1
|
Mustonen AM, Malinen M, Paakinaho V, Lehenkari P, Palosaari S, Kärjä V, Nieminen P. RNA sequencing analysis reveals distinct gene expression patterns in infrapatellar fat pads of patients with end-stage osteoarthritis or rheumatoid arthritis. Biochim Biophys Acta Mol Cell Biol Lipids 2025; 1870:159576. [PMID: 39489461 DOI: 10.1016/j.bbalip.2024.159576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 10/31/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
Osteoarthritis (OA) and autoimmune-driven rheumatoid arthritis (RA) are inflammatory joint diseases that share partly similar symptoms but have different, inadequately understood pathogeneses. Adipose tissues, including intra-articular infrapatellar fat pad (IFP), may contribute to their development. Analysis of differentially expressed genes (DEGs) in IFPs could improve the diagnostics of these conditions and help to develop novel treatment strategies. The aim was to identify potentially crucial genes and pathways discriminating OA and RA IFPs using RNA sequencing analysis. We aimed to distinguish genetically distinct patient groups as a starting point for further translational studies with the eventual goal of personalized medicine. Samples were collected from arthritic knees during total knee arthroplasty of sex- and age-matched OA and seropositive RA patients (n = 5-6/group). Metabolic pathways of interest were investigated by whole transcriptome sequencing, and DEGs were analyzed with univariate tests, hierarchical clustering (HC), and pathway analyses. There was significant interindividual variation in mRNA expression patterns, but distinct subgroups of OA and RA patients emerged that reacted similarly to their disease states based on HC. Compared to OA, RA samples showed 703 genes to be upregulated and 691 genes to be downregulated. Signaling pathway analyses indicated that these DEGs had common pathways in lipid metabolism, fatty acid biosynthesis and degradation, adipocytokine and insulin signaling, inflammatory response, and extracellular matrix organization. The divergent mRNA expression profiles in RA and OA suggest contribution of IFP to the regulation of synovial inflammatory processes and articular cartilage degradation and could provide novel diagnostic and therapeutic targets.
Collapse
Affiliation(s)
- Anne-Mari Mustonen
- Institute of Biomedicine, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland; Department of Environmental and Biological Sciences, Faculty of Science, Forestry and Technology, University of Eastern Finland, P.O. Box 111, FI-80101 Joensuu, Finland.
| | - Marjo Malinen
- Department of Forestry and Environmental Engineering, South-Eastern Finland University of Applied Sciences, Paraatikenttä 7, FI-45100 Kouvola, Finland.
| | - Ville Paakinaho
- Institute of Biomedicine, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland.
| | - Petri Lehenkari
- Translational Medicine Research Unit, Faculty of Medicine, University of Oulu, P.O. Box 5000, FI-90014 Oulu, Finland; Medical Research Center, University of Oulu and Oulu University Hospital, P.O. Box 5000, FI-90014 Oulu, Finland; Department of Surgery, Oulu University Hospital, P.O. Box 21, FI-90029 OYS, Finland.
| | - Sanna Palosaari
- Translational Medicine Research Unit, Faculty of Medicine, University of Oulu, P.O. Box 5000, FI-90014 Oulu, Finland; Medical Research Center, University of Oulu and Oulu University Hospital, P.O. Box 5000, FI-90014 Oulu, Finland.
| | - Vesa Kärjä
- Department of Clinical Pathology, Kuopio University Hospital, Puijonlaaksontie 2, FI-70210 Kuopio, Finland.
| | - Petteri Nieminen
- Institute of Biomedicine, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland.
| |
Collapse
|
2
|
Uekusa Y, Mukai M, Tsukada A, Iwase D, Aikawa J, Shibata N, Ohashi Y, Inoue G, Takaso M, Uchida K. Elevated Netrin-4 Expression and Its Action in Infrapatellar Fat Pad. Int J Mol Sci 2024; 25:11369. [PMID: 39518922 PMCID: PMC11545295 DOI: 10.3390/ijms252111369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/16/2024] [Accepted: 10/20/2024] [Indexed: 11/16/2024] Open
Abstract
Knee osteoarthritis (KOA) is a degenerative joint disease characterized by inflammation and cartilage degradation. The infrapatellar fat pad (IFP), located beneath the patella within the knee joint, serves as a key anatomical structure involved in cushioning and supporting the knee. It is also an active endocrine organ that secretes various bioactive substances, potentially influencing the local inflammatory environment and contributing to KOA pathogenesis. Netrin-4 (NTN4), a protein primarily known for its role in neuronal guidance, has been implicated in various non-neuronal functions, including inflammatory processes and tissue remodeling. This study aims to explore the involvement of NTN4 in KOA, focusing on its expression in the IFP and its potential impact on disease progression. This study involved 82 patients with radiographically confirmed KOA undergoing total knee arthroplasty (TKA). The correlation between NTN4 expression and OA pathology, including Kellgren-Lawrence (K/L) grades, was investigated. NTN4-expressing cells were identified in the stromal vascular fraction, including fibroblastic, hematopoietic, and endothelial cells of the IFP. To elucidate the molecular effects of NTN4, RNA sequencing (RNA-seq) was performed on fibroblastic cells treated with recombinant NTN4. Subsequent quantitative PCR (qPCR) was used to validate the RNA-seq findings. NTN4 expression was significantly elevated in the IFP of patients with advanced KOA (K/L grades 3 and 4) compared to those with early-stage disease (K/L grade 2). Higher NTN4 expression was found in fibroblastic cells, and RNA-seq analysis revealed upregulation of genes associated with pro-inflammatory pathways, including IL-17 and TNF-α signaling, and matrix degradation. Notably, genes including IL6, MMP1, CXCL1, and CXCL8 were significantly elevated, as confirmed by qPCR, indicating NTN4's role in promoting an inflammatory and catabolic environment. Our findings suggest that NTN4 plays a significant role in the pathogenesis of KOA by promoting inflammation and matrix degradation within the IFP. Although NTN4 expression was not directly correlated with clinical symptoms, its elevated expression in fibroblastic cells and influence on inflammatory and degradative pathways suggest a potential mechanism for exacerbating joint damage. Targeting NTN4 could offer a novel therapeutic approach to mitigating inflammation and slowing disease progression in KOA, ultimately improving patient outcomes. Further research is needed to clarify NTN4's specific roles and therapeutic potential in OA management.
