1
|
Tan RZ, Jia J, Li T, Wang L, Kantawong F. A systematic review of epigenetic interplay in kidney diseases: Crosstalk between long noncoding RNAs and methylation, acetylation of chromatin and histone. Biomed Pharmacother 2024; 176:116922. [PMID: 38870627 DOI: 10.1016/j.biopha.2024.116922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/06/2024] [Accepted: 06/09/2024] [Indexed: 06/15/2024] Open
Abstract
The intricate crosstalk between long noncoding RNAs (lncRNAs) and epigenetic modifications such as chromatin/histone methylation and acetylation offer new perspectives on the pathogenesis and treatment of kidney diseases. lncRNAs, a class of transcripts longer than 200 nucleotides with no protein-coding potential, are now recognized as key regulatory molecules influencing gene expression through diverse mechanisms. They modulate the epigenetic modifications by recruiting or blocking enzymes responsible for adding or removing methyl or acetyl groups, such as DNA, N6-methyladenosine (m6A) and histone methylation and acetylation, subsequently altering chromatin structure and accessibility. In kidney diseases such as acute kidney injury (AKI), chronic kidney disease (CKD), diabetic nephropathy (DN), glomerulonephritis (GN), and renal cell carcinoma (RCC), aberrant patterns of DNA/RNA/histone methylation and acetylation have been associated with disease onset and progression, revealing a complex interplay with lncRNA dynamics. Recent studies have highlighted how lncRNAs can impact renal pathology by affecting the expression and function of key genes involved in cell cycle control, fibrosis, and inflammatory responses. This review will separately address the roles of lncRNAs and epigenetic modifications in renal diseases, with a particular emphasis on elucidating the bidirectional regulatory effects and underlying mechanisms of lncRNAs in conjunction with DNA/RNA/histone methylation and acetylation, in addition to the potential exacerbating or renoprotective effects in renal pathologies. Understanding the reciprocal relationships between lncRNAs and epigenetic modifications will not only shed light on the molecular underpinnings of renal pathologies but also present new avenues for therapeutic interventions and biomarker development, advancing precision medicine in nephrology.
Collapse
Affiliation(s)
- Rui-Zhi Tan
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Jian Jia
- Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Tong Li
- Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Li Wang
- Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China.
| | - Fahsai Kantawong
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
2
|
Qu N, Luan T, Liu N, Kong C, Xu L, Yu H, Kang Y, Han Y. Hepatocyte nuclear factor 4 a (HNF4α): A perspective in cancer. Biomed Pharmacother 2023; 169:115923. [PMID: 38000355 DOI: 10.1016/j.biopha.2023.115923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/06/2023] [Accepted: 11/20/2023] [Indexed: 11/26/2023] Open
Abstract
HNF4α, a transcription factor, plays a vital role in regulating functional genes and biological processes. Its alternative splicing leads to various transcript variants encoding different isoforms. The spotlight has shifted towards the extensive discussion on tumors interplayed withHNF4α abnormalities. Aberrant HNF4α expression has emerged as sentinel markers of epigenetic shifts, casting reverberations upon downstream target genes and intricate signaling pathways, most notably with cancer. This review provides a comprehensive overview of HNF4α's involvement in tumor progression and metastasis, elucidating its role and underlying mechanisms.
Collapse
Affiliation(s)
- Ningxin Qu
- The Breast Oncology Dept., Shengjing Hospital of China Medical University, Shenyang, China
| | - Ting Luan
- Department of Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Naiquan Liu
- The Nephrological Dept., Shengjing Hospital of China Medical University, Shenyang, China
| | - Chenhui Kong
- The Breast Oncology Dept., Shengjing Hospital of China Medical University, Shenyang, China
| | - Le Xu
- The Breast Oncology Dept., Shengjing Hospital of China Medical University, Shenyang, China
| | - Hong Yu
- The Breast Oncology Dept., Shengjing Hospital of China Medical University, Shenyang, China
| | - Ye Kang
- The Pathology Dept, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ye Han
- The Breast Oncology Dept., Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
3
|
Gao X, Zhang H, Zhang C, Li M, Yu X, Sun Y, Shi Y, Zhang H, He X. The emerging role of long non-coding RNAs in renal cell carcinoma progression and clinical therapy via targeting metabolic regulation. Front Pharmacol 2023; 14:1122065. [PMID: 36969848 PMCID: PMC10034124 DOI: 10.3389/fphar.2023.1122065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/01/2023] [Indexed: 03/12/2023] Open
Abstract
Graphical AbstractThis review mainly describes that lncRNAs interact with miRNA-mRNA axis, or directly binds to mRNAs and proteins, to influence RCC progression via metabolic regulation, mainly including glucose metabolism, lipid metabolism, amino acid metabolism and mitochondrial dynamics (Created with biorender.com).
