1
|
Pan Z, Li W, Bialobzyski S, Chen Y, O'Hara E, Sun HZ, Schwartzkopf-Genswein K, Guan LL. Profiling of blood miRNAomes revealed the potential regulatory role of miRNAs in various lameness phenotypes in feedlot cattle. BMC Genomics 2024; 25:1190. [PMID: 39695421 DOI: 10.1186/s12864-024-10807-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 09/17/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Lameness is a collective term for multiple foot diseases in cattle including, but not limited to, foot rot (FR), digital dermatitis (DD), and toe tip necrosis (TTN), which is a critical welfare concern. The diagnosis of specific phenotypes of lameness in feedlot cattle is challenging and primarily relies on visual assessments. However, different lameness phenotypes share similar clinical symptoms and there is a limited understanding of potential biomarkers relating to such disease for further molecular diagnosis. This study aimed to identify blood miRNA profiles of feedlot cattle with various lameness phenotypes and whether they could be potential diagnostic markers to differentiate lameness phenotypes and predictive lameness recovery. RESULTS MicroRNAome profiles were generated for the whole blood samples collected from feedlot cattle at Week 0 (W0) before treatment (n = 106) and longitudinal miRNA expression profiles relating to lameness recovery from W0 to W2 (n = 140) using RNA-seq. Ten miRNAs were selected to verify miRNA sequencing accuracy using stem-loop RT-qPCR. A total of 321 miRNAs were identified to be expressed in bovine blood samples with three (all downregulated, average log2fold change = -1.32), seven (two downregulated with average log2fold change = -1.15, five upregulated with average log2fold change = 1.68), six (three downregulated with average log2fold change = -1.23, three upregulated with average log2fold change = 3.31), and fourteen (eight downregulated with average log2fold change = -1.24, six upregulated with average log2fold change = 1.26) miRNAs differentially expressed (DE) miRNAs in DD, FR, TTN, and FR combined with DD (FRDD) compared to healthy control at W0 (defined as pre-treatment DE miRNAs), respectively. The predicted functions of identified DE miRNAs among different lameness phenotypes were mainly related to Zinc-finger, muscle cell development, and host inflammatory responses. Furthermore, the longitudinal miRNA expression profiles revealed that a total of eight miRNA changed patterns from W0 to W2, with the BTB/POZ-like domain being the most enriched function by longitudinal miRNA expression profiles in both unrecovered and recovered cattle. A total of nine miRNAs (five downregulated with average log2fold change = -2.4, four upregulated with average log2fold change = 3.7) from W0 to W2 were differentially expressed in unrecovered cattle compared to the recovered cattle, with functions associated with transcription regulation and Zinc-finger. Moreover, the area under the receiver operating characteristics (ROC) curve (AUC) revealed that pre-treatment DE miRNAs could serve as good diagnostic markers to differentiate any two of four phenotypes of lameness, with bta-miR-339b being able to differentiate all lameness phenotypes. Moreover, pre-treatment DE miRNAs could also predict the recovery of three lameness phenotypes (DD, FRDD, TTN) with good to excellent predictiveness. CONCLUSION Our results comprehensively assessed the blood miRNAomes in response to various lameness phenotypes, promoting the understanding of miRNA-regulated mechanisms of lameness in feedlot cattle. The diagnostic miRNA markers were also identified to differentiate within lameness phenotypes and predictive lameness recovery, shedding light on accurate on-farm lameness detection.
Collapse
Affiliation(s)
- Zhe Pan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G2P5, Canada
| | - Wentao Li
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G2P5, Canada
| | - Sonja Bialobzyski
- Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Yanhong Chen
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G2P5, Canada
| | - Eoin O'Hara
- Agriculture and Agri-Food Canada, Lethbridge, AB, T1J 4B1, Canada
| | - Hui-Zeng Sun
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | | | - Le Luo Guan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G2P5, Canada.
- Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
| |
Collapse
|
2
|
Jilo DD, Abebe BK, Wang J, Guo J, Li A, Zan L. Long non-coding RNA (LncRNA) and epigenetic factors: their role in regulating the adipocytes in bovine. Front Genet 2024; 15:1405588. [PMID: 39421300 PMCID: PMC11484070 DOI: 10.3389/fgene.2024.1405588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 09/02/2024] [Indexed: 10/19/2024] Open
Abstract
Investigating the involvement of long non-coding RNAs (lncRNAs) and epigenetic processes in bovine adipocytes can provide valuable new insights into controlling adipogenesis in livestock. Long non-coding RNAs have been associated with forming chromatin loops that facilitate enhancer-promoter interactions during adipogenesis, as well as regulating important adipogenic transcription factors like C/EBPα and PPARγ. They significantly influence gene expression regulation at the post-transcriptional level and are extensively researched for their diverse roles in cellular functions. Epigenetic modifications such as chromatin reorganization, histone alterations, and DNA methylation subsequently affect the activation of genes related to adipogenesis and the progression of adipocyte differentiation. By investigating how fat deposition is epigenetically regulated in beef cattle, scientists aim to unravel molecular mechanisms, identify key regulatory genes and pathways, and develop targeted strategies for modifying fat deposition to enhance desirable traits such as marbling and meat tenderness. This review paper delves into lncRNAs and epigenetic factors and their role in regulating bovine adipocytes while focusing on their potential as targets for genetic improvement to increase production efficiency. Recent genomics advancements, including molecular markers and genetic variations, can boost animal productivity, meeting global demands for high-quality meat products. This review establishes a foundation for future research on understanding regulatory networks linked to lncRNAs and epigenetic changes, contributing to both scholarly knowledge advancement and practical applications within animal agriculture.
Collapse
Affiliation(s)
- Diba Dedacha Jilo
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
- Department of Animal Science, Bule Hora University, Bule Hora, Ethiopia
| | - Belete Kuraz Abebe
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
- Department of Animal Science, Werabe University, Werabe, Ethiopia
| | - Jianfang Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Juntao Guo
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Anning Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
- National Beef Cattle Improvement Center, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
3
|
Hongfang G, Khan R, El-Mansi AA. Bioinformatics Analysis of miR-181a and Its Role in Adipogenesis, Obesity, and Lipid Metabolism Through Review of Literature. Mol Biotechnol 2024; 66:2710-2724. [PMID: 37773313 DOI: 10.1007/s12033-023-00894-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 09/04/2023] [Indexed: 10/01/2023]
Abstract
The miRNAs regulate various biological processes in the mammalian body system. The role of miR-181a in the development, progression, and expansion of cancers is well-documented. However, the role of miR-181a in adipogenesis; lipid metabolism; obesity; and obesity-related issues such as diabetes mellitus needs to be explored. Therefore, in the present study, the literature was searched and bioinformatics tools were applied to explore the role of miR-181a in adipogenesis. The list of adipogenic and lipogenic target genes validated through different publications were extracted and compiled. The network and functional analysis of these target genes was performed through in-silico analysis. The mature sequence of miR-181a of different species were extracted from and were found highly conserved among the curated species. Additionally, we also used various bioinformatics tools such as target gene extraction from Targetscan, miRWalk, and miRDB, and the list of the target genes from these different databases was compared, and common target genes were predicted. These common target genes were further subjected to the enrichment score and KEGG pathways analysis. The enrichment score of the vital KEGG pathways of the target genes is the key regulator of adipogenesis, lipogenesis, obesity, and obesity-related syndromes in adipose tissues. Therefore, the information presented in the current review will explore the regulatory roles of miR-181a in fat tissues and its associated functions and manifestations.