Collapse
Affiliation(s)
- Yui Uekusa
- Department of Orthopedic Surgery, School of Medicine, Kitasato University, 1-15-1 Minami-ku Kitasato, Sagamihara City 252-0374, Kanagawa, Japan; (Y.U.); (M.M.); (A.T.); (D.I.); (J.A.); (N.S.); (Y.O.); (G.I.); (M.T.)
| | - Manabu Mukai
- Department of Orthopedic Surgery, School of Medicine, Kitasato University, 1-15-1 Minami-ku Kitasato, Sagamihara City 252-0374, Kanagawa, Japan; (Y.U.); (M.M.); (A.T.); (D.I.); (J.A.); (N.S.); (Y.O.); (G.I.); (M.T.)
| | - Ayumi Tsukada
- Department of Orthopedic Surgery, School of Medicine, Kitasato University, 1-15-1 Minami-ku Kitasato, Sagamihara City 252-0374, Kanagawa, Japan; (Y.U.); (M.M.); (A.T.); (D.I.); (J.A.); (N.S.); (Y.O.); (G.I.); (M.T.)
| | - Dai Iwase
- Department of Orthopedic Surgery, School of Medicine, Kitasato University, 1-15-1 Minami-ku Kitasato, Sagamihara City 252-0374, Kanagawa, Japan; (Y.U.); (M.M.); (A.T.); (D.I.); (J.A.); (N.S.); (Y.O.); (G.I.); (M.T.)
| | - Jun Aikawa
- Department of Orthopedic Surgery, School of Medicine, Kitasato University, 1-15-1 Minami-ku Kitasato, Sagamihara City 252-0374, Kanagawa, Japan; (Y.U.); (M.M.); (A.T.); (D.I.); (J.A.); (N.S.); (Y.O.); (G.I.); (M.T.)
| | - Naoya Shibata
- Department of Orthopedic Surgery, School of Medicine, Kitasato University, 1-15-1 Minami-ku Kitasato, Sagamihara City 252-0374, Kanagawa, Japan; (Y.U.); (M.M.); (A.T.); (D.I.); (J.A.); (N.S.); (Y.O.); (G.I.); (M.T.)
| | - Yoshihisa Ohashi
- Department of Orthopedic Surgery, School of Medicine, Kitasato University, 1-15-1 Minami-ku Kitasato, Sagamihara City 252-0374, Kanagawa, Japan; (Y.U.); (M.M.); (A.T.); (D.I.); (J.A.); (N.S.); (Y.O.); (G.I.); (M.T.)
| | - Gen Inoue
- Department of Orthopedic Surgery, School of Medicine, Kitasato University, 1-15-1 Minami-ku Kitasato, Sagamihara City 252-0374, Kanagawa, Japan; (Y.U.); (M.M.); (A.T.); (D.I.); (J.A.); (N.S.); (Y.O.); (G.I.); (M.T.)
| | - Masashi Takaso
- Department of Orthopedic Surgery, School of Medicine, Kitasato University, 1-15-1 Minami-ku Kitasato, Sagamihara City 252-0374, Kanagawa, Japan; (Y.U.); (M.M.); (A.T.); (D.I.); (J.A.); (N.S.); (Y.O.); (G.I.); (M.T.)
| | - Kentaro Uchida
- Department of Orthopedic Surgery, School of Medicine, Kitasato University, 1-15-1 Minami-ku Kitasato, Sagamihara City 252-0374, Kanagawa, Japan; (Y.U.); (M.M.); (A.T.); (D.I.); (J.A.); (N.S.); (Y.O.); (G.I.); (M.T.)
- Medical Sciences Research Institute, Shonan University, Nishikubo 500, Chigasaki City 253-0083, Kanagawa, Japan
| |
Collapse
|
3
|
Tu B, Zhu Z, Lu P, Fang R, Peng C, Tong J, Ning R. Proteomic and lipidomic landscape of the infrapatellar fat pad and its clinical significance in knee osteoarthritis. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159513. [PMID: 38788831 DOI: 10.1016/j.bbalip.2024.159513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 04/25/2024] [Accepted: 05/20/2024] [Indexed: 05/26/2024]
Abstract
Osteoarthritis (OA) is a prevalent joint disease that can be exacerbated by lipid metabolism disorders. The intra-articular fat pad (IFP) has emerged as an active participant in the pathological changes of knee OA (KOA). However, the proteomic and lipidomic differences between IFP tissues from KOA and control individuals remain unclear. Samples of IFP were collected from individuals with and without OA (n = 6, n = 6). Subsequently, these samples underwent liquid chromatography/mass spectrometry-based label-free quantitative proteomic and lipidomic analysis to identify differentially expressed proteins (DEPs) and lipid metabolites (DELMs). The DEPs were further subjected to enrichment analysis, and hub DEPs were identified using multiple algorithms. Additionally, an OA diagnostic model was constructed based on the identified hub DEPs or DELMs. Furthermore, CIBERSORT was utilized to investigate the correlation between hub protein expression and immune-related modules in IFP of OA. Our results revealed the presence of 315 DEPs and eight DELMs in IFP of OA patients compared to the control group. Enrichment analysis of DEPs highlighted potential alterations in pathways related to coagulation, complement, fatty acid metabolism, and adipogenesis. The diagnostic model incorporating four hub DEPs (AUC = 0.861) or eight DELMs (AUC = 0.917) exhibited excellent clinical validity for diagnosing OA. Furthermore, the hub DEPs were found to be associated with immune dysfunction in IFP of OA. This study presents a distinct proteomic and lipidomic landscape of IFP between individuals with OA and those without. These findings provide valuable insights into the molecular changes associated with potential mechanisms underlying OA.
Collapse
Affiliation(s)
- Bizhi Tu
- Department of Orthopedics, The Third Affiliated Hospital of Anhui Medical University (The First People's Hospital of Hefei), 390 Huaihe Road, Hefei 230061, Anhui, China
| | - Zheng Zhu
- Department of Orthopedics, The Third Affiliated Hospital of Anhui Medical University (The First People's Hospital of Hefei), 390 Huaihe Road, Hefei 230061, Anhui, China
| | - Peizhi Lu
- Department of Orthopedics, The Third Affiliated Hospital of Anhui Medical University (The First People's Hospital of Hefei), 390 Huaihe Road, Hefei 230061, Anhui, China; Department of Orthopedics, Bengbu Medical College, Bengbu City 233000, China
| | - Run Fang
- Department of Orthopedics, The Third Affiliated Hospital of Anhui Medical University (The First People's Hospital of Hefei), 390 Huaihe Road, Hefei 230061, Anhui, China
| | - Cheng Peng
- Department of Orthopedics, The Third Affiliated Hospital of Anhui Medical University (The First People's Hospital of Hefei), 390 Huaihe Road, Hefei 230061, Anhui, China
| | - Jun Tong
- Department of Orthopedics, The Third Affiliated Hospital of Anhui Medical University (The First People's Hospital of Hefei), 390 Huaihe Road, Hefei 230061, Anhui, China
| | - Rende Ning
- Department of Orthopedics, The Third Affiliated Hospital of Anhui Medical University (The First People's Hospital of Hefei), 390 Huaihe Road, Hefei 230061, Anhui, China; Department of Orthopedics, Bengbu Medical College, Bengbu City 233000, China.
