1
|
Niu Y, Wang Y, Han X, Ouyang G, Xiao H, Liu C, Li Y. Association between embryo transfer season and the risks of hypertensive disorders of pregnancy and gestational diabetes mellitus. J Assist Reprod Genet 2025; 42:1297-1308. [PMID: 39966211 PMCID: PMC12055679 DOI: 10.1007/s10815-025-03426-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 02/06/2025] [Indexed: 02/20/2025] Open
Abstract
PURPOSE To explore the impact of seasonal variations on the risks of hypertensive disorders of pregnancy (HDP) and gestational diabetes mellitus (GDM) in women who undergo in vitro fertilization (IVF) treatment. METHODS We retrospectively included a total of 21,469 women who achieved singleton delivery during their first cycles of IVF, the risks of HDP and GDM were compared in different seasonal groups according to the time of embryo transfer and the time of oocyte retrieval. RESULTS After adjustment via multivariable logistic regression, women who underwent embryo transfer in spring with the expected date of confinement in winter had a higher risk of HDP (4.9% vs. 3.8%; adjusted odds ratio (aOR), 1.34; 95% confidence interval (CI), 1.09-1.64; P = 0.005) than those underwent embryo transfer in winter with the expected date of confinement in autumn. There were no seasonal variations in the risk of HDP according to the time of oocyte retrieval or in the risk of GDM regardless of the time of embryo transfer or the time of oocyte retrieval. After subgroup analysis, the seasonal variations in the risk of HDP remained in frozen embryo transfer (FET) cycles but not in fresh embryo transfer (FreET) cycles. CONCLUSIONS The risk of HDP was increased in women who underwent embryo transfer in spring compared to those who underwent embryo transfer in winter. The risk of HDP is more likely to be affected by the season at the time of embryo transfer in FET cycles compared to FreET cycles.
Collapse
Affiliation(s)
- Yue Niu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China
- Medical Integration and Practice Center, Shandong University, Jinan, 250012, Shandong, China
| | - Yue Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China
- Medical Integration and Practice Center, Shandong University, Jinan, 250012, Shandong, China
| | - Xinwei Han
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China
- Medical Integration and Practice Center, Shandong University, Jinan, 250012, Shandong, China
| | - Gege Ouyang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China
- Medical Integration and Practice Center, Shandong University, Jinan, 250012, Shandong, China
| | - Huiying Xiao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China
- Medical Integration and Practice Center, Shandong University, Jinan, 250012, Shandong, China
| | - Chendan Liu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China
- Medical Integration and Practice Center, Shandong University, Jinan, 250012, Shandong, China
| | - Yan Li
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, China.
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China.
- Medical Integration and Practice Center, Shandong University, Jinan, 250012, Shandong, China.
| |
Collapse
|
2
|
Feeding role of mouse embryonic fibroblast cells is influenced by genetic background, cell passage and day of isolation. ZYGOTE 2022; 30:550-560. [PMID: 35485762 DOI: 10.1017/s0967199421000083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Mouse embryonic fibroblast (MEF) cells are commonly used as feeder cells to maintain the pluripotent state of stem cells. MEFs produce growth factors and provide adhesion molecules and extracellular matrix (ECM) compounds for cellular binding. In the present study, we compared the expression levels of Fgf2, Bmp4, ActivinA, Lif and Tgfb1 genes at the mRNA level and the level of Fgf2 protein secretion and Lif cytokine secretion at passages one, three and five of MEFs isolated from 13.5-day-old and 15.5-day-old embryos of NMRI and C57BL/6 mice using real-time PCR and enzyme-linked immunosorbent assay. We observed differences in the expression levels of the studied genes and secretion of the two growth factors in the three passages of MEFs isolated from 13.5-day-old and 15.5-day-old embryos, respectively. These differences were also observed between the NMRI and C57BL/6 strains. The results of this study suggested that researchers should use mice embryos that have different genetic backgrounds and ages, in addition to different MEF passages, when producing MEFs based on the application and type of their study.