Collapse
Affiliation(s)
- Guo Hongfang
- Medical College of Xuchang University, No.1389, Xufan Road, Xuchang City, 461000, Henan Province, People's Republic of China
| | - Rajwali Khan
- Department of Livestock Management, Breeding and Genetics, The University of Agriculture, Peshawar, 25130, Pakistan.
| | - Ahmed A El-Mansi
- Biology Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
4
|
Shi B, Zhu C, Wang X, Qi Y, Hu J, Liu X, Wang J, Hao Z, Zhao Z, Zhang X. microRNA Temporal-Specific Expression Profiles Reveal longissimus dorsi Muscle Development in Tianzhu White Yak. Int J Mol Sci 2024; 25:10151. [PMID: 39337635 PMCID: PMC11432130 DOI: 10.3390/ijms251810151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
As a class of regulatory factors, microRNAs (miRNAs) play an important role in regulating normal muscle development and fat deposition. Muscle and adipose tissues, as major components of the animal organism, are also economically important traits in livestock production. However, the effect of miRNA expression profiles on the development of muscle and adipose tissues in yak is currently unknown. In this study, we performed RNA sequencing (RNA-Seq) on Tianzhu white yak longissimus dorsi muscle tissue obtained from calves (6 months of age, M6, n = 6) and young (30 months of age, M30, n = 6) and adult yak (54 months of age, M54, n = 6) to identify which miRNAs are differentially expressed and to investigate their temporal expression profiles, establishing a regulatory network of miRNAs associated with the development of muscle and adipose. The results showed that 1191 miRNAs and 22061 mRNAs were screened across the three stages, of which the numbers of differentially expressed miRNAs (DE miRNAs) and differentially expressed mRNAs (DE mRNAs) were 225 and 450, respectively. The expression levels of the nine DE miRNAs were confirmed using a reverse transcription quantitative PCR (RT-qPCR) assay, and the trend of the assay results was generally consistent with the trend of the transcriptome profiles. Based on the expression trend, DE miRNAs were categorized into eight different expression patterns. Regarding the expression of DE miRNAs in sub-trends Profile 1 and Profile 2 (p < 0.05), the gene expression patterns were upregulated (87 DE miRNAs). Gene ontology (GO) and Kyoto Encyclopedia of Genes Genomes (KEGG) analyses showed that the identified DE miRNAs and DE mRNAs were enriched in pathway entries associated with muscle and intramuscular fat (IMF) growth and development. On this basis, we constructed a DE miRNA-mRNA interaction network. We found that some DE mRNAs of interest overlapped with miRNA target genes, such as ACSL3, FOXO3, FBXO30, FGFBP4, TSKU, MYH10 (muscle development), ACOX1, FADS2, EIF4E2, SCD1, EL0VL5, and ACACB (intramuscular fat deposition). These results provide a valuable resource for further studies on the molecular mechanisms of muscle tissue development in yak and also lay a foundation for investigating the interactions between genes and miRNAs.
Collapse
Affiliation(s)
- Bingang Shi
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Chune Zhu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiangyan Wang
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Youpeng Qi
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Jiang Hu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiu Liu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Jiqing Wang
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhiyun Hao
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhidong Zhao
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiaolan Zhang
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
5
|
Correia de Sousa M, Delangre E, Berthou F, El Harane S, Maeder C, Fournier M, Krause KH, Gjorgjieva M, Foti M. Hepatic miR-149-5p upregulation fosters steatosis, inflammation and fibrosis development in mice and in human liver organoids. JHEP Rep 2024; 6:101126. [PMID: 39263327 PMCID: PMC11388170 DOI: 10.1016/j.jhepr.2024.101126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 09/13/2024] Open
Abstract
Background & Aims The incidence of metabolic dysfunction-associated steatotic liver disease (MASLD) is increasing worldwide. Alterations of hepatic microRNA (miRNA) expression/activity significantly contribute to the development and progression of MASLD. Genetic polymorphisms of miR-149 are associated with an increased susceptibility to MASLD development in humans. Aberrant expression of miR-149 was also associated with metabolic alterations in several organs, but the impact of hepatic miR-149-5p deregulation in MASLD remains poorly characterized. Methods MiR-149-5p was downregulated in the livers of mice by in vivo transduction with hepatotropic adeno-associated virus 8 harboring short-hairpin RNAs (shRNAs) specific for miR-149-5p (shmiR149) or scrambled shRNAs (shCTL). MASLD was then induced with a methionine/choline-deficient (MCD, n = 7 per group) diet or a fructose/palmitate/cholesterol-enriched (FPC, n = 8-12 per group, per protocol) diet. The impact of miR-149-5p modulation on MASLD development was assessed in vivo and in vitro using multi-lineage 3D human liver organoids (HLOs) and Huh7 cells. Results MiR-149-5p expression was strongly upregulated in mouse livers from different models of MASLD (2-4-fold increase in ob/ob, db/db mice, high-fat and FPC-fed mice). In vivo downregulation of miR-149-5p led to an amelioration of diet-induced hepatic steatosis, inflammation/fibrosis, and to increased whole-body fatty acid consumption. In HLOs, miR-149-5p overexpression promoted lipid accumulation, inflammation and fibrosis. In vitro analyses of human Huh7 cells overexpressing miR-149-5p indicated that glycolysis and intracellular lipid accumulation was promoted, while mitochondrial respiration was impaired. Translatomic analyses highlighted deregulation of multiple potential miR-149-5p targets in hepatocytes involved in MASLD development. Conclusions MiR-149-5p upregulation contributes to MASLD development by affecting multiple metabolic/inflammatory/fibrotic pathways in hepatocytes. Our results further demonstrate that HLOs are a relevant 3D in vitro model to investigate hepatic steatosis and inflammation/fibrosis development. Impact and implications Our research shows compelling evidence that miR-149-5p plays a pivotal role in the development and progression of MASLD. By employing in vivo and innovative in vitro models using multi-lineage human liver organoids, we demonstrate that miR-149-5p upregulation significantly impacts hepatocyte energy metabolism, exacerbating hepatic steatosis and inflammation/fibrosis by modulating a wide network of target genes. These findings not only shed light on the intricate miR-149-5p-dependent molecular mechanisms underlying MASLD, but also underscore the importance of human liver organoids as valuable 3D in vitro models for studying the disease's pathogenesis.
