1
|
Han Y, Yu X, Wang G, Zha S, Shi W, Liu Z, Zhang H, Liu G. Fluoxetine impairs gamete function and fertilization success in Tegillarca granosa: environmental risks of antidepressant contamination. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 284:107364. [PMID: 40273544 DOI: 10.1016/j.aquatox.2025.107364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 01/10/2025] [Accepted: 04/09/2025] [Indexed: 04/26/2025]
Abstract
In recent years, the antidepressant fluoxetine (FLX) has been increasingly detected in global environments, emerging as a contaminant with significant toxic effects. However, its impact on the fertilization processes of broadcast-spawning species remains unclear. This study focuses on Tegillarca granosa, a broadcast-spawning bivalve, to evaluate the effects of fluoxetine on gametes and fertilization success. The findings revealed that FLX significantly reduced sperm motility, including curvilinear velocity, average path velocity, and straight-line velocity. Further analysis demonstrated that FLX impaired sperm motility by inhibiting ATP production and reducing cellular activity. Additionally, FLX altered Ca²⁺ homeostasis and caspase activity in both sperm and eggs, and suppressed mitochondrial energy supply in eggs. By assessing gamete collision probabilities and fusion rates, the study systematically confirms the considerable fertilization toxicity of FLX in T. granosa. These findings provide critical insights into the environmental risks posed by FLX contamination.
Collapse
Affiliation(s)
- Yu Han
- Hangzhou Normal University, Hangzhou, 311121, China; College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xingzhou Yu
- Hangzhou Normal University, Hangzhou, 311121, China
| | | | - Shanjie Zha
- Zhejiang Key Laboratory of Aquatic Germplasm Resources, College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, PR China
| | - Wei Shi
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhiquan Liu
- Hangzhou Normal University, Hangzhou, 311121, China
| | | | - Guangxu Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
2
|
Ni KD, Wei CG, Zhu JQ, Mu CK, Wang CL, Hou CC. Transcriptome analysis of different stages of testis development in Portunus trituberculatus. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2025; 55:101453. [PMID: 40010143 DOI: 10.1016/j.cbd.2025.101453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/28/2025] [Accepted: 02/19/2025] [Indexed: 02/28/2025]
Abstract
The swimming crab (Portunus trituberculatus) is an important marine economic species, however its artificial breeding yield is relatively low. Currently, the main challenge faced by the swimming crab seed industry is the reliance on wild populations for seed cultivation, which results in unstable yield and quality, affecting the healthy development of the crab farming industry to some extent. The quality of germplasm resources depends on the quality of gametes, and the quality of sperm depends on the orderly genetic regulation process of spermatogenesis. Therefore, elucidating the genetic regulatory mechanisms of spermatogenesis is of great significance for improving the germplasm resources of P. trituberculatus. To gain a deeper understanding of this process, we conducted a comparative transcriptome study on the testis of the swimming crab at different developmental stages. This study aims to identify key genes that regulate testicular development. We performed paraffin section identification on the testicular tissue of male crabs and conducted transcriptome analysis on the testicular tissue at five different developmental stages and somatic cells. Through differential expression analysis, we screened a total of 31,788 differentially expressed genes (DEGs) from stages I to VI. Through Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, we found that these DEGs were significantly enriched in 15 pathways, including important functional pathways such as the adrenergic signaling pathway, HIF-1 signaling pathway, and TGF-β signaling pathway. GO analysis results showed that calcium ion homeostasis and cell skeleton-related activities were significantly enriched in stage II. Further protein-protein interaction network analysis revealed 68 hub genes, including 13 eukaryotic initiation factors, 6 Ras superfamily members, and 6 genes related to cell division. In addition, genes such as Actin, Myosin, and Nup50 consistently showed high expression at all developmental stages, while genes related to calcium ion homeostasis, such as CaM, significantly increased in expression during stage II. Hsp90 and apoptosis-related genes had higher expression in stage IV, while Smad4 had higher expression in stage V. These results suggest that stage II of the swimming crab sperm development may be a critical period for spermatogenesis, and stage IV may be an important period for regulating sperm quality and quantity. This study not only provides a foundation for further research on the molecular mechanisms of testicular development and spermatogenesis in the swimming crab but also offers theoretical support for improving breeding yield, which has significant practical application value.
