buccal swabs and saliva samples were obtained from 30 autistic individuals (USA) at three intervals: prior to intervention, post-prebiotic, and post-probiotic. In addition, a subject component who were neurotypical, which included individuals from the USA (30) and Colombia (30), had buccal swabbing and salivary sampling performed for metatranscriptomic and mitochondrial comparison. Significant differences were observed in the temporal data, demonstrating shifts that interventions with probiotics and polyols may have precipitated. Particular bacterial strains were significantly more prevalent in the autism group, including a strain that reduced neurotransmitter levels via enzymatic degradation. This supports the hypothesis that the microbiome may influence the occurrence and degree of autism. Verbal skills increased in six of the 30 ASD subjects following xylitol and three more after probiotic supplementation, according to both parental reports and the subjects' healthcare providers.
Collapse
Affiliation(s)
- Mark Cannon
- Ann and Robert Lurie Children’s Hospital, Northwestern University, Chicago, IL 60611, USA
| | - Ryan Toma
- Viome Research Institute, Los Alamos, NM 98011, USA (M.V.); (G.B.)
| | - Sri Ganeshan
- MITOSWAB Religen Labs, Plymouth Meeting, PA 19462, USA
| | | | | | - Guruduth Banavar
- Viome Research Institute, Los Alamos, NM 98011, USA (M.V.); (G.B.)
| |
Collapse
|
4
|
Bulbule S, Gottschalk CG, Drosen ME, Peterson D, Arnold LA, Roy A. Dysregulation of tetrahydrobiopterin metabolism in myalgic encephalomyelitis/chronic fatigue syndrome by pentose phosphate pathway. J Cent Nerv Syst Dis 2024; 16:11795735241271675. [PMID: 39161795 PMCID: PMC11331476 DOI: 10.1177/11795735241271675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/24/2024] [Indexed: 08/21/2024] Open
Abstract
Background Tetrahydrobiopterin (BH4) and its oxidized derivative dihydrobiopterin (BH2) were found to be strongly elevated in ME/CFS patients with orthostatic intolerance (ME + OI). Objective However, the molecular mechanism of biopterin biogenesis is poorly understood in ME + OI subjects. Here, we report that the activation of the non-oxidative pentose phosphate pathway (PPP) plays a critical role in the biogenesis of biopterins (BH4 and BH2) in ME + OI subjects. Research Design and Results Microarray-based gene screening followed by real-time PCR-based validation, ELISA assay, and finally enzyme kinetic studies of glucose-6-phosphate dehydrogenase (G6PDH), transaldolase (TALDO1), and transketolase (TK) enzymes revealed that the augmentation of anaerobic PPP is critical in the regulations of biopterins. To further investigate, we devised a novel cell culture strategy to induce non-oxidative PPP by treating human microglial cells with ribose-5-phosphate (R5P) under a hypoxic condition of 85%N2/10%CO2/5%O2 followed by the analysis of biopterin metabolism via ELISA, immunoblot, and dual immunocytochemical analyses. Moreover, the siRNA knocking down of the taldo1 gene strongly inhibited the bioavailability of phosphoribosyl pyrophosphate (PRPP), reduced the expressions of purine biosynthetic enzymes, attenuated GTP cyclohydrolase 1 (GTPCH1), and suppressed subsequent production of BH4 and its metabolic conversion to BH2 in R5P-treated and hypoxia-induced C20 human microglia cells. These results confirmed that the activation of non-oxidative PPP is indeed required for the upregulation of both BH4 and BH2 via the purine biosynthetic pathway. To test the functional role of ME + OI plasma-derived biopterins, exogenously added plasma samples of ME + OI plasma with high BH4 upregulated inducible nitric oxide synthase (iNOS) and nitric oxide (NO) in human microglial cells indicating that the non-oxidative PPP-induced-biopterins could stimulate inflammatory response in ME + OI patients. Conclusion Taken together, our current research highlights that the induction of non-oxidative PPP regulates the biogenesis of biopterins contributing to ME/CFS pathogenesis.