Collapse
Affiliation(s)
- Marta Correia de Sousa
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Etienne Delangre
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Flavien Berthou
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Sanae El Harane
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Christine Maeder
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Margot Fournier
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Karl-Heinz Krause
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Monika Gjorgjieva
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Michelangelo Foti
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
6
|
Lee J, Hong I, Lee C, Kim D, Kim S, Lee Y. SNPs in microRNA seed region and impact of miR-375 in concurrent regulation of multiple lipid accumulation-related genes. Sci Rep 2024; 14:10924. [PMID: 38740866 PMCID: PMC11091151 DOI: 10.1038/s41598-024-61673-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024] Open
Abstract
Bovine intramuscular fat (IMF), commonly referred to as marbling, is regulated by lipid metabolism, which includes adipogenesis, lipogenesis, glycerolipid synthesis, and lipolysis. In recent years, breeding researchers have identified single nucleotide polymorphisms (SNPs) as useful marker-assisted selection tools for improving marbling scores in national breeding programs. These included causal SNPs that induce phenotypic variation. MicroRNAs (miRNAs) are small highly conserved non-coding RNA molecules that bind to multiple non-coding regions. They are involved in post-transcriptional regulation. Multiple miRNAs may regulate a given target. Previously, three SNPs in the GPAM 3' UTR and four miRNAs were identified through in silico assays. The aim of this study is to verify the binding ability of the four miRNAs to the SNPs within the 3'UTR of GPAM, and to identify the regulatory function of miR-375 in the expression of genes related to lipid metabolism in mammalian adipocytes. It was verified that the four miRNAs bind to the GPAM 3'UTR, and identified that the miR-375 sequence is highly conserved. Furthermore, it was founded that miR-375 upregulated the GPAM gene, C/EBPα, PPARγ and lipid metabolism-related genes and promoted lipid droplet accumulation in 3T3-L1 cells. In conclusion, these results suggest that miR-375 is a multifunctional regulator of multiple lipid metabolism-related genes and may aid in obesity research as a biomarker.
Collapse
Affiliation(s)
- Jiyeon Lee
- School of Biotechnology, Hankyong National University, Anseong, Gyeonggi-do, South Korea
| | - Inpyo Hong
- School of Biotechnology, Hankyong National University, Anseong, Gyeonggi-do, South Korea
| | - Chanwoo Lee
- Nuonbio Inc., 906, A, 302 Galmachi-ro, Jungwon-gu, Seongnam-si, South Korea
| | - Daehyun Kim
- Department of Animal Science, Chonnam National University, Gwangju, South Korea
| | - Sunghak Kim
- Department of Animal Science, Chonnam National University, Gwangju, South Korea.
| | - Yoonseok Lee
- School of Biotechnology, Hankyong National University, Anseong, Gyeonggi-do, South Korea.
- Center for Genetic Information, Hankyong National University, Anseong, Gyeonggi-do, South Korea.
| |
Collapse
|
7
|
Zhao Y, Zhang W, Raza SHA, Qu X, Yang Z, Deng J, Ma J, Aloufi BH, Wang J, Zan L. CircSSBP2 acts as a MiR-2400 sponge to promote intramuscular preadipocyte proliferation by regulating NDRG1. Mol Genet Genomics 2024; 299:48. [PMID: 38700639 DOI: 10.1007/s00438-024-02138-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 04/03/2024] [Indexed: 05/24/2024]
Abstract
Intramuscular fat (IMF) is a critical factor in beef quality. IMF is mainly distributed between muscle fibres and its accumulation can affect the marbling and meat quality of beef. IMF formation and deposition is a complex process and in recent years a group of non-coding RNAs (ncRNAs), known as circRNAs, have been discovered to play an important role in regulating intramuscular fat deposition. CircRNAs form a covalent loop structure after reverse splicing of precursor mRNAs. They can act by adsorbing miRNAs, thereby reducing their repressive effects on downstream target genes. Based on high-throughput sequencing of circRNAs in intramuscular fat of Qinchuan and Japanese black cattle, we identified a novel circSSBP2 that is differentially expressed between the two species and associated with adipogenesis. We show that circSSBP2 knockdown promotes bovine intramuscular preadipocyte proliferation, whereas overexpression inhibits bovine intramuscular preadipocyte proliferation. We also show that circSSBP2 can act as a molecular sponge for miR-2400 and that miR-2400 overexpression promotes bovine intramuscular preadipocyte proliferation. Furthermore, N-myc downstream-regulated gene 1 (NDRG1) was identified as a direct target gene of miR-2400, and NDRG1 interference promoted the proliferation of bovine intramuscular preadipocytes. In conclusion, our results suggest that circSSBP2 inhibits the proliferation of bovine intramuscular preadipocytes by regulating the miR-2400/NDRG1 axis.
Collapse
Affiliation(s)
- Yanqing Zhao
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Wenzhen Zhang
- College of Animal Science and Technology, Southwest University, Rongchang, Chongqing, 402460, China
| | - Sayed Haidar Abbas Raza
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, 712100, Shaanxi, China
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Nation-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, 512005, China
| | - Xiaopeng Qu
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Zhimei Yang
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Jiahan Deng
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Jing Ma
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Bandar Hamad Aloufi
- Biology Department, Faculty of Science, University of Ha'il, Ha'il, Saudi Arabia
| | - Juze Wang
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, 712100, Shaanxi, China.
- National Beef Cattle Improvement Center, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
8
|
Abbas Raza SH, Zhong R, Wei X, Zhao G, Zan L, Pant SD, Schreurs NM, Lei H. Investigating the Role of KLF6 in the Growth of Bovine Preadipocytes: Using Transcriptomic Analyses to Understand Beef Quality. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:9656-9668. [PMID: 38642059 DOI: 10.1021/acs.jafc.4c01115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/22/2024]
Abstract
Intramuscular fat is a crucial determinant of carcass quality traits like tenderness and taste, which in turn is influenced by the proliferation of intramuscular preadipocytes. This study aimed to investigate the Krüppel-like factor 6 (KLF6)-mediated proliferation of bovine preadipocytes and identify underlying molecular mechanisms. Down-regulation of KLF6 by siKLF6 resulted in a significant (p < 0.01) suppression of cell cycle-related genes including CDK1, MCM6, ZNF4, PCNA, CDK2, CCNB1, and CDK6. Conversely, the expression level of p27 was significantly (p < 0.01) increased. Moreover, EdU (5-ethynyl-20-deoxyuridine) staining revealed a significant decrease in EdU-labeled cells due to KLF6 down-regulation. Collectively, these findings indicate that KLF6 down-regulation inhibits adipocyte proliferation. Furthermore, RNA sequencing of preadipocytes transfected with siKLF6 and NC, followed by differential gene expression analysis, identified 100 up-regulated and 70 down-regulated genes. Additionally, the differentially expressed genes also significantly influenced various Gene Ontology (GO) terms related to cell cycle, nuclear chromosomes, and catalytic activity on DNA. Furthermore, the top 20 pathways enriched in these DEGs included cell cycle, DNA replication, cellular senescence, and homologous recombination. These GO terms and KEGG pathways play key roles in bovine preadipocyte proliferation. In conclusion, the results of this study suggest that KLF6 positively regulates the proliferation of bovine preadipocytes.