| |
Collapse
|
4
|
Zapata-Linares N, Berenbaum F, Houard X. Role of joint adipose tissues in osteoarthritis. ANNALES D'ENDOCRINOLOGIE 2024; 85:214-219. [PMID: 38871517 DOI: 10.1016/j.ando.2024.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Osteoarthritis (OA) is the most common musculoskeletal disease, without any curative treatment. Obesity being the main modifiable risk factor for OA, much attention focused on the role of adipose tissues (AT). In addition to the involvement of visceral and subcutaneous AT via systemic ways, many arguments also highlight the involvement of local AT, present in joint tissues. Local AT include intra-articular AT (IAAT), which border the synovium, and bone marrow AT (BMAT) localized within marrow cavities in the bones. This review describes the known features and involvement of IAAT and BMAT in joint homeostasis and OA. Recent findings evidence that alteration in magnetic resonance imaging signal intensity of infrapatellar fat pad can be predictive of the development and progression of knee OA. IAAT and synovium are partners of the same functional unit; IAAT playing an early and pivotal role in synovial inflammation and fibrosis and OA pain. BMAT, whose functions have only recently begun to be studied, is in close functional interaction with its microenvironment. The volume and molecular profile of BMAT change according to the pathophysiological context, enabling fine regulation of haematopoiesis and bone metabolism. Although its role in OA has not yet been studied, the localization of BMAT, its functions and the importance of the bone remodelling processes that occur in OA argue in favour of a role for BMAT in OA.
Collapse
Affiliation(s)
- Natalia Zapata-Linares
- Centre de recherche Saint-Antoine (CRSA), Sorbonne université, Inserm, 75012 Paris, France
| | - Francis Berenbaum
- Centre de recherche Saint-Antoine (CRSA), Sorbonne université, Inserm, 75012 Paris, France; Rheumatology Department, AP-HP Saint-Antoine Hospital, 184, rue du Faubourg Saint-Antoine, 75012 Paris, France
| | - Xavier Houard
- Centre de recherche Saint-Antoine (CRSA), Sorbonne université, Inserm, 75012 Paris, France.
| |
Collapse
|
5
|
Kanak M, Pawłuś N, Mostowy M, Piwnik M, Domżalski M, Lesman J. Sonographic Characterization of the Pericruciate Fat Pad with the Use of Compression Elastography-A Cross-Sectional Study among Healthy and Post-Injured Patients. J Clin Med 2024; 13:2578. [PMID: 38731107 PMCID: PMC11084231 DOI: 10.3390/jcm13092578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/03/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
Background: The pericruciate fat pad (PCFP) in the knee joint is still insufficiently studied despite its potential role in knee pathologies. This is the first reported study which aimed to clarify the characteristics of the PCFP in healthy individuals and contrast them with cases of post-traumatic injuries. Methods: Conducted as a retrospective cross-sectional study (n = 110 knees each) following STROBE guidelines, it employed grayscale ultrasound with echogenicity measurement, compression elastography with elasticity measurement, and Color Doppler for blood flow assessment. Results: PCFP showed a homogenic and hyperechoic echostructure. The echogenicity of the PCFP was higher than that of the posterior cruciate ligament (PCL) (p < 0.001, z-score = 8.97) and of the medial head of gastrocnemius (MHG) (p = 0.007, z-score = 2.72) in healthy knees, but lower than subcutaneous fat (SCF) (p < 0.001, z-score = -6.52). Post-injury/surgery, PCFP echogenicity surpassed other structures (p < 0.001; z-score for PCL 12.2; for MHG 11.65 and for SCF 12.36) and notably exceeded the control group (p < 0.001, z-score = 8.78). PCFP elasticity was lower than MHG and SCF in both groups, with significantly reduced elasticity in post-traumatic knees (ratio SCF/PCFP 15.52 ± 17.87 in case group vs. 2.26 ± 2.4 in control group; p < 0.001; z-score = 9.65). Blood flow was detected in 71% of healthy PCFPs with three main patterns. Conclusions: The main findings, indicating increased echogenicity and reduced elasticity of PCFP post-trauma, potentially related to fat pad fibrosis, suggest potential applications of echogenicity and elasticity measurements in detecting and monitoring diverse knee pathologies. The description of vascularity variations supplying the PCFP adds additional value to the study by emphasizing the clinically important role of PCFP as a bridge for the middle genicular artery on its way to the inside of the knee joint.
Collapse
Affiliation(s)
- Michał Kanak
- Department of Orthopaedics and Traumatology, Veterans’ Memorial Teaching Hospital in Lodz, Medical University of Lodz, 90-419 Lodz, Poland
| | - Natalia Pawłuś
- Department of Orthopaedics and Traumatology, Veterans’ Memorial Teaching Hospital in Lodz, Medical University of Lodz, 90-419 Lodz, Poland
| | - Marcin Mostowy
- Department of Orthopaedics and Traumatology, Veterans’ Memorial Teaching Hospital in Lodz, Medical University of Lodz, 90-419 Lodz, Poland
| | | | - Marcin Domżalski
- Department of Orthopaedics and Traumatology, Veterans’ Memorial Teaching Hospital in Lodz, Medical University of Lodz, 90-419 Lodz, Poland
| | - Jędrzej Lesman
- Department of Orthopaedics and Traumatology, Veterans’ Memorial Teaching Hospital in Lodz, Medical University of Lodz, 90-419 Lodz, Poland
| |
Collapse
|
6
|
Bravo B, Argüello JM, Forriol F, Altónaga JR. [Translated article] Infrapatellar fat pad resection effect on the osteoarthritis development: Experimental study in sheep. Rev Esp Cir Ortop Traumatol (Engl Ed) 2024; 68:T134-T141. [PMID: 37992862 DOI: 10.1016/j.recot.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/09/2023] [Indexed: 11/24/2023] Open
Abstract
INTRODUCTION The fat of the synovial joints can be used to maintain the joint structure. Our objective is to analyse the evolution of joint degeneration in knees with and without adipose pack. MATERIAL AND METHODOLOGY In six sheep, the anterior cruciate ligament was sectioned in both knees, to cause osteoarthritis. In one group the fat pack was preserved and in another group it was completely removed. We performed a histological and molecular biology study analyzing the expression, in the synovial membrane, subchondral bone, cartilage, fat, meniscus, and synovial fluid, of RUNX2, PTHrP, cathepsin-K, and MCP1. RESULTS We did not find morphological differences. We found increased expression of RUNX2 in synovial membrane, PTHrP and Cathepsin K in synovial fluid in the group without fat, and increased expression of RUNX2 in the meniscus and MCP1 in synovial fluid in the group with fat. CONCLUSION Infrapatellar fat participates in the inflammatory process that accompanies osteoarthritis, since Hoffa fat pad resection alters pro-inflammatory markers, while the model with intact fat increases the pro-inflammatory marker MCP1 in synovial fluid.