Collapse
Affiliation(s)
- Kai-Di Ni
- Key Laboratory of Aquacultural Biotechnology, and Key Laboratory of Marine Biotechnology of Zhejiang Province, College of Marine Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Chao-Guang Wei
- Key Laboratory of Aquacultural Biotechnology, and Key Laboratory of Marine Biotechnology of Zhejiang Province, College of Marine Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Jun-Quan Zhu
- Key Laboratory of Aquacultural Biotechnology, and Key Laboratory of Marine Biotechnology of Zhejiang Province, College of Marine Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Chang-Kao Mu
- Key Laboratory of Aquacultural Biotechnology, and Key Laboratory of Marine Biotechnology of Zhejiang Province, College of Marine Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Chun-Lin Wang
- Key Laboratory of Aquacultural Biotechnology, and Key Laboratory of Marine Biotechnology of Zhejiang Province, College of Marine Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Cong-Cong Hou
- Key Laboratory of Aquacultural Biotechnology, and Key Laboratory of Marine Biotechnology of Zhejiang Province, College of Marine Sciences, Ningbo University, Ningbo, Zhejiang, China.
| |
Collapse
|
3
|
Guo S, Liu C, Wang Y, Chen F, Zhu J, Li S, Li E. Effect of resveratrol on spermatogenesis in breeding boars and the proteomic analysis for testes. Reprod Biol 2024; 24:100930. [PMID: 39173316 DOI: 10.1016/j.repbio.2024.100930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/30/2024] [Accepted: 08/08/2024] [Indexed: 08/24/2024]
Abstract
Effect of resveratrol (RSV) on spermatogenesis and the mechanism of resveratrol in promoting spermatogenesis of breeding boars was explored by feeding sexually mature Duroc boars with normal diet and 20 mg/kg resveratrol diet for 14 days to the control group and experimental group, respectively. Semen volume, sperm density, motility, viability and abnormality rate were analyzed on day 0, 7, and 14. Blood samples were collected, and levels of follicle-stimulating hormone (FSH), luteinizing hormone (LH), and testosterone (T) in serum were analyzed. On day 14, the testis tissue was collected for antioxidant and proteomics analysis etc. The semen volume, sperm density, motility, and viability of the experimental group and the contents of serum FSH, LH, T and plasma SOD activity were significantly higher than those in the control group. However, the serum IL-6, TNF-α and plasma MDA were remarkably lower in experimental group. The above results showed that resveratrol can simulate spermatogenesis in breeding boars. Proteomic results demonstrated that three differentially expressed proteins (DEPs) were up-regulated and 12 DEPs were down-regulated; ODF1, calmodulin, Cabs1, and Hp were involved in spermatogenesis; and the main enriched metabolic pathway is steroid hormone synthesis pathway. Therefore, the improvement in sperm quality by resveratrol may be achieved by regulating the changes in outer dense fiber 1, calmodulin, spermatid specific 1, and haptoglobin expression and steroid synthesis pathway.
Collapse
Affiliation(s)
- Shuang Guo
- School of biological and food processing engineering, Huanghuai University, Zhumadian, Henan province 463000, PR China
| | - Chaoying Liu
- School of biological and food processing engineering, Huanghuai University, Zhumadian, Henan province 463000, PR China; Zhumadian Academy of Industry Innovation and Development, Zhumadian, Henan province 463000, PR China
| | - Ye Wang
- School of biological and food processing engineering, Huanghuai University, Zhumadian, Henan province 463000, PR China
| | - Fujia Chen
- School of biological and food processing engineering, Huanghuai University, Zhumadian, Henan province 463000, PR China
| | - Jinjin Zhu
- School of biological and food processing engineering, Huanghuai University, Zhumadian, Henan province 463000, PR China
| | - Siqiang Li
- School of biological and food processing engineering, Huanghuai University, Zhumadian, Henan province 463000, PR China
| | - Enzhong Li
- School of biological and food processing engineering, Huanghuai University, Zhumadian, Henan province 463000, PR China.