Collapse
Affiliation(s)
- Xingyu Gao
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Haiying Zhang
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Chang Zhang
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Minghe Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Xiao Yu
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Yanan Sun
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
- Reproductive Medicine Center, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Yingai Shi
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Hongxia Zhang
- Department of Rehabilitation Medicine, China-Japan Union Hospital, Jilin University, Changchun, China
- *Correspondence: Xu He, ; Hongxia Zhang,
| | - Xu He
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
- *Correspondence: Xu He, ; Hongxia Zhang,
| |
Collapse
|
4
|
Ranjbar M, Heydarzadeh S, Shekari Khaniani M, Foruzandeh Z, Seif F, Pornour M, Rahmanpour D, Tarhriz V, Alivand M. Mutual interaction of lncRNAs and epigenetics: focusing on cancer. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2023. [DOI: 10.1186/s43042-023-00404-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023] Open
Abstract
AbstractLong noncoding RNAs are characterized as noncoding transcripts longer than 200 nucleotides in response to a variety of functions within the cells. They are involved in almost all cellular mechanisms so as epigenetics. Given that epigenetics is an important phenomenon, which participates in the biology of complex diseases, many valuable studies have been performed to demonstrate the control status of lncRNAs and epigenetics. DNA methylation and histone modifications as epigenetic mechanisms can regulate the expression of lncRNAs by affecting their coding genes. Reciprocally, the three-dimensional structure of lncRNAs could mechanistically control the activity of epigenetic-related enzymes. Dysregulation in the mutual interaction between epigenetics and lncRNAs is one of the hallmarks of cancer. These mechanisms are either directly or indirectly involved in various cancer properties such as proliferation, apoptosis, invasion, and metastasis. For instance, lncRNA HOTAIR plays a role in regulating the expression of many genes by interacting with epigenetic factors such as DNA methyltransferases and EZH2, and thus plays a role in the initiation and progression of various cancers. Conversely, the expression of this lncRNA is also controlled by epigenetic factors. Therefore, focusing on this reciprocated interaction can apply to cancer management and the identification of prognostic, diagnostic, and druggable targets. In the current review, we discuss the reciprocal relationship between lncRNAs and epigenetic mechanisms to promote or prevent cancer progression and find new potent biomarkers and targets for cancer diagnosis and therapy.
Collapse
|
5
|
Sang L, Wang X, Bai W, Shen J, Zeng Y, Sun J. The role of hepatocyte nuclear factor 4α (HNF4α) in tumorigenesis. Front Oncol 2022; 12:1011230. [PMID: 36249028 PMCID: PMC9554155 DOI: 10.3389/fonc.2022.1011230] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
Hepatocyte Nuclear Factor 4 Alpha (HNF4α) is a master transcription factor mainly expressed in the liver, kidney, intestine and endocrine pancreas. It regulates multiple target genes involved in embryonic development and metabolism. HNF4α-related diseases include non-alcoholic fatty liver disease (NAFLD), obesity, hypertension, hyperlipidemia, metabolic syndrome and diabetes mellitus. Recently, HNF4α has been emerging as a key player in a variety of cancers. In this review, we summarized the role and mechanism of HNF4α in different types of cancers, especially in liver and colorectal cancer, aiming to provide additional guidance for intervention of these diseases.