Collapse
Affiliation(s)
- Sarojini Bulbule
- Research and Development Laboratory, Simmaron Research Institute, Milwaukee, WI, USA
| | - Carl Gunnar Gottschalk
- Research and Development Laboratory, Simmaron Research Institute, Milwaukee, WI, USA
- Simmaron Research Institute, Incline Village, NV, USA
| | - Molly E. Drosen
- Research and Development Laboratory, Simmaron Research Institute, Milwaukee, WI, USA
| | | | - Leggy A. Arnold
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Avik Roy
- Research and Development Laboratory, Simmaron Research Institute, Milwaukee, WI, USA
- Simmaron Research Institute, Incline Village, NV, USA
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| |
Collapse
|
5
|
Lyu J, Ni M, Weiss MJ, Xu J. Metabolic regulation of erythrocyte development and disorders. Exp Hematol 2024; 131:104153. [PMID: 38237718 PMCID: PMC10939827 DOI: 10.1016/j.exphem.2024.104153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 02/01/2024]
Abstract
The formation of new red blood cells (RBC) (erythropoiesis) has served as a paradigm for understanding cellular differentiation and developmental control of gene expression. The metabolic regulation of this complex, coordinated process remains poorly understood. Each step of erythropoiesis, including lineage specification of hematopoietic stem cells, proliferation, differentiation, and terminal maturation into highly specialized oxygen-carrying cells, has unique metabolic requirements. Developing erythrocytes in mammals are also characterized by unique metabolic events such as loss of mitochondria with switch to glycolysis, ejection of nucleus and organelles, high-level heme and hemoglobin synthesis, and antioxidant requirement to protect hemoglobin molecules. Genetic defects in metabolic enzymes, including pyruvate kinase and glucose-6-phosphate dehydrogenase, cause common erythrocyte disorders, whereas other inherited disorders such as sickle cell disease and β-thalassemia display metabolic abnormalities associated with disease pathophysiology. Here we describe recent discoveries on the metabolic control of RBC formation and function, highlight emerging concepts in understanding the erythroid metabolome, and discuss potential therapeutic benefits of targeting metabolism for RBC disorders.
Collapse
Affiliation(s)
- Junhua Lyu
- Center of Excellence for Leukemia Studies, Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN
| | - Min Ni
- Division of Molecular Oncology, Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN
| | - Mitchell J Weiss
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN
| | - Jian Xu
- Center of Excellence for Leukemia Studies, Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN.
| |
Collapse
|
6
|
Alam S, Gu Y, Reichert P, Bähler J, Oliferenko S. Optimization of energy production and central carbon metabolism in a non-respiring eukaryote. Curr Biol 2023; 33:2175-2186.e5. [PMID: 37164017 PMCID: PMC7615655 DOI: 10.1016/j.cub.2023.04.046] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/30/2023] [Accepted: 04/18/2023] [Indexed: 05/12/2023]
Abstract
Most eukaryotes respire oxygen, using it to generate biomass and energy. However, a few organisms have lost the capacity to respire. Understanding how they manage biomass and energy production may illuminate the critical points at which respiration feeds into central carbon metabolism and explain possible routes to its optimization. Here, we use two related fission yeasts, Schizosaccharomyces pombe and Schizosaccharomyces japonicus, as a comparative model system. We show that although S. japonicus does not respire oxygen, unlike S. pombe, it is capable of efficient NADH oxidation, amino acid synthesis, and ATP generation. We probe possible optimization strategies through the use of stable isotope tracing metabolomics, mass isotopologue distribution analysis, genetics, and physiological experiments. S. japonicus appears to have optimized cytosolic NADH oxidation via glycerol-3-phosphate synthesis. It runs a fully bifurcated TCA pathway, sustaining amino acid production. Finally, we propose that it has optimized glycolysis to maintain high ATP/ADP ratio, in part by using the pentose phosphate pathway as a glycolytic shunt, reducing allosteric inhibition of glycolysis and supporting biomass generation. By comparing two related organisms with vastly different metabolic strategies, our work highlights the versatility and plasticity of central carbon metabolism in eukaryotes, illuminating critical adaptations supporting the preferential use of glycolysis over oxidative phosphorylation.