| |
Collapse
|
4
|
Guo L, Yu H, Li Q. Sex-specific mRNA alternative splicing patterns and Dmrt1 isoforms contribute to sex determination and differentiation of oyster. Int J Biol Macromol 2024; 283:137747. [PMID: 39551309 DOI: 10.1016/j.ijbiomac.2024.137747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/29/2024] [Accepted: 11/14/2024] [Indexed: 11/19/2024]
Abstract
Alternative splicing (AS) of pre-mRNA is a crucial mechanism that regulates the expression of genes involved in sex determination and differentiation. Despite its importance, AS has been rarely characterized in molluscs. In this study, PacBio Iso-Seq was employed to obtain full-length transcriptome and unveil AS patterns of gonads in the Pacific oyster Crassostrea gigas. A total of 24,783 AS events were identified across 6259 genes, with many enriched in phosphorylation-related processes. Splicing factors were found to drive a high frequency of AS events in gonads. Significant sex-based differences in isoform abundance and the incidence of AS events were observed. Comparative analysis of mature female and male gonads revealed a subset of overlapping differential alternative splicing genes and differentially expressed genes enriched in processes related to microtubule function and cell motility. In addition, the expression levels of sex-biased genes were found correlated with their isoform number in both female and male gonads. A novel isoform of Dmrt1 was identified with male specific expression in mature gonads. This study provides the first comprehensive understanding of full-length transcriptome and AS patterns in molluscan gonads, shedding light on the post-transcriptional regulatory mechanisms underlying sex determination and differentiation in molluscs and potentially across other animals.
Collapse
Affiliation(s)
- Lang Guo
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Hong Yu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong 266237, China.
| | - Qi Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong 266237, China
| |
Collapse
|
5
|
Elizagaray ML, Barrachina F, Avenatti MC, Bastepe I, Chen A, Odriozola A, Ukairo O, Ros VD, Ottino K, Subiran N, Battistone MA. Chronic inflammation drives epididymal tertiary lymphoid structure formation and autoimmune fertility disorders. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.12.623224. [PMID: 39605691 PMCID: PMC11601424 DOI: 10.1101/2024.11.12.623224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
The incomplete understanding of epididymal mucosal immunity is a significant contributing factor to the classification of many male infertility cases as idiopathic. Conditions that disrupt the immune balance in the male reproductive tract, such as vasectomy and infections, can expose sperm to the immune system, leading to increased production of anti-sperm antibodies (ASAs) and subsequent reproductive challenges. Regulatory T cells (Tregs) regulate inflammation and maintain sperm tolerance. In a murine model, we demonstrated that disrupting sperm immunotolerance induces chronic autoimmune responses characterized by antibody production targeting sperm and reproductive tissue autoantigens and unique tissue-specific immune cell signatures in the epididymis and testis. Such inflammatory features impair sperm function, contribute to epididymal damage, and drive sustained male subfertility. Tertiary lymphoid structures (TLSs) were formed within the epididymis after Treg depletion, defined by clusters of heterogenous B and T cells, fibroblasts, and endothelial cells. These ectopic structures perpetuate inflammation and lower the activation threshold for future immune threats. Similar isotypes of autoantibodies were detected in the seminal plasma of infertile patients, suggesting shared mechanistic pathways between mice and humans. Overall, we provide an in-depth understanding of the diverse B- and T-cell dynamics and TLS formation during epididymitis to develop precision-targeted therapies for infertility and chronic inflammation. Additionally, this immunological characterization of the epididymal microenvironment has the potential to identify novel targets for the development of male contraceptives. One Sentence Summary Understanding the epididymal immune cell landscape dynamics aids in developing targeted therapies for infertility and contraception.