Collapse
Affiliation(s)
- Lei Sang
- The Sixth Affiliated Hospital of Kunming Medical University, Yuxi, China
- Center for Life Sciences, School of Life Sciences, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Xingshun Wang
- The Sixth Affiliated Hospital of Kunming Medical University, Yuxi, China
- Center for Life Sciences, School of Life Sciences, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Weiyu Bai
- Center for Life Sciences, School of Life Sciences, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Junling Shen
- Center for Life Sciences, School of Life Sciences, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Yong Zeng
- The Sixth Affiliated Hospital of Kunming Medical University, Yuxi, China
- The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jianwei Sun
- Center for Life Sciences, School of Life Sciences, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| |
Collapse
|
6
|
Huo X, Wang L, Shao J, Zhou C, Ying X, Zhao J, Jin X. LINC00667 regulates MPP
+
‐induced neuronal injury in Parkinson’s disease. Ann Clin Transl Neurol 2022; 9:707-721. [PMID: 35426258 PMCID: PMC9082386 DOI: 10.1002/acn3.51480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 10/29/2021] [Accepted: 11/04/2021] [Indexed: 11/29/2022] Open
Abstract
Objective Parkinson’s disease (PD), also known as paralysis tremor, is a chronic disease of the central nervous system. It has been reported that hepatocyte nuclear factor 4 alpha (HNF4A) is upregulated in PD, but its specific function has not been well explored. Methods We established an in vitro PD model in SH‐SY5Y cells stimulated with 1‐methyl‐4‐phenylpyridinium (MPP+). Meanwhile, the effect of HNF4A on MPP+‐treated SH‐SY5Y cell behavior was monitored by functional assays. Mechanism assays were conducted to verify the relationship among LINC00667/miR‐34c‐5p/HNF4A. Rescue experiments validated the regulatory mechanism in PD model. Results The results revealed that depletion of HNF4A suppressed cell cytotoxicity and apoptosis caused by MPP+. Knockdown of HNF4A recovered MPP+‐stimulated oxidative stress and neuroinflammation. Mechanically, HNF4A was targeted and inhibited by miR‐34c‐5p. Furthermore, we found that LINC00667 positively modulated HNF4A expression via sequestering miR‐34c‐5p in MPP+‐stimulated SH‐SY5Y cells. Interestingly, the data indicated that HNF4A could transcriptionally activate LINC00667 expression. Rescue experiments presented that miR‐34c‐5p interference or HNF4A overexpression could mitigate the effects of LINC00667 knockdown on cell viability, cytotoxicity, cell apoptosis, oxidative stress, and neuroinflammation in MPP+‐treated SH‐SY5Y cells. Conclusion Our study first proved LINC00667, miR‐34c‐5p, and HNF4A constructed a positive feedback loop in MPP+‐treated SH‐SY5Y cells, enriching our understanding of PD.
Collapse
Affiliation(s)
- Xinlong Huo
- Department of Neurology The First People’s Hospital of Wenling Wenling Zhejiang 317500 China
| | - Lisong Wang
- Department of Neurology The First People’s Hospital of Wenling Wenling Zhejiang 317500 China
| | - Jiahui Shao
- Department of Neurology The First People’s Hospital of Wenling Wenling Zhejiang 317500 China
| | - Chenhang Zhou
- Department of Neurology The First People’s Hospital of Wenling Wenling Zhejiang 317500 China
| | - Xiaowei Ying
- Department of Neurology The First People’s Hospital of Wenling Wenling Zhejiang 317500 China
| | - Jinhua Zhao
- Department of Neurosurgery The First People’s Hospital of Xianyang Xianyang Shaanxi 712000 China
| | - Xinchun Jin
- Department of Neurology The First People’s Hospital of Wenling Wenling Zhejiang 317500 China
| |
Collapse
|
7
|