Collapse
Affiliation(s)
- Sara Alam
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, London SE1 1UL, UK
| | - Ying Gu
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, London SE1 1UL, UK
| | - Polina Reichert
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, London SE1 1UL, UK; School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Jürg Bähler
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| | - Snezhana Oliferenko
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, London SE1 1UL, UK.
| |
Collapse
|
7
|
Molversmyr H, Øyås O, Rotnes F, Vik JO. Extracting functionally accurate context-specific models of Atlantic salmon metabolism. NPJ Syst Biol Appl 2023; 9:19. [PMID: 37244928 DOI: 10.1038/s41540-023-00280-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 05/05/2023] [Indexed: 05/29/2023] Open
Abstract
Constraint-based models (CBMs) are used to study metabolic network structure and function in organisms ranging from microbes to multicellular eukaryotes. Published CBMs are usually generic rather than context-specific, meaning that they do not capture differences in reaction activities, which, in turn, determine metabolic capabilities, between cell types, tissues, environments, or other conditions. Only a subset of a CBM's metabolic reactions and capabilities are likely to be active in any given context, and several methods have therefore been developed to extract context-specific models from generic CBMs through integration of omics data. We tested the ability of six model extraction methods (MEMs) to create functionally accurate context-specific models of Atlantic salmon using a generic CBM (SALARECON) and liver transcriptomics data from contexts differing in water salinity (life stage) and dietary lipids. Three MEMs (iMAT, INIT, and GIMME) outperformed the others in terms of functional accuracy, which we defined as the extracted models' ability to perform context-specific metabolic tasks inferred directly from the data, and one MEM (GIMME) was faster than the others. Context-specific versions of SALARECON consistently outperformed the generic version, showing that context-specific modeling better captures salmon metabolism. Thus, we demonstrate that results from human studies also hold for a non-mammalian animal and major livestock species.
Collapse
Affiliation(s)
- Håvard Molversmyr
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
- Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Ove Øyås
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
- Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Filip Rotnes
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
- Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Jon Olav Vik
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway.
- Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway.
| |
Collapse
|
8
|
Cristobal JR, Richard JP. Kinetics and mechanism for enzyme-catalyzed reactions of substrate pieces. Methods Enzymol 2023; 685:95-126. [PMID: 37245916 PMCID: PMC10251411 DOI: 10.1016/bs.mie.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The most important difference between enzyme and small molecule catalysts is that only enzymes utilize the large intrinsic binding energies of nonreacting portions of the substrate in stabilization of the transition state for the catalyzed reaction. A general protocol is described to determine the intrinsic phosphodianion binding energy for enzymatic catalysis of reactions of phosphate monoester substrates, and the intrinsic phosphite dianion binding energy in activation of enzymes for catalysis of phosphodianion truncated substrates, from the kinetic parameters for enzyme-catalyzed reactions of whole and truncated substrates. The enzyme-catalyzed reactions so-far documented that utilize dianion binding interactions for enzyme activation; and, their phosphodianion truncated substrates are summarized. A model for the utilization of dianion binding interactions for enzyme activation is described. The methods for the determination of the kinetic parameters for enzyme-catalyzed reactions of whole and truncated substrates, from initial velocity data, are described and illustrated by graphical plots of kinetic data. The results of studies on the effect of site-directed amino acid substitutions at orotidine 5'-monophosphate decarboxylase, triosephosphate isomerase, and glycerol-3-phosphate dehydrogenase provide strong support for the proposal that these enzymes utilize binding interactions with the substrate phosphodianion to hold the protein catalysts in reactive closed conformations.
Collapse
Affiliation(s)
- Judith R Cristobal
- Department of Chemistry, University at Buffalo, SUNY, Buffalo, NY, United States
| | - John P Richard
- Department of Chemistry, University at Buffalo, SUNY, Buffalo, NY, United States.