Collapse
|
6
|
Machaty Z. The signal that stimulates mammalian embryo development. Front Cell Dev Biol 2024; 12:1474009. [PMID: 39355121 PMCID: PMC11442298 DOI: 10.3389/fcell.2024.1474009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/05/2024] [Indexed: 10/03/2024] Open
Abstract
Embryo development is stimulated by calcium (Ca2+) signals that are generated in the egg cytoplasm by the fertilizing sperm. Eggs are formed via oogenesis. They go through a cell division known as meiosis, during which their diploid chromosome number is halved and new genetic combinations are created by crossing over. During formation the eggs also acquire cellular components that are necessary to produce the Ca2+ signal and also, to support development of the newly formed embryo. Ionized calcium is a universal second messenger used by cells in a plethora of biological processes and the eggs develop a "toolkit", a set of molecules needed for signaling. Meiosis stops twice and these arrests are controlled by a complex interaction of regulatory proteins. The first meiotic arrest lasts until after puberty, when a luteinizing hormone surge stimulates meiotic resumption. The cell cycle proceeds to stop again in the middle of the second meiotic division, right before ovulation. The union of the female and male gametes takes place in the oviduct. Following gamete fusion, the sperm triggers the release of Ca2+ from the egg's intracellular stores which in mammals is followed by repetitive Ca2+ spikes known as Ca2+ oscillations in the cytosol that last for several hours. Downstream sensor proteins help decoding the signal and stimulate other molecules whose actions are required for proper development including those that help to prevent the fusion of additional sperm cells to the egg and those that assist in the release from the second meiotic arrest, completion of meiosis and entering the first mitotic cell division. Here I review the major steps of egg formation, discuss the signaling toolkit that is essential to generate the Ca2+ signal and describe the steps of the signal transduction mechanism that activates the egg's developmental program and turns it into an embryo.
Collapse
Affiliation(s)
- Zoltan Machaty
- Department of Animal Sciences Purdue University West Lafayette, West Lafayette, IN, United States
| |
Collapse
|
7
|
Zhu X, Liu L, Tian S, Zhao G, Zhi E, Chen Q, Zhang F, Zhang A, Tang S, Liu C. Deleterious variant in FAM71D cause male infertility with asthenoteratospermia. Mol Genet Genomics 2024; 299:35. [PMID: 38489045 DOI: 10.1007/s00438-024-02117-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 01/24/2024] [Indexed: 03/17/2024]
Abstract
Asthenoteratospermia is a significant cause of male infertility. FAM71D (Family with sequence similarity 71, member D), as a novel protein exclusively expressed in the testis, has been found to be associated with sperm motility. However, the association of FAM71D mutation with male infertility has yet to be examined. Here, we conducted whole-exome sequencing and identified a homozygous missense mutation c.440G > A (p. Arg147Gln) of FAM71D in an asthenoteratospermia-affected man from a consanguineous family. The FAM71D variant is extremely rare in human population genome databases and predicted to be deleterious by multiple bioinformatics tools. Semen analysis indicated decreased sperm motility and obvious morphological abnormalities in sperm cells from the FAM71D-deficient man. Immunofluorescence assays revealed that the identified FAM71D mutation had an important influence on the assembly of sperm structure-related proteins. Furthermore, intra-cytoplasmic sperm injection (ICSI) treatment performed on the infertile man with FAM71D variant achieved a satisfactory outcome. Overall, our study identified FAM71D as a novel causative gene for male infertility with asthenoteratospermia, for which ICSI treatment may be suggested to acquire good prognosis. All these findings will provide effective guidance for genetic counselling and assisted reproduction treatments of asthenoteratospermia-affected subjects.