Collapse
Affiliation(s)
- Sayed Haidar Abbas Raza
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Ruimin Zhong
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China
| | - Xiaoqun Wei
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China
| | - Gang Zhao
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Sameer D Pant
- Gulbali Institute, Charles Sturt University, Wagga Wagga, New South Wales 2678, Australia
| | - Nicola M Schreurs
- Animal Science, School Agriculture, and Environment, Massey University, Palmerston North 4442, New Zealand
| | - Hongtao Lei
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China
- Licheng Detection & Certification Group Co., Ltd., Zhongshan 528400, China
| |
Collapse
|
9
|
Qin C, Wang H, Zhong J, Ran H, Peng W. miR-129 Regulates Yak Intramuscular Preadipocyte Proliferation and Differentiation through the PI3K/AKT Pathway. Int J Mol Sci 2024; 25:632. [PMID: 38203803 PMCID: PMC10779486 DOI: 10.3390/ijms25010632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/19/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
miR-129 plays a crucial role in regulating various cellular processes, including adipogenesis; however, its downstream molecular mechanisms remain unclear. In this study, we demonstrated that miR-129 promotes yak adipogenesis in vitro via the PI3K/AKT pathway. Overexpression and interference of miR-129 in yak intramuscular preadipocytes (YIMAs) enhanced and inhibited cell differentiation, respectively, with corresponding changes in cell proliferation. Further investigation revealed that miR-129 enhances AKT and p-AKT activity in the AKT pathway without affecting cell apoptosis, and a specific inhibitor (LY294002) was used to confirm that miR-129 regulates YIMAs proliferation and differentiation through the PI3K/AKT pathway. Our findings suggest that miR-129 promotes yak adipogenesis by enhancing PI3K/AKT pathway activity. This study provides the foundation to precisely elucidate the molecular mechanism of miR-129 in YIMAs adipogenesis and develop advanced miRNA-based strategies to improve meat nutrition and obesity-related ailments in beef production.
Collapse
Affiliation(s)
- Chunyu Qin
- Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining 810016, China;
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu 610225, China; (H.W.); (J.Z.); (H.R.)
| | - Hui Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu 610225, China; (H.W.); (J.Z.); (H.R.)
| | - Jincheng Zhong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu 610225, China; (H.W.); (J.Z.); (H.R.)
| | - Hongbiao Ran
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu 610225, China; (H.W.); (J.Z.); (H.R.)
| | - Wei Peng
- Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining 810016, China;
| |
Collapse
|
10
|
Zhao X, Khan R, Hongfang G, Abbas Raza SH, Ayari-Akkari A, Othman G, Alshammari AM, Aloufi BH, Alabbosh KF, Alshammari WB, Linsen Z. Genetic variants of TORC1 gene promoter and their association with carcass quality and body measurement traits in Qinchuan beef cattle. Anim Biotechnol 2023; 34:2537-2545. [PMID: 35916659 DOI: 10.1080/10495398.2022.2105226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
In the present study, sequencing of TORC1 prompter region explored three SNPs at loci g.80G>T, g.93A>T, and g.1253G>A. The SNP1 produced GG, GT and TT, SNP2 AA, AT and TT, and SNP3 produced GG, GA and AA genotypes. Allelic and genotypic frequencies analysis exhibited that SNP1 is within Hardy-Weinberg equilibrium (HWE). All three SNPs were found highly polymorphic as PIC value (0.25 < PIC < 0.50). At loci g.80G>T the cattle with genotype GG showed significantly (P <0.01) larger body length (BL), Wither height (WH), Hip height (HH), Rump length (RL), Hip width (HW), Chest depth (CD), and Chest circumference (CC). The genotype AA at g.93A>T showed significantly (P< 0.01 and 0.05) Larger body length (BL), Wither height (WH), Hip height, Rump length (RL), Hip width (HW), Chest depth (CD), and Chest circumference (CC). Interestingly, the carcass quality parameters such as Ultrasound loin area (ULA) and Intramuscular fat percentage (IF%) was highest in genotype GG at loci g.1253G>A. These findings conclude that genotype GG at loci g.80 G>T and AA at loci g.93A>T could be used as genetic markers for body measurement and genotype GG at loci g.1253G>A for carcass quality traits of TORC1 gene in Qinchuan beef cattle.
Collapse
Affiliation(s)
- Xianlin Zhao
- College of Pharmacy, Heze University, Heze, China
| | - Rajwali Khan
- Department of Livestock Management, Breeding and Genetic, The University of Agriculture Peshawar, Peshawar, Pakistan
| | - Guo Hongfang
- Medical College, Xuchang University, Xuchang, China
| | | | - Amel Ayari-Akkari
- Biology Department, College of Science, King Khalid University, Abha, Saudi Arabia
- Laboratory of Diversity, Management and Conservation of Biological Systems, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Gehan Othman
- Biology Department, College of Science, King Khalid University, Abha, Saudi Arabia
| | | | - Bandar Hamad Aloufi
- Department of Biology, College of Science, University of Hail, Ha'il, Saudi Arabia
| | | | - Wasimah B Alshammari
- Department of Biology, College of Science, University of Hail, Ha'il, Saudi Arabia
| | - Zan Linsen
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
11
|
Nurgulsim K, Khan R, Raza SHA, Ayari-Akkari A, Jeridi M, Ahmad I, Arain UM, Abd El-Aziz AH, Khan H, Zan L. Bioinformatics and genetic variants analysis of FGF10 gene promoter with their association at carcass quality and body measurement traits in Qinchuan beef cattle. Anim Biotechnol 2023; 34:1950-1959. [PMID: 35446746 DOI: 10.1080/10495398.2022.2059667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
The fibroblast growth factor 10 (FGF10) gene regulates adipogenesis and myogensis. In this study, sequencing of FGF10 prompter region identified three SNPs at loci g.78G > A, g.116C > T and g.201A > T. Each SNP yields three genotypes as GG, GA and AA at loci g.78G > A, CC, CT and TT at loci g.116C > T and AA, AT and TT at loci g.201A > T. Allelic and genotypic frequencies of all three SNPs deviated from the Hardy-Weinberg equilibrium (HWE) (P < 0.05) and were found highly polymorphic as PIC (0.25 < PIC < 0.50). Moreover, we found highest LD (D'/γ2) between SNP2 and SNP3 (0.989/0.909), followed by SNP1 and SNP3 (0.944/0.796). Moreover, three variants of FGF10 gene promoter exhibited significant (P < 0.05) association with body measurement and carcass quality traits in Qinchuan beef cattle. At loci g.78G > A, the genotype GG showed significantly (P < 0.01) larger body length (BL), rump length (RL), chest depth (CD), chest circumference (CC) and ultrasound loin area (ULA). The genotype TC at loci g.116C > T showed significantly (P < 0.01 and 0.05) larger body measurement and intramuscular fat, and ultrasound loin area (ULA). In addition to that, at loci g.201A > T, genotype TT showed significantly (P < 0.01 and P < 0.05) larger body length (BL), rump length (RL), hip width (HW), chest circumference (CC) and ultrasound loin area (ULA). Additionally, screening of promoter sequence of FGF10 gene explored loss of four TFs binding sites (KLF3, ZNF37α, GLIS2 and BCL11A) at g.116C > T because of SNP2. However, a single TF binding site was lost at g.202A > T due to SNP3. Interestingly, none of TF binding site was lost at g.78G > A in SNP1; however, one new TF binding site was gained at this location due to SNP1. These findings conclude that genotype GG, TC and TT could be used as genetic markers of FGF10 gene for body measurement and carcass quality traits in Qinchuan beef cattle.