| |
Collapse
|
9
|
Untargeted Metabolome Analysis Reveals Reductions in Maternal Hepatic Glucose and Amino Acid Content That Correlate with Fetal Organ Weights in a Mouse Model of Fetal Alcohol Spectrum Disorders. Nutrients 2022; 14:nu14051096. [PMID: 35268071 PMCID: PMC8912878 DOI: 10.3390/nu14051096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 12/13/2022] Open
Abstract
Prenatal alcohol exposure (PAE) causes fetal growth restrictions. A major driver of fetal growth deficits is maternal metabolic disruption; this is under-investigated following PAE. Untargeted metabolomics on the dam and fetus exposed to alcohol (ALC) revealed that the hepatic metabolome of ALC and control (CON) dams were distinct, whereas that of ALC and CON fetuses were similar. Alcohol reduced maternal hepatic glucose content and enriched essential amino acid (AA) catabolites, N-acetylated AA products, urea content, and free fatty acids. These alterations suggest an attempt to minimize the glucose gap by increasing gluconeogenesis using AA and glycerol. In contrast, ALC fetuses had unchanged glucose and AA levels, suggesting an adequate draw of maternal nutrients, despite intensified stress on ALC dams. Maternal metabolites including glycolytic intermediates, AA catabolites, urea, and one-carbon-related metabolites correlated with fetal liver and brain weights, whereas lipid metabolites correlated with fetal body weight, indicating they may be drivers of fetal weight outcomes. Together, these data suggest that ALC alters maternal hepatic metabolic activity to limit glucose availability, thereby switching to alternate energy sources to meet the high-energy demands of pregnancy. Their correlation with fetal phenotypic outcomes indicates the influence of maternal metabolism on fetal growth and development.
Collapse
|
10
|
Tanase DM, Apostol AG, Costea CF, Tarniceriu CC, Tudorancea I, Maranduca MA, Floria M, Serban IL. Oxidative Stress in Arterial Hypertension (HTN): The Nuclear Factor Erythroid Factor 2-Related Factor 2 (Nrf2) Pathway, Implications and Future Perspectives. Pharmaceutics 2022; 14:534. [PMID: 35335911 PMCID: PMC8949198 DOI: 10.3390/pharmaceutics14030534] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 12/10/2022] Open
Abstract
Arterial hypertension (HTN) is one of the most prevalent entities globally, characterized by increased incidence and heterogeneous pathophysiology. Among possible etiologies, oxidative stress (OS) is currently extensively studied, with emerging evidence showing its involvement in endothelial dysfunction and in different cardiovascular diseases (CVD) such as HTN, as well as its potential as a therapeutic target. While there is a clear physiological equilibrium between reactive oxygen species (ROS) and antioxidants essential for many cellular functions, excessive levels of ROS lead to vascular cell impairment with decreased nitric oxide (NO) availability and vasoconstriction, which promotes HTN. On the other hand, transcription factors such as nuclear factor erythroid factor 2-related factor 2 (Nrf2) mediate antioxidant response pathways and maintain cellular reduction-oxidation homeostasis, exerting protective effects. In this review, we describe the relationship between OS and hypertension-induced endothelial dysfunction and the involvement and therapeutic potential of Nrf2 in HTN.
Collapse
Affiliation(s)
- Daniela Maria Tanase
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.M.T.); (M.F.)
- Internal Medicine Clinic, “St. Spiridon” County Clinical Emergency Hospital, 700115 Iasi, Romania
| | - Alina Georgiana Apostol
- Department of Neurology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
- Neurology Clinic, Clinical Rehabilitation Hospital, 700661 Iasi, Romania
| | - Claudia Florida Costea
- Department of Ophthalmology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
- 2nd Ophthalmology Clinic, “Prof. Dr. Nicolae Oblu” Emergency Clinical Hospital, 700309 Iasi, Romania
| | - Claudia Cristina Tarniceriu
- Department of Morpho-Functional Sciences I, Discipline of Anatomy, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
- Hematology Clinic, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iasi, Romania
| | - Ionut Tudorancea
- Department of Morpho-Functional Sciences II, Discipline of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (M.A.M.); (I.L.S.)
- Cardiology Clinic “St. Spiridon” County Clinical Emergency Hospital, 700111 Iasi, Romania
| | - Minela Aida Maranduca
- Department of Morpho-Functional Sciences II, Discipline of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (M.A.M.); (I.L.S.)
| | - Mariana Floria
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.M.T.); (M.F.)