Mai H, Liao Y, Luo S, Wei K, Yang F, Shi H. Histone deacetylase HDAC2 silencing prevents endometriosis by activating the HNF4A/ARID1A axis. J Cell Mol Med 2021; 25:9972-9982. [PMID: 34586697 PMCID: PMC8572779 DOI: 10.1111/jcmm.16835] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 07/04/2021] [Accepted: 07/08/2021] [Indexed: 12/13/2022] Open
Abstract
Endometriosis is the most major cause of chronic pelvic pain in women of reproductive age. Moreover, the involvement of histone deacetylase 2 (HDAC2) has been identified in endometriosis. However, the specific mechanism of HDAC2 remains to be further elusive. Therefore, this study was designed to explore the mechanism of HDAC2 orchestrating hepatocyte nuclear factor 4α/AT‐rich interactive domain 1A (HNF4A/ARID1A) axis in endometriosis. Endometriosis cell line hEM15A and clinical endometriosis tissues were obtained, followed by gain‐ and loss‐of‐function assays in hEM15A cells. HDAC2, HNF4A and ARID1A expression was detected by immunohistochemistry and Western blot analysis. Cell viability was determined by Cell Counting Kit‐8 Assay, invasion by Transwell assay and apoptosis by flow cytometry. HDAC2 enrichment in HNF4A promoter region and HNF4A enrichment in ARID1A promoter region was detected through chromatin immunoprecipitation. Mouse models of endometriosis were established, followed by immunohistochemistry of Ki‐67 expression and TUNEL staining of apoptosis in ectopic tissues. HDAC2 was upregulated but HNF4A and ARID1A were downregulated in endometriosis tissues. HDAC2 inhibited HNF4A expression by deacetylation, and HNF4A was enriched in ARID1A promoter region to activate ARID1A. Silencing HDAC2 or overexpressing HNF4A or ARID1A diminished the viability and invasion and augmented the apoptosis of hEM15A cells. HDAC2 silencing reduced the area and weight of endometriosis tissues, suppressed endometriosis cell proliferation and accelerated endometriosis cell apoptosis. The inhibitory action of silencing HDAC2 via HNF4A/ARID1A axis was reproduced in mouse models. Collectively, HDAC2 silencing might upregulate HNF4A via repression of deacetylation to activate ARID1A, thus preventing the occurrence of endometriosis.
Collapse
Affiliation(s)
- Hong Mai
- Department of Gynecology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yan Liao
- Department of Gynecology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Sufang Luo
- Department of Gynecology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Kaiyi Wei
- Department of Gynecology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Feng Yang
- Department of Gynecology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Haijuan Shi
- Department of Gynecology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
8
|
Wang Z, Zhang Y, Zhang J, Deng Q, Liang H. Controversial roles of hepatocyte nuclear receptor 4 α on tumorigenesis. Oncol Lett 2021; 21:356. [PMID: 33747213 PMCID: PMC7968000 DOI: 10.3892/ol.2021.12617] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 02/09/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatocyte nuclear receptor 4 α (HNF4α) is known to be a master transcription regulator of gene expression in multiple biological processes, particularly in liver development and liver function. To date, the function of HNF4α in human cancers has been widely investigated; however, the critical roles of HNF4α in tumorigenesis remain unclear. Numerous controversies exist, even in studies from different research groups but on the same type of cancer. In the present review, the critical roles of HNF4α in tumorigenesis will be summarized and discussed. Furthermore, HNF4α expression profile and alterations will be examined by pan-cancer analysis through bioinformatics, in order to provide a better understanding of the functional roles of this gene in human cancers.