Collapse
Affiliation(s)
- Kaster Nurgulsim
- College of Animal Science and Technology, Northwest A&F University, Yangling, P.R. China
- Faculty of Veterinary and Livestock Technology, S. Seifullin Kazakh Agro technical University, Nur-Sultan, Kazakhstan
| | - Rajwali Khan
- Department of Livestock Management, Breeding and Genetic, The University of Agriculture, Peshawar, Pakistan
| | | | - Amel Ayari-Akkari
- Biology Department, College of Sciences in Abha, King Khalid University, Abha, Saudi Arabia
| | - Mouna Jeridi
- Biology Department, College of Sciences in Abha, King Khalid University, Abha, Saudi Arabia
| | - Ijaz Ahmad
- Department of Livestock Management, Breeding and Genetic, The University of Agriculture, Peshawar, Pakistan
| | - Uroosa Mumtaz Arain
- Department of Poultry Husbandry, Sindh Agriculture University, Tandojam, Pakistan
| | - Ayman Hassan Abd El-Aziz
- Department of Animal Breeding and Production, Faculty of Veterinary Medicine, Damanhour University, Damanhur, Egypt
| | - Hamayun Khan
- College of Veterinary Sciences, The University of Agriculture Peshawar, Peshawar, Pakistan
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling, P.R. China
| |
Collapse
|
12
|
Sharifi S, Pakdel A, Pakdel MH, Tabashiri R, Bakhtiarizadeh MR, Tahmasebi A. Integrated co-expression analysis of regulatory elements (miRNA, lncRNA, and TFs) in bovine monocytes induced by Str. uberis. Sci Rep 2023; 13:15076. [PMID: 37699972 PMCID: PMC10497586 DOI: 10.1038/s41598-023-42067-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 09/05/2023] [Indexed: 09/14/2023] Open
Abstract
Non-coding RNAs, including long non-coding RNAs (lncRNAs) and microRNAs (miRNAs), together with transcription factors, are critical pre-, co-, and post-transcriptional regulators. In addition to their criteria as ideal biomarkers, they have great potential in disease prognosis, diagnosis, and treatment of complex diseases. Investigation of regulatory mechanisms in the context of bovine mastitis, as most common and economic disease in the dairy industry, to identify elements influencing the expression of candidate genes as key regulators of the mammary immune response is not yet fully understood. Transcriptome profiles (50 RNA-Seq and 50 miRNA-Seq samples) of bovine monocytes induced by Str. uberis were used for co-expression module detection and preservation analysis using the weighted gene co-expression network analysis (WGCNA) approach. Assigned mi-, lnc-, and m-modules used to construct the integrated regulatory networks and miRNA-lncRNA-mRNA regulatory sub-networks. Remarkably, we have identified 18 miRNAs, five lncRNAs, and seven TFs as key regulators of str. uberis-induced mastitis. Most of the genes introduced here, mainly involved in immune response, inflammation, and apoptosis, were new to mastitis. These findings may help to further elucidate the underlying mechanisms of bovine mastitis, and the discovered genes may serve as signatures for early diagnosis and treatment of the disease.
Collapse
Affiliation(s)
- Somayeh Sharifi
- Department of Animal Science, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Islamic Republic of Iran.
| | - Abbas Pakdel
- Department of Animal Science, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Islamic Republic of Iran.
| | - Mohammad Hossein Pakdel
- Department of Plant Molecular Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Islamic Republic of Iran
| | - Raana Tabashiri
- Agricultural Biotechnology Department, Faculty of Agriculture, Tarbiat Modares University, Tehran, Islamic Republic of Iran
| | - Mohammad Reza Bakhtiarizadeh
- Department of Animal and Poultry Science, College of Aburaihan, University of Tehran, Tehran, 3391653755, Islamic Republic of Iran
| | - Ahmad Tahmasebi
- Institute of Biotechnology, Shiraz University, Shiraz, 71946-84334, Islamic Republic of Iran
| |
Collapse
|
13
|
Yang M, Gao X, Hu C, Wang S, Sheng H, Ma Y. Bta-miR-484 Targets SFRP1 and Affects Preadipocytes Proliferation, Differentiation, and Apoptosis. Int J Mol Sci 2023; 24:12710. [PMID: 37628891 PMCID: PMC10454478 DOI: 10.3390/ijms241612710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/02/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
MicroRNAs (miRNAs) are essential regulators of numerous biological processes in animals, including adipogenesis. Despite the abundance of miRNAs associated with adipogenesis, their exact mechanisms of action remain largely unknown. Our study highlights the role of bta-miR-484 as a major regulator of adipocyte proliferation, apoptosis, and differentiation. Here, we demonstrated that the expression of bta-miR-484 initially increased during adipogenesis before decreasing. Overexpression of bta-miR-484 in adipocytes ultimately inhibited cell proliferation and differentiation, reduced the number of EdU fluorescence-stained cells, increased the number of G1 phase cells, reduced the number of G2 and S phase cells, and downregulated the expression of proliferation markers (CDK2 and PCNA) and differentiation markers (CEBPA, FABP4, and LPL). Additionally, overexpression of bta-miR-484 promoted the expression of apoptosis-related genes (Caspase 3, Caspase 9, and BAX), and increased the number of apoptotic cells observed via flow cytometry. In contrast, bta-miR-484 inhibition in adipocytes yielded opposite effects to those observed during bta-miR-484 overexpression. Moreover, luciferase reporter assays confirmed SFRP1 as a target gene of bta-miR-484, and revealed that bta-miR-484 downregulates SFRP1 mRNA expression. These findings offer compelling evidence that bta-miR-484 targets SFRP1, inhibits proliferation and differentiation, and promotes apoptosis. Therefore, these results offer novel insights into the bta-miR-484 regulation of adipocyte growth and development.