Collapse
Affiliation(s)
- Xiaobin Zhu
- Department of Gynecology and Obstetrics, Reproductive Medical Center, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Liu Liu
- Obstetrics and Gynecology Hospital, Institute of Medical Genetics and Genomics, Fudan University, Shanghai, 200011, China
- Department of Computational Biology, School of Life Science, Fudan University, Shanghai, 200438, China
| | - Shixiong Tian
- Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, 200438, China
| | - Guijun Zhao
- Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200040, China
| | - Erlei Zhi
- Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200940, China
| | - Qian Chen
- Department of Gynecology and Obstetrics, Reproductive Medical Center, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Feng Zhang
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Aijun Zhang
- Department of Gynecology and Obstetrics, Reproductive Medical Center, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Shuyan Tang
- Obstetrics and Gynecology Hospital, Institute of Medical Genetics and Genomics, Fudan University, Shanghai, 200011, China.
- Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, 200438, China.
| | - Chunyu Liu
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China.
| |
Collapse
|
8
|
Kaewman P, Nudmamud-Thanoi S, Thongleart J, Charoenlappanit S, Roytrakul S, Thanoi S. Differential protein expression of GABA A receptor alpha 1 subunit and calbindin in rat spermatozoa associated with proteomic analysis in testis following methamphetamine administration. PLoS One 2023; 18:e0273888. [PMID: 36598915 DOI: 10.1371/journal.pone.0273888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 12/16/2022] [Indexed: 01/05/2023] Open
Abstract
Methamphetamine (METH) can induce spermatogenesis impairment, testicular apoptosis, and abnormal sperm quality. It also promotes changes in the expression of receptors for sex hormones and neurotransmitters, including GABA receptors in the testis. Proteomic assessment focusing on proteins involved in the calcium signalling pathway in the testis can facilitate diagnostic factors contributing to testicular and sperm functions, especially those related to spermatogenesis and fertilisation. In this study, we proposed to determine the localisation and differential expression of GABA A receptor alpha 1 subunit (GABA A-α1) in the spermatozoa of METH-administered rats. The differential proteomic profile of the testis was also observed by focusing on proteins in the KEGG pathways belonging to the calcium signalling pathway. There were 212 differentially expressed proteins in the rat testis, based on the cut-off value of 1.2-fold change. Most of those proteins, 13 proteins, were classified in the calcium signalling pathway, including 4 down-regulated and 9 up-regulated proteins. An immunolocalisation study of the GABA A-α1 receptor and calbindin revealed their localisation in the equatorial segment of the head in the rat spermatozoa. The expression of calbindin is also found in the middle piece of sperm. An increase in GABA A-α1 receptor in rat spermatozoa was correlated with an increase in abnormal sperm motility and morphology after methamphetamine exposure. Moreover, calbindin expression in sperm decreased in METH-administered rats. All our findings demonstrate that METH influences intracellular calcium homeostasis by acting through the calcium signalling pathway-associated proteins. Moreover, it might disrupt ion homeostasis in sperm through the GABA A-α1 receptor and calbindin, triggering a change in intracellular calcium and chloride ions. These changes may cause abnormalities in spermatogenesis, testicular apoptosis, and sperm quality impairment.