Collapse
Affiliation(s)
- Zhu Wang
- Department of Urology, People's Hospital of Longhua, Southern Medical University, Shenzhen, Guangdong 518109, P.R. China
| | - Ying Zhang
- Department of Urology, People's Hospital of Longhua, Southern Medical University, Shenzhen, Guangdong 518109, P.R. China
| | - Jianwen Zhang
- Department of Urology, People's Hospital of Longhua, Southern Medical University, Shenzhen, Guangdong 518109, P.R. China
| | - Qiong Deng
- Department of Urology, People's Hospital of Longhua, Southern Medical University, Shenzhen, Guangdong 518109, P.R. China
| | - Hui Liang
- Department of Urology, People's Hospital of Longhua, Southern Medical University, Shenzhen, Guangdong 518109, P.R. China
| |
Collapse
|
9
|
Zhang B, Chu W, Wen F, Zhang L, Sun L, Hu B, Wang J, Su Q, Mei Y, Cao J, Zheng J, Mou X, Dong H, Lin X, Wang N, Ji H. Dysregulation of Long Non-coding RNAs and mRNAs in Plasma of Clear Cell Renal Cell Carcinoma Patients Using Microarray and Bioinformatic Analysis. Front Oncol 2020; 10:559730. [PMID: 33330027 PMCID: PMC7729199 DOI: 10.3389/fonc.2020.559730] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 08/17/2020] [Indexed: 11/13/2022] Open
Abstract
Objective: The roles of long non-coding RNAs (lncRNAs) in the diagnosis of clear cell renal cell carcinoma (ccRCC) are still not well-defined. We aimed to identify differentially expressed lncRNAs and mRNAs in plasma of ccRCC patients and health controls systematically. Methods: Expression profile of plasma lncRNAs and mRNAs in ccRCC patients and healthy controls was analyzed based on microarray assay. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway-based approaches were used to investigate biological function and signaling pathways mediated by the differentially expressed mRNAs. SOCS2-AS1 was selected for validation using Real-Time PCR. The differentially expressed lncRNAs and mRNAs were further compared with E-MTAB-1830 datasets using Venn and the NetworkAnalyst website. The GEPIA and ULCAN websites were utilized for the evaluation of the expression level of differentially expressed mRNA and their association with overall survival (OS). Results: A total of 3,664 differentially expressed lncRNAs were identified in the plasma of ccRCC patients, including 1,511 up-regulated and 2,153 down-regulated lncRNAs (fold change ≥2 and P < 0.05), respectively. There were 2,268 differentially expressed mRNAs, including 932 up-regulated mRNAs and 1,336 down-regulated mRNAs, respectively (fold change ≥2 and P < 0.05). Pathway analysis based on deregulated mRNAs was mainly involved in melanogenesis and Hippo signaling pathway (P < 0.05). In line with the lncRNA microarray findings, the SOCS2-AS1 was down-regulated in ccRCC plasma and tissues, as well as in cell lines. Compared with the E-MTAB-1830 gene expression profiles, we identified 18 lncRNAs and 87 mRNAs differently expressed in both plasma and neoplastic tissues of ccRCC. The expression of 10 mRNAs (EPB41L4B, CCND1, GGT1, CGNL1, CYSLTR1, PLAUR, UGT3A1, PROM2, MUC12, and PCK1) was correlated with the overall survival (OS) rate in ccRCC patients based on the GEPIA and ULCAN websites. Conclusions: We firstly reported differentially expressed lncRNAs in ccRCC patients and healthy controls systemically. Several differentially expressed lncRNAs and mRNAs were identified, which might serve as diagnostic or prognostic markers. The biological function of these lncRNAs and mRNAs should be further validated. Our study may contribute to the future treatment of ccRCC and provide novel insights into cancer biology.
Collapse
Affiliation(s)
- Bing Zhang
- Department of Urology, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou, China
| | - Wei Chu
- Department of Pathology, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou, China
| | - Feifei Wen
- Department of Pathology, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou, China
| | - Li Zhang
- Department of Anesthesiology, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou, China
| | - Lixia Sun
- Department of Pathology, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou, China
| | - Baoguang Hu
- Department of Gastrointestinal Surgery, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou, China
| | - Jingjing Wang
- Department of Pathology, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou, China
| | - Qingguo Su
- Department of Urology, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou, China
| | - Yanhui Mei
- Department of Urology, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou, China
| | - Jingyuan Cao
- Department of Urology, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou, China
| | - Jing Zheng
- Clinical Medicine Laboratory, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou, China
| | - Xiaodong Mou
- Department of Pathology, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou, China
| | - Hongliang Dong
- Clinical Medicine Laboratory, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou, China
| | - Xiaoyan Lin
- Department of Pathology, Shandong Province Hospital, Jinan, China
| | - Nan Wang
- Clinical Medicine Laboratory, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou, China
| | - Hong Ji
- Department of Pathology, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou, China
| |
Collapse
|