Collapse
Affiliation(s)
| | | | | | | | | | - Yun Ma
- Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| |
Collapse
|
14
|
Liu Y, Wei Y, Dou Y, Li C, Song C, Zhang Z, Qi K, Li X, Qiao R, Wang K, Li X, Yang F, Han X. Effect of miR-149-5p on intramuscular fat deposition in pigs based on metabolomics and transcriptomics. BMC Genomics 2023; 24:293. [PMID: 37259030 DOI: 10.1186/s12864-023-09382-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 05/15/2023] [Indexed: 06/02/2023] Open
Abstract
As one of the important traits in pig production, meat quality has important research significance and value. Intramuscular fat (IMF) content is one of the most important factors affecting pork quality. Many experimental studies have shown that IMF content is closely related to the flavor, tenderness, and juiciness of pork. Therefore, it is of great significance to study the mechanism of porcine IMF deposition. Previous research indicated that miR-149-5p promoted the proliferation of porcine intramuscular (IM) preadipocytes and decreased their ability to differentiate, albeit the exact mechanism of action is unknown. In vitro, foreign pigs showed increased miR-149-5p expression and reduced fat deposition when compared to Queshan Black pigs. This study conducted metabolomics and transcriptomics analyses of porcine IM preadipocytes overexpressing miR-149-5p to verify their effects on lipid formation. According to metabolomics analysis, the overexpression of miR-149-5p has significantly altered the lipid, organic acid, and organic oxygen metabolites of porcine IM preadipocytes. Specially speaking, it has changed 115 metabolites, including 105 up-regulated and 10 down-regulated ones, as well as the composition of lipid, organic acid, and organic oxygen metabolism-related metabolites. RNA-seq analysis showed that overexpression of miR-149-5p significantly altered 857 genes, of which 442 were up-regulated, and 415 were down-regulated, with enrichment to MAPK, IL-17, PI3K-Akt, and ErbB signaling pathways. We found that overexpression of miR-149-5p inhibited adipogenic differentiation by changing cAMP signaling pathway in porcine IM preadipocytes. In addition, the overexpression of miR-149-5p may affect the transport of Cu2+ by targeting ATP7A and inhibiting adipogenic differentiation. These findings elucidate the regulatory function of miR-149-5p in porcine IM preadipocytes, which may be a key target for controlling pork quality.
Collapse
Affiliation(s)
- Yingke Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yilin Wei
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yaqing Dou
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Chenlei Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Chenglei Song
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Zhe Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Kunlong Qi
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xinjian Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Ruimin Qiao
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Kejun Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xiuling Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Feng Yang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xuelei Han
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China.
| |
Collapse
|
15
|
Hu W, Jiang Y, Wen C, Zeng Y, Jia M. MiR-149-5p inhibits cell proliferation, promotes cell apoptosis and retards cell cycle of IL-22-stimulated HaCaT and NHEK keratinocytes via regulating PDE4D. Cytokine 2023; 164:156123. [PMID: 36796259 DOI: 10.1016/j.cyto.2023.156123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 11/02/2022] [Accepted: 12/30/2022] [Indexed: 02/16/2023]
Abstract
BACKGROUND Psoriasis is a chronic autoimmune skin disease with unclear pathogenesis. It was found that miR-149-5p was significantly decreased in psoriatic lesion tissues. In this study, we aims to investigate the role and related molecular mechanism of miR-149-5p on psoriasis. METHOD IL-22 was used to stimulate HaCaT and NHEK cells to establish psoriasis model in vitro. The miR-149-5p and phosphodiesterase 4D (PDE4D) expression levels were detected by quantitative real-time PCR. HaCaT and NHEK cells proliferation was determined by Cell Couting Kit-8 assay. The cell apoptosis and cell cycle were detected by flow cytometry. The cleaved Caspase-3, Bax and Bcl-2 protein expressions were detected by western blot. The targeting relationship between PDE4D and miR-149-5p was predicted and confirmed by Starbase V2.0 and dual-luciferase reporter assay, respectively. RESULT There was a low expression level of miR-149-5p and a high expression of PDE4D in psoriatic lesion tissues. MiR-149-5p could target PDE4D. IL-22 promoted HaCaT and NHEK cells proliferation, while inhibited cell apoptosis and accelerated cell cycle. Moreover, IL-22 decreased the expressions of cleaved Caspase-3 and Bax, and increased the expression of Bcl-2. And the overexpressed miR-149-5p promoted HaCaT and NHEK cells apoptosis, inhibited cell proliferation and retarded cell cycle, meanwhile increased the cleaved Caspase-3 and Bax expressions, decreased the Bcl-2 expression. In addition, PDE4D overexpression has the opposite effect as miR-149-5p. CONCLUSION The overexpressed miR-149-5p inhibits IL-22-stimulated HaCaT and NHEK keratinocytes proliferation, promotes cell apoptosis and retards cell cycle by down-regulating the expression of PDE4D, which could be the promising therapeutic target of psoriasis.
Collapse
Affiliation(s)
- Wentao Hu
- Department of Dermatology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, China
| | - Yifang Jiang
- Department of Endocrinology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, China
| | - Changhui Wen
- Department of Dermatology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, China
| | - Yiyan Zeng
- Department of Dermatology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, China
| | - Min Jia
- Department of Dermatology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, China.
| |
Collapse
|
16
|
Zhang S, Jiang E, Kang Z, Bi Y, Liu H, Xu H, Wang Z, Lei C, Chen H, Lan X. CircRNA Profiling Reveals an Abundant circBDP1 that Regulates Bovine Fat Development by Sponging miR-181b/miR-204 Targeting Sirt1/TRARG1. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:14312-14328. [PMID: 36269615 DOI: 10.1021/acs.jafc.2c05939] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The proliferation and differentiation of preadipocytes is an important factor determining bovine fat development, which is closely related to the feed conversion ratio, carcass traits, and beef quality. The purpose of this study was to identify the effects of candidate circRNA and miRNA on the proliferation and differentiation of bovine preadipocytes in order to provide basic materials for molecular breeding in cattle. circRNA sequencing was performed on bovine adipocyte samples at different differentiation time points, and a total of 1830 differentially expressed circRNAs were identified. Among them, circBDP1, derived from the bovine BDP1 gene, has potential binding sites for miR-204 (known as a regulator of bovine fat development) and miR-181b, which gives us a hint that circBDP1 may regulate bovine fat development by adsorbing miR-204 and miR-181b. Here, our results revealed that circBDP1 overexpression promoted the proliferation and differentiation of bovine preadipocytes. The miRNA profile of bovine adipocytes at different differentiation time points was also analyzed using the small RNA sequencing method, and a total of 89 differentially expressed miRNAs were identified, including miR-204 and miR-181b. As expected, dual-luciferase reporter results showed that circBDP1 competitively adsorbed miR-181b and miR-204. Overexpression and interference of miR-181b in bovine preadipocytes and 3T3-L1 showed that miR-181b promoted the proliferation and differentiation of preadipocytes. Further results displayed that miR-181b and miR-204 simultaneously targeted the SIRT1 gene, and miR-204 also targeted the 3' UTR region of the TRARG1 gene. In summary, this study found that miR-181b and miR-204 were involved in fat development by targeting SIRT1 and TRARG1. The results of this study will lay a foundation for the research of fat development and beef cattle industry.