- Internal Medicine Clinic, Emergency Military Clinical Hospital, 700483 Iasi, Romania
| | - Ionela Lacramioara Serban
- Department of Morpho-Functional Sciences II, Discipline of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (M.A.M.); (I.L.S.)
| |
Collapse
|
11
|
Krueger KJ, Rahman FK, Shen Q, Vacek J, Hiebert JB, Pierce JD. Mitochondrial bioenergetics and D-ribose in HFpEF: a brief narrative review. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1504. [PMID: 34805366 PMCID: PMC8573443 DOI: 10.21037/atm-21-2291] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/15/2021] [Indexed: 11/24/2022]
Abstract
Objective In this review article, we briefly describe the status of treatment options for HFpEF and the role of mitochondrial dysfunction in the pathogenesis of HFpEF as an alternative therapeutic target. We also examine the mechanisms of D-ribose in cellular energy production and discuss the potential disadvantages and benefits of supplemental use of D-ribose in patients with HFpEF. Background Heart failure is a major cardiovascular disease that impacts over 6 million Americans and is one of the leading causes for morbidity and mortality. Patients with heart failure often experience shortness of breath and fatigue along with impaired physical capacity, all leading to poor quality of life. As a subtype of heart failure, heart failure with preserved ejection fraction (HFpEF) is characterized with impaired diastolic function. Currently, there are no effective treatments specifically for HFpEF, thus clinicians and researchers are searching for therapies to improve cardiac function. Emerging evidence indicate that mitochondrial dysfunction and impaired cardiac bioenergetics are among the underlying mechanisms for HFpEF. There is increased interest in investigating the use of supplements such as D-ribose to enhance mitochondrial function and improve production of adenosine triphosphate (ATP). Methods For this narrative review, more than 100 relevant scientific articles were considered from various databases (e.g., PubMed, Web of Science, CINAHL, and Google Scholar) using the keywords “Heart Failure”, “HFpEF”, “D-ribose”, “ATP”, “Mitochondria”, Bioenergetics”, and “Cellular Respiration”. Conclusions It is essential to find potential targeted therapeutic treatments for HFpEF. Since there is evidence that the HFpEF is related to impaired myocardial bioenergetics, enhancing mitochondrial function could augment cardiac function. Using a supplement such as D-ribose could improve mitochondrial function by increasing ATP and enhancing cardiac performance for patients with HFpEF. There is a recently completed clinical trial with HFpEF patients that indicates D-ribose increases ATP production and improves cardiac ejection fraction.
Collapse
Affiliation(s)
- Kathryn J Krueger
- School of Nursing, University of Kansas Medical Center, Kansas City, KS, USA
| | - Faith K Rahman
- School of Nursing, University of Kansas Medical Center, Kansas City, KS, USA
| | - Qiuhua Shen
- School of Nursing, University of Kansas Medical Center, Kansas City, KS, USA
| | - James Vacek
- The University of Kansas Health System, Kansas City, KS, USA
| | - John B Hiebert
- School of Nursing, University of Kansas Medical Center, Kansas City, KS, USA
| | - Janet D Pierce
- School of Nursing, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
12
|
Piñeiro-Ramos JD, Rahkonen O, Korpioja V, Quintás G, Pihkala J, Pitkänen-Argillander O, Rautiainen P, Andersson S, Kuligowski J, Vento M. A Reductive Metabolic Switch Protects Infants with Transposition of Great Arteries Undergoing Atrial Septostomy against Oxidative Stress. Antioxidants (Basel) 2021; 10:antiox10101502. [PMID: 34679637 PMCID: PMC8532647 DOI: 10.3390/antiox10101502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 12/15/2022] Open
Abstract
Transposition of the great arteries (TGA) is one of the most common cyanotic congenital heart diseases requiring neonatal surgical intervention. Parallel circulations that result in impaired cerebral oxygen delivery already in utero may lead to brain damage and long-term neurodevelopmental delay. Balloon atrial septostomy (BAS) is often employed to mix deoxygenated and oxygenated blood at the atrial level. However, BAS causes a sudden increase in arterial blood oxygenation and oxidative stress. We studied changes in oxygen saturation as well as metabolic profiles of plasma samples from nine newborn infants suffering from TGA before and until 48 h after undergoing BAS. The plasma metabolome clearly changed over time and alterations of four metabolic pathways, including the pentose phosphate pathway, were linked to changes in the cerebral tissue oxygen extraction. In contrast, no changes in levels of lipid peroxidation biomarkers over time were observed. These observations suggest that metabolic adaptations buffer the free radical burst triggered by re-oxygenation, thereby avoiding structural damage at the macromolecular level. This study enhances our understanding of the complex response of infants with TGA to changes in oxygenation induced by BAS.