Collapse
|
3
|
Alonso-Alonso S, Santaló J, Ibáñez E. Efficient generation of embryonic stem cells from single blastomeres of cryopreserved mouse embryos in the presence of signalling modulators. Reprod Fertil Dev 2022; 34:576-587. [PMID: 35157826 DOI: 10.1071/rd21297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/23/2022] [Indexed: 11/23/2022] Open
Abstract
CONTEXT Derivation of embryonic stem cells (ESC) from single blastomeres is an interesting alternative to the use of whole blastocysts, but derivation rates are lower and the requirements for successful ESC obtention are still poorly defined. AIMS To investigate the effects of embryo cryopreservation and of signalling modulators present during embryo culture and/or ESC establishment on ESC derivation efficiency from single 8-cell mouse blastomeres. METHOD Fresh and cryopreserved 2-cell embryos were cultured and biopsied at the 8-cell stage. Single blastomeres were cultured in the presence of 2i or R2i cocktails, with or without adrenocorticotropic hormone (ACTH). We analysed ESC derivation efficiencies and characterised pluripotency genes expression and karyotype integrity of the resulting lines. We also evaluated the impact of embryo preculture with R2i on epiblast cell numbers and derivation rates. KEY RESULTS The ESC generation was not compromised by embryo cryopreservation and ACTH was dispensable under most of the conditions tested. While 2i and R2i were similarly effective for ESC derivation, R2i provided higher karyotype integrity. Embryo preculture with R2i yielded increased numbers of epiblast cells but did not lead to increased ESC generation. CONCLUSIONS Our findings help to define a simplified and efficient procedure for the establishment of mouse ESC from single 8-cell blastomeres. IMPLICATIONS This study will contribute to improving the potential of this experimental procedure, providing a tool to investigate the developmental potential of blastomeres isolated from different embryonic stages and to reduce the number of embryos needed for ESC derivation.
Collapse
Affiliation(s)
- Sandra Alonso-Alonso
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Josep Santaló
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Elena Ibáñez
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| |
Collapse
|
4
|
Li H, Xu W, Xiang S, Tao L, Fu W, Liu J, Liu W, Xiao Y, Peng L. Defining the Pluripotent Marker Genes for Identification of Teleost Fish Cell Pluripotency During Reprogramming. Front Genet 2022; 13:819682. [PMID: 35222539 PMCID: PMC8874021 DOI: 10.3389/fgene.2022.819682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/19/2022] [Indexed: 11/13/2022] Open
Abstract
Pluripotency is a transient state in early embryos, which is regulated by an interconnected network of pluripotency-related genes. The pluripotent state itself seems to be highly dynamic, which leads to significant differences in the description of induced pluripotent stem cells from different species at the molecular level. With the application of cell reprogramming technology in fish, the establishment of a set of molecular standards for defining pluripotency will be important for the research and potential application of induced pluripotent stem cells in fish. In this study, by BLAST search and expression pattern analysis, we screen out four pluripotent genes (Oct4, Nanog, Tdgf1, and Gdf3) in zebrafish (Danio rerio) and crucian carp (Carassius). These genes were highly expressed in the short period of early embryonic development, but significantly down-regulated after differentiation. Moreover, three genes (Oct4, Nanog and Tdgf1) have been verified that are suitable for identifying the pluripotency of induced pluripotent stem cells in zebrafish and crucian carp. Our study expands the understanding of the pluripotent markers of induced pluripotent stem cells in fish.
Collapse
Affiliation(s)
- Huajin Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China
- School of Life Sciences, Hunan Normal University, Changsha, China
| | - Wenting Xu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China
- School of Life Sciences, Hunan Normal University, Changsha, China
| | - Sijia Xiang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China
- School of Life Sciences, Hunan Normal University, Changsha, China
| | - Leiting Tao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China
- School of Life Sciences, Hunan Normal University, Changsha, China
| | - Wen Fu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China
- School of Life Sciences, Hunan Normal University, Changsha, China
| | - Jinhui Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China
- School of Life Sciences, Hunan Normal University, Changsha, China
| | - Wenbin Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China
- School of Life Sciences, Hunan Normal University, Changsha, China
| | - Yamei Xiao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China
- School of Life Sciences, Hunan Normal University, Changsha, China
| | - Liangyue Peng
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China
- School of Life Sciences, Hunan Normal University, Changsha, China
- *Correspondence: Liangyue Peng,
| |
Collapse
|
5
|
Use of alginate hydrogel to improve long-term 3D culture of spermatogonial stem cells: stemness gene expression and structural features. ZYGOTE 2021; 30:312-318. [PMID: 34641993 DOI: 10.1017/s0967199421000551] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The quality and quantity of a spermatogonial stem-cell (SSC) culture can be measured in less time using a 3D culture in a scaffold. The present study investigated stemness gene expression and the morphological and structural characterization of SSCs encapsulated in alginate. SSCs were harvested from BALB/c neonatal mice testes through two-step mechanical and enzymatic digestion. The spermatogonial populations were separated using magnetic-activated cell sorting (MACS) using an anti-Thy1 antibody and c-Kit. The SSCs then were encapsulated in alginate hydrogel. After 2 months of SSC culturing, the alginate microbeads were extracted and stained to evaluate their histological properties. Real-time polymerase chain reaction (PCR) was performed to determine the stemness gene expression. Scanning electron microscopy (SEM) was performed to evaluate the SSC morphology, density and scaffold structure. The results showed that encapsulated SSCs had decreased expression of Oct4, Sox2 and Nanos2 genes, but the expression of Nanog, Bcl6b and Plzf genes was not significantly altered. Histological examination showed that SSCs with pale nuclei and numerous nucleolus formed colonies. SEM evaluation revealed that the alginate scaffold structure preserved the SSC morphology and density for more than 60 days. Cultivation of SSCs on alginate hydrogel can affect Oct4, Sox2 and Nanos2 expression.