Collapse
Affiliation(s)
- B Bravo
- Departamento de Ciencias Básicas, Facultad de Medicina, Universidad CEU-San Pablo, Madrid, Spain.
| | - J M Argüello
- Servicio de Cirugía Ortopédica y Traumatología, Fundación Jiménez Díaz, Madrid, Spain
| | - F Forriol
- Departamento de Ciencias Básicas, Facultad de Medicina, Universidad CEU-San Pablo, Madrid, Spain
| | - J R Altónaga
- Clínica Veterinaria, Facultad de Veterinaria, Universidad de León, León, Spain
| |
Collapse
|
7
|
Bravo B, Argüello JM, Forriol F, Altónaga JR. Infrapatellar Fat Pad resection effect on the osteoarthritis development: Experimental study in sheep. Rev Esp Cir Ortop Traumatol (Engl Ed) 2024; 68:134-141. [PMID: 37187343 DOI: 10.1016/j.recot.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/17/2023] Open
Abstract
INTRODUCTION The fat of the synovial joints can be used to maintain the joint structure. Our objective is to analyze the evolution of joint degeneration in knees with and without adipose pack. MATERIAL AND METHODOLOGY In six sheep, the anterior cruciate ligament was sectioned in both knees, to cause osteoarthritis. In one group the fat pack was preserved and in another group it was completely removed. We performed a histological and molecular biology study analyzing the expression, in the synovial membrane, subchondral bone, cartilage, fat, meniscus, and synovial fluid, of RUNX2, PTHrP, cathepsin-K, and MCP1. RESULTS We did not find morphological differences. We found increased expression of RUNX2 in synovial membrane, PTHrP and Cathepsin K in synovial fluid in the group without fat, and increased expression of RUNX2 in the meniscus and MCP1 in synovial fluid in the group with fat. CONCLUSION Infrapatellar fat participates in the inflammatory process that accompanies osteoarthritis, since Hoffa fat pad resection alters pro-inflammatory markers, while the model with intact fat increases the pro-inflammatory marker MCP1 in synovial fluid.
Collapse
Affiliation(s)
- B Bravo
- Departamento de Ciencias Básicas, Facultad de Medicina, Universidad CEU-San Pablo, Madrid, España.
| | - J M Argüello
- Servicio de Cirugía Ortopédica y Traumatología, Fundación Jiménez Díaz, Madrid, España
| | - F Forriol
- Departamento de Ciencias Básicas, Facultad de Medicina, Universidad CEU-San Pablo, Madrid, España
| | - J R Altónaga
- Clínica Veterinaria, Facultad de Veterinaria, Universidad de León, León, España
| |
Collapse
|
8
|
Xiao J, Gong X, Fu Z, Song X, Ma Q, Miao J, Cai R, Yan Z, Wang S, Li Q, Chen Y, Yang L, Bian X, Chen Y. The influence of inflammation on the characteristics of adipose-derived mesenchymal stem cells (ADMSCs) and tissue repair capability in a hepatic injury mouse model. Stem Cell Res Ther 2023; 14:334. [PMID: 37981679 PMCID: PMC10659042 DOI: 10.1186/s13287-023-03532-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 10/10/2023] [Indexed: 11/21/2023] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) are adult stem cells with self-renewal and multi-directional differentiation potential and possess the functions of immunomodulation, regulation of cell growth, and repair of damage. Over recent years, MSCs have been found to regulate the secretion of inflammatory factors and to exert regulatory effects on various lymphocytes in inflammatory states, and on the subsequent repair of tissue damage caused by inflammation. In the present study, we analyzed the effects of tissue inflammation on the characteristics of MSCs. METHODS Human fat derived from the infrapatellar fat pad (IPFP) of knees with differing degrees of inflammation was extracted from specimens derived from total knee arthroplasties. HE and immunohistochemical staining was performed to directly observe the evidence and degree of inflammation in human infrapatellar fat pad tissue in order to classify MSCs cells, by their origin, into highly inflamed and lowly inflamed groups, and to study the effect of tissue inflammation on cell acquisition rates via cellular counting data. Flow cytometry assays were performed to investigate the effect of tissue inflammation on MSC surface marker expression. Trilineage differentiation, including osteogenesis, adipogenesis, and chondrogenesis, was performed to assess the effect of tissue inflammation on the ability of MSCs to undergo directed differentiation. The effect of tissue inflammation on the ability of MSCs to proliferate was investigated via clone formation studies. RNA-sequencing was performed to evaluate the transcriptomes of MSCs derived from different areas of inflammation. The effect of tissue inflammation on tissue repair capacity and safety of MSCs was investigated via a murine model of acute liver injury. RESULTS The results of cell count data indicate that a high degree of tissue inflammation significantly decreases the acquisition rate of MSCs, and the proportion of CD34+ and CD146+ cells. The results of our trilineage differentiation assay show that a higher degree of inflammation decreases osteogenic differentiation and enhances adipogenic and chondrogenic differentiation of MSCs. However, these differences were not statistically significant. Clone formation assays indicate that the degree of tissue inflammation at the MSC source does not significantly affect the proliferative capacity of MSCs. The transcriptomes of MSCs remain relatively stable in fat pad tissues derived from both highly and lowly inflamed samples. The results of acute liver injury investigations in mice indicate that MSCs of high and low inflammatory tissue origin have no significant difference in their tissue repair capability. CONCLUSIONS High tissue inflammation at the source of MSCs reduces the acquisition rate of MSCs and the percentage of CD34+ and CD146+ cells acquisition. However, source tissue inflammation may not significantly affect trilineage differentiation potential and proliferative capacity of MSCs. Also, MSCs obtained from differing source degrees of inflammation retain stable and similar transcriptomic profile and are both safe and efficacious for tissue repair/regeneration without detectable differences.