Collapse
Affiliation(s)
- Sihuan Zhang
- Key laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi712100, China
- College of Animal Science and Technology, Anhui Agricultural University, Hefei230036, P.R. China
| | - Enhui Jiang
- Key laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi712100, China
| | - Zihong Kang
- Key laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi712100, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing100193, China
| | - Yi Bi
- Key laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi712100, China
| | - Hongfei Liu
- Key laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi712100, China
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing100193, China
| | - Han Xu
- School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong510006, China
| | - Zhen Wang
- Key laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi712100, China
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing100193, China
| | - Chuzhao Lei
- Key laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi712100, China
| | - Hong Chen
- Key laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi712100, China
| | - Xianyong Lan
- Key laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi712100, China
| |
Collapse
|
17
|
Construction and Comprehensive Analysis of miRNAs and Target mRNAs in Longissimus dorsi Muscle of Queshan Black and Large White Pigs. Life (Basel) 2022; 12:life12111814. [DOI: 10.3390/life12111814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/23/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
A miRNA-mRNA combination analysis was performed on the longissimus dorsi muscle of adult Queshan Black and Large White pigs by RNA-seq technology to reveal the molecular mechanism affecting pork quality traits. The sequencing results showed that 39 miRNAs were differentially expressed between Queshan Black and Large White pigs, which targeted 5234 mRNAs, and 15 differentially expressed miRNAs targeted 86 differentially expressed mRNAs. The qRT-PCR results showed that miRNAs showed similar expression patterns to RNA-seq. The GO analysis indicated that differentially expressed miRNAs with differential target mRNAs were primarily involved in biological processes such as phospholipase activity, MAP-kinase scaffold activity, lipase activity, and regulation of the extent of cell growth. The KEGG analysis also revealed that such mRNAs were significantly enriched in the ECM-receptor interaction, sphingolipid metabolism, apoptosis, PI3K-Akt signaling pathway, and AMPK signaling pathway. In addition, software predictions showed that 17 (13 of which were upregulated and four were downregulated) of 39 differentially expressed miRNAs targeted 118 negatively correlated expression mRNAs. The upregulated miRNAs contained 103 negatively correlated target mRNAs, whereas the downregulated miRNAs contained 15 negatively correlated target mRNAs. The GO analysis showed that such mRNAs were primarily involved in MAP-kinase scaffold activity, myoblast development, and peptidyl-lysine methylation, and the KEGG analysis showed significant enrichment in ECM-receptor interaction and focal adhesion. The functional enrichment analysis of miRNA target genes revealed that miR-328 was screened out as a key miRNA, and preliminary functional validation was performed. Moreover, the overexpressed miR-328 could affect the expression of proliferation-related genes, such as CDK2, CDK4, CCNB1, CCND1, CCNE1, and PCNA. These results indicated that miR-328 may regulate fat deposition and affect meat quality by influencing related pathways. This study revealed that the miRNA−mRNA regulatory axis affects fat deposition and skeletal muscle development, which provides a theoretical basis for further study on the molecular mechanism of meat quality.
Collapse
|
18
|
Liu Y, Dou Y, Qi K, Li C, Song C, Li X, Li X, Qiao R, Wang K, Han X. CircSETBP1 Acts as a MiR-149-5p Sponge to Promote Intramuscular Fat Deposition by Regulating CRTCs. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:12841-12851. [PMID: 36165804 DOI: 10.1021/acs.jafc.2c05697] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Circular RNAs (circRNAs) appear to be crucial in the process of adipogenesis according to mounting data. CircSETBP1 is a newly discovered circRNA associated with adipogenesis. Sequencing verification and RNase R treatment have confirmed the circular nature of circSETBP1 in porcine tissue. The precise function and mechanism of circSETBP1 in adipocyte biology are still unclear. Cell counting kit-8 (CCK8), Oil red O staining, and quantitative real-time polymerase chain reaction (qRT-PCR) were employed in this investigation to reveal the functions of circSETBP1 and miR-149-5p in the growth and development of porcine intramuscular (IM) preadipocytes. CircSETBP1 overexpression accelerated cell differentiation while reducing cell proliferation. The opposite outcome was produced by overexpressing miR-149-5p. Meanwhile, circSETBP1 down-regulated the expression of miR-149-5p and miR-149-5p restrained the expression of CRTC1/CRTC2. CircSETBP1 was directly targeted by miR-149-5p, and CRTC1/CRTC2 were the target genes of miR-149-5p using bioinformatic analysis, the dual-Luciferase reporter system, and qRT-PCR. In conclusion, circSETBP1 controls the proliferation and differentiation of porcine IM preadipocytes and 3T3-L1 cells by regulating the miR-149-5p/CRTCs axis. The results of this study not only illuminate the molecular mechanism of circSETBP1/miR-149-5p involved in the deposition of porcine intramuscular fat (IMF), but they also provide a significant theoretical reference for raising quality of pork.
Collapse
Affiliation(s)
- Yingke Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Yaqing Dou
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Kunlong Qi
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Chenlei Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Chenglei Song
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Xinjian Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Xiuling Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Ruimin Qiao
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Kejun Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Xuelei Han
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| |
Collapse
|
19
|
Li X, Bai Y, Li J, Chen Z, Ma Y, Shi B, Han X, Luo Y, Hu J, Wang J, Liu X, Li S, Zhao Z. Transcriptional analysis of microRNAs related to unsaturated fatty acid synthesis by interfering bovine adipocyte ACSL1 gene. Front Genet 2022; 13:994806. [PMID: 36226194 PMCID: PMC9548527 DOI: 10.3389/fgene.2022.994806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/06/2022] [Indexed: 11/13/2022] Open
Abstract
Long-chain fatty acyl-CoA synthase 1 (ACSL1) plays a vital role in the synthesis and metabolism of fatty acids. The proportion of highly unsaturated fatty acids in beef not only affects the flavor and improves the meat’s nutritional value. In this study, si-ACSL1 and NC-ACSL1 were transfected in bovine preadipocytes, respectively, collected cells were isolated on the fourth day of induction, and then RNA-Seq technology was used to screen miRNAs related to unsaturated fatty acid synthesis. A total of 1,075 miRNAs were characterized as differentially expressed miRNAs (DE-miRNAs), of which the expressions of 16 miRNAs were upregulated, and that of 12 were downregulated. Gene ontology analysis indicated that the target genes of DE-miRNAs were mainly involved in biological regulation and metabolic processes. Additionally, KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analysis identified that the target genes of DE-miRNAs were mainly enriched in metabolic pathways, fatty acid metabolism, PI3K-Akt signaling pathway, glycerophospholipid metabolism, fatty acid elongation, and glucagon signaling pathway. Combined with the previous mRNA sequencing results, several key miRNA-mRNA targeting relationship pairs, i.e., novel-m0035-5p—ACSL1, novel-m0035-5p—ELOVL4, miR-9-X—ACSL1, bta-miR-677—ACSL1, miR-129-X—ELOVL4, and bta-miR-485—FADS2 were screened via the miRNA-mRNA interaction network. Thus, the results of this study provide a theoretical basis for further research on miRNA regulation of unsaturated fatty acid synthesis in bovine adipocytes.