Collapse
Affiliation(s)
- Paweena Kaewman
- School of Medicine, Walailak University, Nakhon Si Thammarat, Thailand
- Department of Anatomy, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Sutisa Nudmamud-Thanoi
- Department of Anatomy, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
- Centre of Excellence in Medical Biotechnology, Naresuan University, Phitsanulok, Thailand
| | - Jitnapar Thongleart
- Department of Anatomy, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Sawanya Charoenlappanit
- Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Sittiruk Roytrakul
- Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Samur Thanoi
- School of Medical Sciences, University of Phayao, Phayao, Thailand
| |
Collapse
|
9
|
Skerrett-Byrne DA, Anderson AL, Bromfield EG, Bernstein IR, Mulhall JE, Schjenken JE, Dun MD, Humphrey SJ, Nixon B. Global profiling of the proteomic changes associated with the post-testicular maturation of mouse spermatozoa. Cell Rep 2022; 41:111655. [DOI: 10.1016/j.celrep.2022.111655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 06/15/2022] [Accepted: 10/20/2022] [Indexed: 11/17/2022] Open
|
10
|
Salabi F, Jafari H. Differential venom gland gene expression analysis of juvenile and adult scorpions Androctonus crassicauda. BMC Genomics 2022; 23:636. [PMID: 36076177 PMCID: PMC9454214 DOI: 10.1186/s12864-022-08866-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 09/01/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND The Androctonus crassicauda, belonging to the genus Androctonus of the family Buthidae, is the most venomous scorpion in Middle East countries. However, the venom gland transcriptome profile of A. crassicauda scorpion has not yet been studied. In this study, we elucidated and compared the venom gland gene expression profiles of adult and juvenile male scorpion A. crassicauda using high-throughput transcriptome sequencing. This is the first report of transcriptional analysis of the venom glands of scorpions in different growth stages, with insights into the identification of the key genes during venom gland development. RESULTS A total of 209,951 mRNA transcripts were identified from total RNA-seq data, of which 963 transcripts were differentially expressed (DE) in adult and juvenile scorpions (p < 0.01). Overall, we identified 558 up-regulated and 405 down-regulated transcripts in the adult compared to the juvenile scorpions, of which 397 and 269 unique unigenes were annotated, respectively. GO and KEGG enrichment analyses indicated that the metabolic, thermogenesis, cytoskeleton, estrogen signaling, GnRH signaling, growth hormone signaling, and melanogenesis pathways were affected by two different growth conditions and the results suggested that the DE genes related to those pathways are important genes associated with scorpion venom gland development, in which they may be important in future studies, including Chs, Elovl, MYH, RDX, ACTN, VCL, PIP5K, PP1C, FGFR, GNAS, EGFR, CREB, CoA, PLCB, CALM, CACNA, PKA and CAMK genes. CONCLUSIONS These findings broadened our knowledge of the differences between adult and juvenile scorpion venom and opened new perspectives on the application of comparative transcriptome analysis to identify the special key genes.
Collapse
Affiliation(s)
- Fatemeh Salabi
- Department of Venomous Animals and Anti-Venom Production, Agricultural Research, Education and Extension Organization (AREEO), Razi Vaccine and Serum Research Institute, Ahvaz, Iran.
| | - Hedieh Jafari
- Department of Venomous Animals and Anti-Venom Production, Agricultural Research, Education and Extension Organization (AREEO), Razi Vaccine and Serum Research Institute, Ahvaz, Iran
| |
Collapse
|
11
|
Wada A, Harayama H. Calmodulin is involved in the occurrence of extracellular Ca 2+ -dependent full-type hyperactivation in boar ejaculated spermatozoa incubated with cyclic AMP analogs. Anim Sci J 2021; 92:e13552. [PMID: 33890345 DOI: 10.1111/asj.13552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/29/2021] [Accepted: 03/18/2021] [Indexed: 12/21/2022]
Abstract
In mammals, hyperactivation is essential for sperm fertilization with oocytes in vivo. Two types of hyperactivation "full-type and nonfull-type patterns" can be observed in the spermatozoa from boars, bulls, and mice. We have a hypothesis that the full-type hyperactivation is a physiological (in vivo) pattern and are elucidating its molecular bases. The aims of this study were to detect calmodulin in boar sperm flagella by Western blotting and indirect immunofluorescence and to investigate effects of extracellular Ca2+ and calmodulin antagonists "W-7 and W-5 (W-5; a less potent antagonist)" on the occurrence of full-type hyperactivation in boar spermatozoa. Calmodulin was specifically detected as the 17-kDa antigen in the flagella and postacrosomal region of the heads. Full-type hyperactivation could be induced effectively in the samples incubated with 3.42 mM CaCl2 for 120-180 min, and it was significantly reduced in the concentration-dependent manners of W-7 and W-5. Suppressing effects of W-7 on the full-type hyperactivation were stronger than those of W-5. These observations indicate that flagellar calmodulin is involved in the occurrence of extracellular Ca2+ -dependent full-type hyperactivation in boar spermatozoa. This is the first indication of the intracellular Ca2+ -sensing molecule which can function in the full-type hyperactivation.