Collapse
Affiliation(s)
- Jingfang Xiao
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Xiaoyuan Gong
- Center for Joint Surgery, Southwest Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Zhenlan Fu
- Center for Joint Surgery, Southwest Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Xiongbo Song
- Center for Joint Surgery, Southwest Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Qinghua Ma
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Jingya Miao
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Ruili Cai
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Zexuan Yan
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Shuai Wang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Qian Li
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Yaokai Chen
- Biobank and Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, People's Republic of China
| | - Liu Yang
- Center for Joint Surgery, Southwest Hospital, Army Medical University, Chongqing, People's Republic of China.
| | - Xiuwu Bian
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University, Chongqing, People's Republic of China.
| | - Yemiao Chen
- Biobank and Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, People's Republic of China.
| |
Collapse
|
9
|
Xu X, Xu L, Xia J, Wen C, Liang Y, Zhang Y. Harnessing knee joint resident mesenchymal stem cells in cartilage tissue engineering. Acta Biomater 2023; 168:372-387. [PMID: 37481194 DOI: 10.1016/j.actbio.2023.07.024] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/26/2023] [Accepted: 07/17/2023] [Indexed: 07/24/2023]
Abstract
Osteoarthritis (OA) is a widespread clinical disease characterized by cartilage degeneration in middle-aged and elderly people. Currently, there is no effective treatment for OA apart from total joint replacement in advanced stages. Mesenchymal stem cells (MSCs) are a type of adult stem cell with diverse differentiation capabilities and immunomodulatory potentials. MSCs are known to effectively regulate the cartilage microenvironment, promote cartilage regeneration, and alleviate OA symptoms. As a result, they are promising sources of cells for OA therapy. Recent studies have revealed the presence of resident MSCs in synovial fluid, synovial membrane, and articular cartilage, which can be collected as knee joint-derived MSCs (KJD-MSC). Several preclinical and clinical studies have demonstrated that KJD-MSCs have great potential for OA treatment, whether applied alone, in combination with biomaterials, or as exocrine MSCs. In this article, we will review the characteristics of MSCs in the joints, including their cytological characteristics, such as proliferation, cartilage differentiation, and immunomodulatory abilities, as well as the biological function of MSC exosomes. We will also discuss the use of tissue engineering in OA treatment and introduce the concept of a new generation of stem cell-based tissue engineering therapy, including the use of engineering, gene therapy, and gene editing techniques to create KJD-MSCs or KJD-MSC derivative exosomes with improved functionality and targeted delivery. These advances aim to maximize the efficiency of cartilage tissue engineering and provide new strategies to overcome the bottleneck of OA therapy. STATEMENT OF SIGNIFICANCE: This research will provide new insights into the medicinal benefit of Joint resident Mesenchymal Stem Cells (MSCs), specifically on its cartilage tissue engineering ability. Through this review, the community will further realize promoting joint resident mesenchymal stem cells, especially cartilage progenitor/MSC-like progenitor cells (CPSC), as a preventive measure against osteoarthritis and cartilage injury. People and medical institutions may also consider cartilage derived MSC as an alternative approach against cartilage degeneration. Moreover, the discussion presented in this study will convey valuable information for future research that will explore the medicinal benefits of cartilage derived MSC.
Collapse
Affiliation(s)
- Xiao Xu
- Department of Joint Surgery and Sports Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272029, China; Department of Orthopedics, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518035, China
| | - Limei Xu
- Department of Hematology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272029, China
| | - Jiang Xia
- Department of Chemistry, the Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Caining Wen
- Department of Joint Surgery and Sports Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272029, China
| | - Yujie Liang
- Department of Joint Surgery and Sports Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272029, China; Department of Chemistry, the Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| | - Yuanmin Zhang
- Department of Joint Surgery and Sports Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272029, China.
| |
Collapse
|
10
|
Zhou S, Maleitzke T, Geissler S, Hildebrandt A, Fleckenstein FN, Niemann M, Fischer H, Perka C, Duda GN, Winkler T. Source and hub of inflammation: The infrapatellar fat pad and its interactions with articular tissues during knee osteoarthritis. J Orthop Res 2022; 40:1492-1504. [PMID: 35451170 DOI: 10.1002/jor.25347] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 02/28/2022] [Accepted: 04/20/2022] [Indexed: 02/04/2023]
Abstract
Knee osteoarthritis, the most prevalent degenerative joint disorder worldwide, is driven by chronic low-grade inflammation and subsequent cartilage degradation. Clinical data on the role of the Hoffa or infrapatellar fat pad in knee osteoarthritis are, however, scarce. The infrapatellar fat pad is a richly innervated intracapsular, extrasynovial adipose tissue, and an abundant source of adipokines and proinflammatory and catabolic cytokines, which may contribute to chronic synovial inflammation, cartilage destruction, and subchondral bone remodeling during knee osteoarthritis. How the infrapatellar fat pad interacts with neighboring tissues is poorly understood. Here, we review available literature with regard to the infrapatellar fat pad's interactions with cartilage, synovium, bone, menisci, ligaments, and nervous tissue during the development and progression of knee osteoarthritis. Signaling cascades are described with a focus on immune cell populations, pro- and anti-inflammatory cytokines, adipokines, mesenchymal stromal cells, and molecules derived from conditioned media from the infrapatellar fat pad. Understanding the complex interplay between the infrapatellar fat pad and its neighboring articular tissues may help to better understand and treat the multifactorial pathogenesis of osteoarthritis.