Collapse
Affiliation(s)
- José David Piñeiro-Ramos
- Neonatal Research Unit, Health Research Institute Hospital La Fe, Avenida Fernando Abril Martorell 106, 46026 Valencia, Spain;
| | - Otto Rahkonen
- Department of Paediatric Cardiology, New Children’s Hospital, University of Helsinki and Helsinki University Hospital, Box 347, Stenbäckinkatu 9, 00029, Helsinki, HUS, Finland; (O.R.); (J.P.); (O.P.-A.)
| | - Virpi Korpioja
- Department of Children and Adolescents, Oulu University Hospital, P.O. Box 23, FIN-90029 OYS, 90570 Oulu, Finland;
| | - Guillermo Quintás
- Health & Biomedicine Unit, Leitat Technological Center, Par Cientific Barcelona, 08028 Barcelona, Spain;
- Analytical Unit, Health Research Institute La Fe, Avenida, Fernando Abril Martorell 106, 46026 Valencia, Spain
| | - Jaana Pihkala
- Department of Paediatric Cardiology, New Children’s Hospital, University of Helsinki and Helsinki University Hospital, Box 347, Stenbäckinkatu 9, 00029, Helsinki, HUS, Finland; (O.R.); (J.P.); (O.P.-A.)
| | - Olli Pitkänen-Argillander
- Department of Paediatric Cardiology, New Children’s Hospital, University of Helsinki and Helsinki University Hospital, Box 347, Stenbäckinkatu 9, 00029, Helsinki, HUS, Finland; (O.R.); (J.P.); (O.P.-A.)
| | - Paula Rautiainen
- Department of Anaesthesia and Intensive Care, New Children’s Hospital, Helsinki University Hospital and University of Helsinki, Stenbackinkatu 9, 00029 Helsinki, Finland;
| | - Sture Andersson
- Pediatric Research Center, New Children’s Hospital, Helsinki University Hospital and University of Helsinki, Stenbackinkatu 9, 00029 Helsinki, Finland;
| | - Julia Kuligowski
- Neonatal Research Unit, Health Research Institute Hospital La Fe, Avenida Fernando Abril Martorell 106, 46026 Valencia, Spain;
- Correspondence: (J.K.); (M.V.); Tel.: +34-96-1246661 (J.K.); +34-96-1246603 (M.V.)
| | - Máximo Vento
- Neonatal Research Unit, Health Research Institute Hospital La Fe, Avenida Fernando Abril Martorell 106, 46026 Valencia, Spain;
- Division of Neonatology, University & Polytechnic Hospital La Fe, Avenida Fernando Abril Martorell 106, 46026 Valencia, Spain
- Correspondence: (J.K.); (M.V.); Tel.: +34-96-1246661 (J.K.); +34-96-1246603 (M.V.)
| |
Collapse
|
13
|
Li H, Shi W, Li C, Zhang X, Gong J, Shi J, Koffas MA, Xu Z. Impact of ethylene glycol on DHEA dihydroxylation in Colletotrichum lini: Increasing the expression of cytochrome P450 and 6-phosphogluconate dehydrogenase and enhancing the generation of NADPH. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2020.107860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
14
|
Abstract
Significance: In humans, imbalances in the reduction-oxidation (redox) status of cells are associated with many pathological states. In addition, many therapeutics and prophylactics used as interventions for diverse pathologies either directly modulate oxidant levels or otherwise influence endogenous cellular redox systems. Recent Advances: The cellular machineries that maintain redox homeostasis or that function within antioxidant defense systems rely heavily on the regulated reactivities of sulfur atoms either within or derived from the amino acids cysteine and methionine. Recent advances have substantially advanced our understanding of the complex and essential chemistry of biological sulfur-containing molecules. Critical Issues: The redox machineries that maintain cellular homeostasis under diverse stresses can consume large amounts of energy to generate reducing power and/or large amounts of sulfur-containing nutrients to replenish or sustain intracellular stores. By understanding the metabolic pathways underlying these responses, one can better predict how to protect cells from specific stresses. Future Directions: Here, we summarize the current state of knowledge about the impacts of different stresses on cellular metabolism of sulfur-containing molecules. This analysis suggests that there remains more to be learned about how cells use sulfur chemistry to respond to stresses, which could in turn lead to advances in therapeutic interventions for some exposures or conditions.