Collapse
|
6
|
Evaluation of co-cultured spermatogonial stem cells encapsulated in alginate hydrogel with Sertoli cells and their transplantation into azoospermic mice. ZYGOTE 2021; 30:344-351. [PMID: 34610855 DOI: 10.1017/s0967199421000733] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
An in vitro spermatogonial stem cell (SSC) culture can serve as an effective technique to study spermatogenesis and treatment for male infertility. In this research, we compared the effect of a three-dimensional alginate hydrogel with Sertoli cells in a 3D culture and co-cultured Sertoli cells. After harvest of SSCs from neonatal mice testes, the SSCs were divided into two groups: SSCs on a 3D alginate hydrogel with Sertoli cells and a co-culture of SSCs with Sertoli cells for 1 month. The samples were evaluated by quantitative reverse transcription polymerase chain reaction (qRT-PCR) assays and bromodeoxyuridine (BrdU) tracing, haematoxylin and eosin (H&E) and periodic acid-Schiff (PAS) staining after transplantation into an azoospermic testis mouse. The 3D group showed rapid cell proliferation and numerous colonies compared with the co-culture group. Molecular assessment showed significantly increased integrin alpha-6, integrin beta-1, Nanog, Plzf, Thy-1, Oct4 and Bcl2 expression levels in the 3D group and decreased expression levels of P53, Fas, and Bax. BrdU tracing, and H&E and PAS staining results indicated that the hydrogel alginate improved spermatogenesis after transplantation in vivo. This finding suggested that cultivation of SSCs on alginate hydrogel with Sertoli cells in a 3D culture can lead to efficient proliferation and maintenance of SSC stemness and enhance the efficiency of SSC transplantation.
Collapse
|
7
|
A comparison of the effects of fetal bovine serum and newborn calf serum on cell growth and maintenance of cryopreserved mouse spermatogonial stem cells. Mol Biol Rep 2020; 47:9609-9614. [PMID: 33211295 DOI: 10.1007/s11033-020-06004-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 11/11/2020] [Indexed: 10/23/2022]
Abstract
Serum is a common supplement that is widely used to protect various cells and tissues from cryopreservation because it provides the necessary active components for cell growth and maintenance. In this study, we compared the effects of newborn calf serum (NCS) and fetal bovine serum (FBS) on the cryopreservation of mouse spermatogonial stem cells (SSCs). The isolated SSCs were cryopreserved in two groups: freezing medium that contained 10% DMSO (dimethyl sulfoxide) and 10% FBS in DMEM (Dulbecco's Modified Eagle's Medium) (group 1) and freezing medium that contained 10% DMSO and 10% NCS in DMEM (group 2). Real-time PCR was performed for stemness gene expression. The SSCs' viability was performed by trypan blue. We observed that the SSCs had increased viability in the NCS-freeze/thaw group (87.82%) compared to the FBS-freeze/thaw group (79.83%), but this increase was not statistically significant (P < 0.105). Promyelocytic leukemia zinc finger (Plzf) and Lin28 gene expression levels in the NCS-frozen/thawed SSCs were not significantly different compared to the FBS-frozen/thawed SSCs; however, Nanog gene expression increased considerably, and Dazl gene expression decreased significantly. The results in this study demonstrated that the presence of NCS in a solution of cryopreserved SSCs increased their viability after freeze/thawing and might promote the proliferation of cultivated SSCs in vitro by increasing the relative expression of Nanog.
Collapse
|
8
|
Llobat L. Embryo gene expression in pig pregnancy. Reprod Domest Anim 2020; 55:523-529. [PMID: 31986225 DOI: 10.1111/rda.13647] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 01/16/2020] [Indexed: 02/06/2023]
Abstract
Pregnancy is a complex process in which significant changes occur continually in both the corpora lutea and in the endometrium of the females and varies depending on the embryonic, pre-implantation or foetal stages. In the embryonic stages, the majority of genes expressed in the pig embryo correspond to the loss of cellular pluripotency. In contrast, the implantation consists of three phases: elongation of the conceptus, adhesion and union of the embryo to the endometrial epithelium. During these phases, many factors are expressed, including growth factors, molecules that facilitate adhesion and cytokines. All these changes are ultimately regulated by different lipid and hormonal substances, specifically by progesterone, oestradiol and prostaglandins, which regulate the expression of many proteins necessary for the development of the embryo, endometrial remodelling and embryo-maternal communication. This paper is a review of primary gene regulatory mechanisms in pigs during different stages of implantation.
Collapse
Affiliation(s)
- Lola Llobat
- Grupo Fisiopatología de la Reproducción, Departamento Producción y Sanidad Animal, Salud Pública y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| |
Collapse
|