Collapse
Affiliation(s)
- Sijia Zhou
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, Berlin, Germany.,Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Julius Wolff Institute, Berlin, Germany
| | - Tazio Maleitzke
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, Berlin, Germany.,Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Julius Wolff Institute, Berlin, Germany.,Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Clinician Scientist Program, Berlin, Germany
| | - Sven Geissler
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Julius Wolff Institute, Berlin, Germany.,Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin Institute of Health Center for Regenerative Therapies, Berlin, Germany
| | - Alexander Hildebrandt
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, Berlin, Germany.,Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Julius Wolff Institute, Berlin, Germany
| | - Florian Nima Fleckenstein
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Clinician Scientist Program, Berlin, Germany.,Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Diagnostic and Interventional Radiology, Berlin, Germany
| | - Marcel Niemann
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, Berlin, Germany.,Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Julius Wolff Institute, Berlin, Germany.,Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin Institute of Health Center for Regenerative Therapies, Berlin, Germany
| | - Heilwig Fischer
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, Berlin, Germany.,Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Julius Wolff Institute, Berlin, Germany
| | - Carsten Perka
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, Berlin, Germany
| | - Georg N Duda
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Julius Wolff Institute, Berlin, Germany.,Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin Institute of Health Center for Regenerative Therapies, Berlin, Germany
| | - Tobias Winkler
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, Berlin, Germany.,Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Julius Wolff Institute, Berlin, Germany.,Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin Institute of Health Center for Regenerative Therapies, Berlin, Germany
| |
Collapse
|
11
|
Afzali MF, Radakovich LB, Sykes MM, Campbell MA, Patton KM, Sanford JL, Vigon N, Ek R, Narez GE, Marolf AJ, Sikes KJ, Haut Donahue TL, Santangelo KS. Early removal of the infrapatellar fat pad/synovium complex beneficially alters the pathogenesis of moderate stage idiopathic knee osteoarthritis in male Dunkin Hartley guinea pigs. Arthritis Res Ther 2022; 24:282. [PMID: 36578046 PMCID: PMC9795160 DOI: 10.1186/s13075-022-02971-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/02/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The infrapatellar fat pad (IFP) is the largest adipose deposit in the knee; however, its contributions to the homeostasis of this organ remain undefined. To determine the influence of the IFP and its associated synovium (IFP/synovium complex or IFP/SC) on joint health, this study evaluated the progression of osteoarthritis (OA) following excision of this unit in a rodent model of naturally-occurring disease. METHODS Male Dunkin-Hartley guinea pigs (n=18) received surgical removal of the IFP in one knee at 3 months of age; contralateral knees received sham surgery as matched internal controls. Mobility and gait assessments were performed prior to IFP/SC removal and monthly thereafter. Animals were harvested at 7 months of age. Ten set of these knees were processed for microcomputed tomography (microCT), histopathology, transcript expression analyses, and immunohistochemistry (IHC); 8 sets of knees were dedicated to microCT and biomechanical testing (material properties of knee joints tissues and anterior drawer laxity). RESULTS Fibrous connective tissue (FCT) developed in place of the native adipose depot. Gait demonstrated no significant differences between IFP/SC removal and contralateral hindlimbs. MicroCT OA scores were improved in knees containing the FCT. Quantitatively, IFP/SC-containing knees had more osteophyte development and increased trabecular volume bone mineral density (vBMD) in femora and tibiae. Histopathology confirmed maintenance of articular cartilage structure, proteoglycan content, and chondrocyte cellularity in FCT-containing knees. Transcript analyses revealed decreased expression of adipose-related molecules and select inflammatory mediators in FCTs compared to IFP/SCs. This was verified via IHC for two key inflammatory agents. The medial articular cartilage in knees with native IFP/SCs showed an increase in equilibrium modulus, which correlated with increased amounts of magnesium and phosphorus. DISCUSSION/CONCLUSION Formation of the FCT resulted in reduced OA-associated changes in both bone and cartilage. This benefit may be associated with: a decrease in inflammatory mediators at transcript and protein levels; and/or improved biomechanical properties. Thus, the IFP/SC may play a role in the pathogenesis of knee OA in this strain, with removal prior to disease onset appearing to have short-term benefits.
Collapse
Affiliation(s)
- Maryam F. Afzali
- grid.47894.360000 0004 1936 8083Department of Microbiology, Immunology and Pathology, Colorado State University, 200 West Lake Street, Fort Collins, CO 80523 USA
| | - Lauren B. Radakovich
- grid.47894.360000 0004 1936 8083Department of Microbiology, Immunology and Pathology, Colorado State University, 200 West Lake Street, Fort Collins, CO 80523 USA
| | - Madeline M. Sykes
- grid.47894.360000 0004 1936 8083Department of Microbiology, Immunology and Pathology, Colorado State University, 200 West Lake Street, Fort Collins, CO 80523 USA
| | - Margaret A. Campbell
- grid.47894.360000 0004 1936 8083Department of Microbiology, Immunology and Pathology, Colorado State University, 200 West Lake Street, Fort Collins, CO 80523 USA
| | - Kayley M. Patton
- grid.47894.360000 0004 1936 8083Department of Microbiology, Immunology and Pathology, Colorado State University, 200 West Lake Street, Fort Collins, CO 80523 USA
| | - Joseph L. Sanford
- grid.47894.360000 0004 1936 8083Department of Microbiology, Immunology and Pathology, Colorado State University, 200 West Lake Street, Fort Collins, CO 80523 USA
| | - Nicole Vigon
- grid.266683.f0000 0001 2166 5835Department of Biomedical Engineering, S631 Life Sciences Laboratory, University of Massachusetts, Amherst, 240 Thatcher Road, Amherst, MA 01003 USA
| | - Ryan Ek
- grid.266683.f0000 0001 2166 5835Department of Biomedical Engineering, S631 Life Sciences Laboratory, University of Massachusetts, Amherst, 240 Thatcher Road, Amherst, MA 01003 USA
| | - Gerardo E. Narez
- grid.266683.f0000 0001 2166 5835Department of Biomedical Engineering, S631 Life Sciences Laboratory, University of Massachusetts, Amherst, 240 Thatcher Road, Amherst, MA 01003 USA
| | - Angela J. Marolf
- grid.47894.360000 0004 1936 8083Department of Environmental and Radiological Health Sciences, Colorado State University, 123 Flint Cancer Center, Fort Collins, CO 80523 USA
| | - Katie J. Sikes
- grid.47894.360000 0004 1936 8083Department of Clinical Sciences, Colorado State University, 1678 Clinical Sciences, Fort Collins, CO 80523 USA
| | - Tammy L. Haut Donahue
- grid.56061.340000 0000 9560 654XBiomedical Engineering Department, The University of Memphis, 3806 Norriswood, Memphis, TN 38152 USA
| | - Kelly S. Santangelo
- grid.47894.360000 0004 1936 8083Department of Microbiology, Immunology and Pathology, Colorado State University, 200 West Lake Street, Fort Collins, CO 80523 USA
| |
Collapse
|
12
|
Kanak M, Mostowy M, Domżalski M, Lesman J. Pericruciate fat pad (PCFP) – A scoping systematic review of anatomy, histology, imaging, and clinical importance. TRANSLATIONAL RESEARCH IN ANATOMY 2021. [DOI: 10.1016/j.tria.2021.100142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
13
|
Comparison between Intra-Articular Injection of Infrapatellar Fat Pad (IPFP) Cell Concentrates and IPFP-Mesenchymal Stem Cells (MSCs) for Cartilage Defect Repair of the Knee Joint in Rabbits. Stem Cells Int 2021; 2021:9966966. [PMID: 34367294 PMCID: PMC8337123 DOI: 10.1155/2021/9966966] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/30/2021] [Accepted: 07/13/2021] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have emerged as a promising therapeutic method in regenerative medicine. Our previous research adopted a simple nonenzymatic strategy for the preparation of a new type of ready-to-use infrapatellar fat pad (IPFP) cell concentrates. The aim of this study was to compare the therapeutic efficacy of intra-articular (IA) injection of autologous IPFP cell concentrates and allogeneic IPFP-MSCs obtained from these concentrates in a rabbit articular cartilage defect model. IPFP-MSCs sprouting from the IPFP cell concentrates were characterized via flow cytometry as well as based on their potential for differentiation into adipocytes, osteoblasts, and chondrocytes. In the rabbit model, cartilage defects were created on the trochlear groove, followed by treatment with IPFP cell concentrates, IPFP-MSCs, or normal saline IA injection. Distal femur samples were evaluated at 6 and 12 weeks posttreatment via macroscopic observation and histological assessment based on the International Cartilage Repair Society (ICRS) macroscopic scoring system as well as the ICRS visual histological assessment scale. The macroscopic score and histological score were significantly higher in the IPFP-MSC group compared to the IPFP cell concentrate group at 12 weeks. Further, both treatment groups had higher scores compared to the normal saline group. In comparison to the latter, the groups treated with IPFP-MSCs and IPFP cell concentrates showed considerably better cartilage regeneration. Overall, IPFP-MSCs represent an effective therapeutic strategy for stimulating articular cartilage regeneration. Further, due to the simple, cost-effective, nonenzymatic, and safe preparation process, IPFP cell concentrates may represent an effective alternative to stem cell-based therapy in the clinic.