Collapse
Affiliation(s)
- Colin G Miller
- Department of Microbiology & Immunology, Montana State University, Bozeman, Montana, USA
| | - Edward E Schmidt
- Department of Microbiology & Immunology, Montana State University, Bozeman, Montana, USA
| |
Collapse
|
15
|
Ahuja V, Macho M, Ewe D, Singh M, Saha S, Saurav K. Biological and Pharmacological Potential of Xylitol: A Molecular Insight of Unique Metabolism. Foods 2020; 9:E1592. [PMID: 33147854 PMCID: PMC7693686 DOI: 10.3390/foods9111592] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 10/26/2020] [Accepted: 10/29/2020] [Indexed: 12/19/2022] Open
Abstract
Xylitol is a white crystalline, amorphous sugar alcohol and low-calorie sweetener. Xylitol prevents demineralization of teeth and bones, otitis media infection, respiratory tract infections, inflammation and cancer progression. NADPH generated in xylitol metabolism aid in the treatment of glucose-6-phosphate deficiency-associated hemolytic anemia. Moreover, it has a negligible effect on blood glucose and plasma insulin levels due to its unique metabolism. Its diverse applications in pharmaceuticals, cosmetics, food and polymer industries fueled its market growth and made it one of the top 12 bio-products. Recently, xylitol has also been used as a drug carrier due to its high permeability and non-toxic nature. However, it become a challenge to fulfil the rapidly increasing market demand of xylitol. Xylitol is present in fruit and vegetables, but at very low concentrations, which is not adequate to satisfy the consumer demand. With the passage of time, other methods including chemical catalysis, microbial and enzymatic biotransformation, have also been developed for its large-scale production. Nevertheless, large scale production still suffers from high cost of production. In this review, we summarize some alternative approaches and recent advancements that significantly improve the yield and lower the cost of production.
Collapse
Affiliation(s)
- Vishal Ahuja
- Department of Biotechnology, Himachal Pradesh University, Shimla 171005, India;
| | - Markéta Macho
- Laboratory of Algal Biotechnology—Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, 37901 Třeboň, Czech Republic; (M.M.); (D.E.); (S.S.)
- Faculty of Science, University of South Bohemia, 37005 České Budějovice, Czech Republic
| | - Daniela Ewe
- Laboratory of Algal Biotechnology—Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, 37901 Třeboň, Czech Republic; (M.M.); (D.E.); (S.S.)
| | - Manoj Singh
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana 133207, India;
| | - Subhasish Saha
- Laboratory of Algal Biotechnology—Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, 37901 Třeboň, Czech Republic; (M.M.); (D.E.); (S.S.)
| | - Kumar Saurav
- Laboratory of Algal Biotechnology—Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, 37901 Třeboň, Czech Republic; (M.M.); (D.E.); (S.S.)
| |
Collapse
|
16
|
Devillers M, Piquemal J, Salmon L, Gresh N. Calibration of the dianionic phosphate group: Validation on the recognition site of the homodimeric enzyme phosphoglucose isomerase. J Comput Chem 2020; 41:839-854. [DOI: 10.1002/jcc.26134] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/28/2019] [Accepted: 12/05/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Marion Devillers
- Equipe de Chimie Bioorganique et Bioinorganique, Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), Univ Paris‐Saclay, Univ Paris‐Sud, UMR 8182 CNRS, rue du Doyen Georges Poitou F‐91405 Orsay France
| | - Jean‐Philip Piquemal
- Laboratoire de Chimie Théorique, Sorbonne Université, UMR 7616 CNRS Paris France
- Department of Biomolecular EngineeringThe University of Texas at Austin Texas 78712
| | - Laurent Salmon
- Equipe de Chimie Bioorganique et Bioinorganique, Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), Univ Paris‐Saclay, Univ Paris‐Sud, UMR 8182 CNRS, rue du Doyen Georges Poitou F‐91405 Orsay France
| | - Nohad Gresh
- Laboratoire de Chimie Théorique, Sorbonne Université, UMR 7616 CNRS Paris France
| |
Collapse
|