Collapse
Affiliation(s)
- Atsushi Wada
- Laboratory of Reproductive Biology, Division of Animal Science, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Hiroshi Harayama
- Laboratory of Reproductive Biology, Division of Animal Science, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| |
Collapse
|
12
|
Lavoie-Ouellet C, Clark MÈ, Ruiz J, Saindon AA, Leclerc P. The protein phosphatase with EF-hand domain 1 is a calmodulin-binding protein that interacts with proteins involved in sperm capacitation, binding to the zona pellucida, and motility. Mol Reprod Dev 2021; 88:302-317. [PMID: 33783058 DOI: 10.1002/mrd.23467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 11/12/2022]
Abstract
Spermatozoa are highly specialized cells whose fertilizing and motility functions highly depend on intracellular Ca2+ -mediated events and protein posttranslational modifications like phosphorylation. Our group previously identified PPEF1, the Ser/Thr phosphatase with EF-hand domain 1, among calmodulin-affinity pulled down sperm proteins. As the mammalian ortholog of the Drosophila phosphatase rdgC that dephosphorylates rhodopsin, PPEF1 has been studied mostly in the retina. The presence and importance of this Ca2+ /calmodulin-binding protein phosphatase has not been studied in sperm or testicular functions despite its high expression level. In this study, we show that PPEF1 is present in testicular germ cells, and in mouse, human and bull spermatozoa where it is localized predominantly in the neck and acrosome areas. Different transcript variants encoding four predicted isoforms were detected by reverse transcription polymerase chain reaction in bull testis, spermatocytes and spermatids. Phosphatase activity of immunoprecipitated sperm PPEF1 was detected using the substrate pNPP and analysis of the coimmunoprecipitated proteins reveal an enrichment in the biological processes of sperm capacitation, binding to the zona pellucida and motility. Although this is the first demonstration of the presence of PPEF1 in sperm and testicular germ cells, its involvement in sperm fertilizing ability and motility, and the mechanisms regulating its activity remain to be further investigated.
Collapse
Affiliation(s)
- Camille Lavoie-Ouellet
- Département d'Obstétrique, gynécologie et reproduction, Centre de recherche en reproduction, développement et santé intergénérationnelle, Université Laval, Axe reproduction, santé de la mère et de l'enfant, Centre de recherche du CHU de Québec-Université Laval, Quebec City, Québec, Canada
| | - Marie-Ève Clark
- Département d'Obstétrique, gynécologie et reproduction, Centre de recherche en reproduction, développement et santé intergénérationnelle, Université Laval, Axe reproduction, santé de la mère et de l'enfant, Centre de recherche du CHU de Québec-Université Laval, Quebec City, Québec, Canada
| | - Juliana Ruiz
- Département d'Obstétrique, gynécologie et reproduction, Centre de recherche en reproduction, développement et santé intergénérationnelle, Université Laval, Axe reproduction, santé de la mère et de l'enfant, Centre de recherche du CHU de Québec-Université Laval, Quebec City, Québec, Canada
| | - Andrée-Anne Saindon
- Département d'Obstétrique, gynécologie et reproduction, Centre de recherche en reproduction, développement et santé intergénérationnelle, Université Laval, Axe reproduction, santé de la mère et de l'enfant, Centre de recherche du CHU de Québec-Université Laval, Quebec City, Québec, Canada
| | - Pierre Leclerc
- Département d'Obstétrique, gynécologie et reproduction, Centre de recherche en reproduction, développement et santé intergénérationnelle, Université Laval, Axe reproduction, santé de la mère et de l'enfant, Centre de recherche du CHU de Québec-Université Laval, Quebec City, Québec, Canada
| |
Collapse
|