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW Epidemiologic studies reveal that the link between obesity and osteoarthritis cannot be uniquely explained by overweight-associated mechanical overload. For this reason, much attention focuses on the endocrine activity of adipose tissues. In addition to the systemic role of visceral and subcutaneous adipose tissues, many arguments highlight the involvement of local adipose tissues in osteoarthritis. RECENT FINDINGS Alteration in MRI signal intensity of the infrapatellar fat pad may predict both accelerated knee osteoarthritis and joint replacement. In this context, recent studies show that mesenchymal stromal cells could play a pivotal role in the pathological remodelling of intra-articular adipose tissues (IAATs) in osteoarthritis. In parallel, recent findings underline bone marrow adipose tissue as a major player in the control of the bone microenvironment, suggesting its possible role in osteoarthritis. SUMMARY The recent description of adipose tissues of various phenotypes within an osteoarthritic joint allows us to evoke their direct involvement in the initiation and progression of the osteoarthritic process. We can expect in the near future the discovery of novel molecules targeting these tissues.
Collapse
Affiliation(s)
| | - Florent Eymard
- Department of Rheumatology, AP-HP Henri Mondor Hospital
- Gly-CRRET Research Unit 4397, Université Paris-Est Créteil
| | - Francis Berenbaum
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA)
- Sorbonne Université, INSERM CRSA, AP-HP Hopital Saint Antoine, Paris, France
| | - Xavier Houard
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA)
| |
Collapse
|
15
|
Greif DN, Kouroupis D, Murdock CJ, Griswold AJ, Kaplan LD, Best TM, Correa D. Infrapatellar Fat Pad/Synovium Complex in Early-Stage Knee Osteoarthritis: Potential New Target and Source of Therapeutic Mesenchymal Stem/Stromal Cells. Front Bioeng Biotechnol 2020; 8:860. [PMID: 32850724 PMCID: PMC7399076 DOI: 10.3389/fbioe.2020.00860] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/03/2020] [Indexed: 12/16/2022] Open
Abstract
The infrapatellar fat pad (IFP) has until recently been viewed as a densely vascular and innervated intracapsular/extrasynovial tissue with biomechanical roles in the anterior compartment of the knee. Over the last decade, secondary to the proposition that the IFP and synovium function as a single unit, its recognized tight molecular crosstalk with emerging roles in the pathophysiology of joint disease, and the characterization of immune-related resident cells with varying phenotypes (e.g., pro and anti-inflammatory macrophages), this structural complex has gained increasing attention as a potential therapeutic target in patients with various knee pathologies including osteoarthritis (KOA). Furthermore, the description of the presence of mesenchymal stem/stromal cells (MSC) as perivascular cells within the IFP (IFP-MSC), exhibiting immunomodulatory, anti-fibrotic and neutralizing activities over key local mediators, has promoted the IFP as an alternative source of MSC for cell-based therapy protocols. These complementary concepts have supported the growing notion of immune and inflammatory events participating in the pathogenesis of KOA, with the IFP/synovium complex engaging not only in amplifying local pathological responses, but also as a reservoir of potential therapeutic cell-based products. Consequently, the aim of this review is to outline the latest discoveries related with the IFP/synovium complex as both an active participant during KOA initiation and progression thus emerging as a potential target, and a source of therapeutic IFP-MSCs. Finally, we discuss how these notions may help the design of novel treatments for KOA through modulation of local cellular and molecular cascades that ultimately lead to joint destruction.
Collapse
Affiliation(s)
- Dylan N Greif
- Department of Orthopedics, UHealth Sports Medicine Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Dimitrios Kouroupis
- Department of Orthopedics, UHealth Sports Medicine Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Christopher J Murdock
- Department of Orthopedics, UHealth Sports Medicine Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Anthony J Griswold
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Lee D Kaplan
- Department of Orthopedics, UHealth Sports Medicine Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Thomas M Best
- Department of Orthopedics, UHealth Sports Medicine Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Diego Correa
- Department of Orthopedics, UHealth Sports Medicine Institute, Miller School of Medicine, University of Miami, Miami, FL, United States.,Diabetes Research Institute and Cell Transplant Center, Miller School of Medicine, University of Miami, Miami, FL, United States
| |
Collapse
|
16
|
Francis SL, Yao A, Choong PFM. Culture Time Needed to Scale up Infrapatellar Fat Pad Derived Stem Cells for Cartilage Regeneration: A Systematic Review. Bioengineering (Basel) 2020; 7:bioengineering7030069. [PMID: 32635513 PMCID: PMC7552776 DOI: 10.3390/bioengineering7030069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 06/30/2020] [Accepted: 07/02/2020] [Indexed: 12/13/2022] Open
Abstract
Adipose tissue is a rich source of stem cells, which are reported to represent 2% of the stromal vascular fraction (SVF). The infrapatellar fat pad (IFP) is a unique source of tissue, from which human adipose-derived stem cells (hADSCs) have been shown to harbour high chondrogenic potential. This review aims to calculate, based on the literature, the culture time needed before an average knee articular cartilage defect can be treated using stem cells obtained from arthroscopically or openly harvested IFP. Firstly, a systematic literature review was performed to search for studies that included the number of stem cells isolated from the IFP. Subsequent analysis was conducted to identify the amount of IFP tissue harvestable, stem cell count and the overall yield based on the harvesting method. We then determined the minimum time required before treating an average-sized knee articular cartilage defect with IFP-derived hADSCs by using our newly devised equation. The amount of fat tissue, the SVF cell count and the stem cell yield are all lower in arthroscopically harvested IFP tissue compared to that collected using arthrotomy. As an extrapolation, we show that an average knee defect can be treated in 20 or 17 days using arthroscopically or openly harvested IFP-derived hADSCs, respectively. In summary, the systematic review conducted in this study reveals that there is a higher amount of fat tissue, SVF cell count and overall yield (cells/volume or cells/gram) associated with open (arthrotomy) compared to arthroscopic IFP harvest. In addition to these review findings, we demonstrate that our novel framework can give an indication about the culture time needed to scale up IFP-derived stem cells for the treatment of articular cartilage defects based on harvesting method.
Collapse
Affiliation(s)
- Sam L. Francis
- Department of Surgery, The University of Melbourne, Melbourne, VIC 3065, Australia;
- Department of Orthopaedics, St Vincent’s Hospital, Melbourne, VIC 3056, Australia;
- Biofab 3D, Aikenhead Centre for Medical Discovery, Melbourne, VIC 3065, Australia
- Correspondence: ; Tel.: +61-466-640-801
| | - Angela Yao
- Department of Orthopaedics, St Vincent’s Hospital, Melbourne, VIC 3056, Australia;
| | - Peter F. M. Choong
- Department of Surgery, The University of Melbourne, Melbourne, VIC 3065, Australia;
- Department of Orthopaedics, St Vincent’s Hospital, Melbourne, VIC 3056, Australia;
- Biofab 3D, Aikenhead Centre for Medical Discovery, Melbourne, VIC 3065, Australia
| |
Collapse
|
17
|
Grevenstein D, Heilig J, Dargel J, Oppermann J, Eysel P, Brochhausen C, Niehoff A. COMP in the Infrapatellar Fat Pad-Results of a Prospective Histological, Immunohistological, and Biochemical Case-Control Study. J Orthop Res 2020; 38:747-758. [PMID: 31696983 DOI: 10.1002/jor.24514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 10/25/2019] [Indexed: 02/04/2023]
Abstract
Knee osteoarthritis (OA) involves several structures and molecules in the joint, which interact in a pathophysiological process. One of these molecules is the cartilage oligomeric matrix protein (COMP). Elevated COMP levels in the synovial fluid as well as in the serum have been described in OA patients. However, this has not been described in the infrapatellar fat pad (IPFP) tissue before. In this prospective trial, we collected 14 IPFPs from patients with high-grade OA (mean age 63.8 ± 17.6 years) who underwent total knee replacement (OA group) and from 11 healthy patients (mean age 33.7 ± 14.8 years) who underwent anterior cruciate ligament reconstruction (control group). The presence of macrophages (CD68 and CD206) and proinflammatory cytokines (interleukin 1β [IL-1β] and IL-6) was analyzed. Histological and immunohistological examinations as well as immunoblotting analysis for COMP, leptin, and matrix-metalloproteinase-3 were performed. The IPFPs of both the OA and control group consisted of adipose tissue and fibrous tissue, and the fibrous tissue showed higher score values than the adipose tissue for COMP staining (intensity as well as stained area) in both groups. Although COMP could be detected in most samples, leptin expression was found only in single specimens. COMP could be detected mostly in the fibrous tissue portion of the IPFP. We speculate that it is involved in a remodeling process taking place in the IPFP during OA. Presence of leptin was irregular in immunohistology, and the control group showed higher scores in case of presence. Interestingly, immunoblotting could detect leptin in all analyzed samples. © 2019 The Authors. Journal of Orthopaedic Research® published by Wiley Periodicals, Inc. on behalf of Orthopaedic Research Society J Orthop Res 38:747-758, 2020.
Collapse
Affiliation(s)
- David Grevenstein
- Department for Orthopaedic and Trauma Surgery, Faculty of Medicine and University Hospital of Cologne, Cologne, Germany.,Cologne Center for Musculoskeletal Biomechanics, Faculty of Medicine and University Hospital of Cologne, Cologne, Germany
| | - Juliane Heilig
- Cologne Center for Musculoskeletal Biomechanics, Faculty of Medicine and University Hospital of Cologne, Cologne, Germany
| | - Jens Dargel
- Cologne Center for Musculoskeletal Biomechanics, Faculty of Medicine and University Hospital of Cologne, Cologne, Germany.,Departement for Orthopedic Surgery, St. Josefs-Hospital, Wiesbaden, Germany
| | - Johannes Oppermann
- Department for Orthopaedic and Trauma Surgery, Faculty of Medicine and University Hospital of Cologne, Cologne, Germany.,Cologne Center for Musculoskeletal Biomechanics, Faculty of Medicine and University Hospital of Cologne, Cologne, Germany
| | - Peer Eysel
- Department for Orthopaedic and Trauma Surgery, Faculty of Medicine and University Hospital of Cologne, Cologne, Germany.,Cologne Center for Musculoskeletal Biomechanics, Faculty of Medicine and University Hospital of Cologne, Cologne, Germany
| | | | - Anja Niehoff
- Cologne Center for Musculoskeletal Biomechanics, Faculty of Medicine and University Hospital of Cologne, Cologne, Germany.,Institute of Biomechanics and Orthopaedics, German Sport University Cologne, Cologne, Germany
| |
Collapse
|
18
|
Intraarticular Ligament Degeneration Is Interrelated with Cartilage and Bone Destruction in Osteoarthritis. Cells 2019; 8:cells8090990. [PMID: 31462003 PMCID: PMC6769780 DOI: 10.3390/cells8090990] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/18/2019] [Accepted: 08/20/2019] [Indexed: 12/16/2022] Open
Abstract
Osteoarthritis (OA) induces inflammation and degeneration of all joint components including cartilage, joint capsule, bone and bone marrow, and ligaments. Particularly intraarticular ligaments, which connect the articulating bones such as the anterior cruciate ligament (ACL) and meniscotibial ligaments, fixing the fibrocartilaginous menisci to the tibial bone, are prone to the inflamed joint milieu in OA. However, the pathogenesis of ligament degeneration on the cellular level, most likely triggered by OA associated inflammation, remains poorly understood. Hence, this review sheds light into the intimate interrelation between ligament degeneration, synovitis, joint cartilage degradation, and dysbalanced subchondral bone remodeling. Various features of ligament degeneration accompanying joint cartilage degradation have been reported including chondroid metaplasia, cyst formation, heterotopic ossification, and mucoid and fatty degenerations. The entheses of ligaments, fixing ligaments to the subchondral bone, possibly influence the localization of subchondral bone lesions. The transforming growth factor (TGF)β/bone morphogenetic (BMP) pathway could present a link between degeneration of the osteochondral unit and ligaments with misrouted stem cell differentiation as one likely reason for ligament degeneration, but less studied pathways such as complement activation could also contribute to inflammation. Facilitation of OA progression by changed biomechanics of degenerated ligaments should be addressed in more detail in the future.
Collapse
|