Collapse
|
20
|
Huang J, Guo D, Zhu R, Feng Y, Li R, Yang X, Shi D. FATP1 Exerts Variable Effects on Adipogenic Differentiation and Proliferation in Cells Derived From Muscle and Adipose Tissue. Front Vet Sci 2022; 9:904879. [PMID: 35898540 PMCID: PMC9310014 DOI: 10.3389/fvets.2022.904879] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 05/25/2022] [Indexed: 11/13/2022] Open
Abstract
In livestock, intramuscular adipose tissue is highly valued whereas adipose tissue in other depots is considered as waste. Thus, genetic factors that favor fat deposition in intramuscular compartments over that in other adipose depots are highly desirable in meat-producing animals. Fatty acid transport 1 (FATP1) has been demonstrated to promote cellular fatty acid uptake and metabolism; however, whether it also influences cellular lipid accumulation remains unclear. In the present study, we investigated the effects of FATP1 on the differentiation and proliferation of adipocytes in five types of cells derived from muscle and adipose tissue and estimated the effects of FATP1 on intramuscular fat (IMF) deposition. We showed that FATP1 is mainly expressed in heart and muscle tissue in buffaloes as well as cells undergoing adipogenic differentiation. Importantly, we found that FATP1 promoted the adipogenic differentiation of muscle-derived cells (buffalo myocytes and intramuscular preadipocytes and mouse C2C12 cells) but did not affect, or even inhibited, that of adipose-derived cells (buffalo subcutaneous preadipocytes and mouse 3T3-L1 cells, respectively). Correspondingly, our results further indicated that FATP1 promotes IMF deposition in mice in vivo. Meanwhile, FATP1 was found to enhance the proliferative activity of all the assessed cells, except murine 3T3-L1 cells. These results provide new insights into the potential effects of FATP1 on IMF deposition, especially regarding its positive effects on meat quality in buffaloes and other livestock.
Collapse
|
21
|
A Review on the Role of miR-149-5p in the Carcinogenesis. Int J Mol Sci 2021; 23:ijms23010415. [PMID: 35008841 PMCID: PMC8745060 DOI: 10.3390/ijms23010415] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 02/07/2023] Open
Abstract
miR-149 is an miRNA with essential roles in carcinogenesis. This miRNA is encoded by the MIR149 gene on 2q37.3. The miR-149 hairpin produces miR-149-5p and miR-149-3p, which are the “guide” and the sister “passenger” strands, respectively. Deep sequencing experiments have shown higher prevalence of miR-149-5p compared with miR-149-3p. Notably, both oncogenic and tumor suppressive roles have been reported for miR-149-5p. In this review, we summarize the impact of miR-149-5p in the tumorigenesis and elaborate mechanisms of its involvement in this process in a variety of neoplastic conditions based on three lines of evidence, i.e., in vitro, in vivo and clinical settings.
Collapse
|
22
|
Zhao L, Zhou L, Hao X, Wang L, Han F, Liu L, Duan X, Guo F, He J, Liu N. Identification and Characterization of Circular RNAs in Association With the Deposition of Intramuscular Fat in Aohan Fine-Wool Sheep. Front Genet 2021; 12:759747. [PMID: 34938314 PMCID: PMC8685527 DOI: 10.3389/fgene.2021.759747] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/02/2021] [Indexed: 01/20/2023] Open
Abstract
Aohan fine-wool sheep (AFWS) is a high-quality fine-wool sheep breed that supplies wool and meat. Research is needed on the molecular mechanism behind intramuscular fat (IMF) deposition that greatly improves mutton quality. The widely expressed non-coding RNA is physiologically used in roles such as competitive endogenous RNA (ceRNA) that includes circular RNAs (circRNAs). Although circRNAs were studied in many fields, little research was devoted to IMF in sheep. We used the longissimus dorsi muscle of 2 and 12-month-old AWFS as research material to identify circRNAs related to IMF deposition in these sheep by RNA-seq screening for differentially expressed circRNAs in the two age groups. A total of 11,565 candidate circRNAs were identified, of which the 104 differentially expressed circRNAs in the two age groups were analyzed. Enrichment analysis was performed using Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes. The enriched pathways included lipid transport (GO:0006869), negative regulation of canonical Wnt signaling pathway (GO:0090090), fat digestion and absorption (ko04975), and sphingolipid metabolism (ko00600). The differentially expressed circRNAs included ciRNA455, circRNA9086, circRNA7445, circRNA4557, and others. The source genes involved in these pathways might regulate IMF deposition. We used the TargetScan and miRanda software for interaction analysis, and a network diagram of circRNA-miRNA interactions was created. CircRNA455-miR-127, circRNA455-miR-29a, circRNA455-miR-103, circRNA4557-mir149-5p, and circRNA2440-mir-23a might be involved in the IMF deposition process. The targeting relationship of circRNA4557-miR-149-5p was verified by a dual-luciferase reporter assay. The RT-qPCR results of seven randomly selected circRNAs were consistent with the sequencing results. This study provides additional information on circRNA regulation of IMF deposition in AFWS and is a useful resource for future research on this sheep breed.
Collapse
Affiliation(s)
- Le Zhao
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Lisheng Zhou
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Xiaojing Hao
- Qingdao Animal Husbandry and Veterinary Research Institute, Qingdao, China
| | - Lei Wang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Fuhui Han
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Lirong Liu
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Xinming Duan
- Nongfayuan Zhejiang Agricultural Development Co. Ltd., Huzhou, China
| | - Feng Guo
- Tongliao Animal Agriculture Development Service Center, Tongliao, China
| | - Jianning He
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Nan Liu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
23
|
Regulatory network of miRNA, lncRNA, transcription factor and target immune response genes in bovine mastitis. Sci Rep 2021; 11:21899. [PMID: 34753991 PMCID: PMC8578396 DOI: 10.1038/s41598-021-01280-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 10/25/2021] [Indexed: 12/03/2022] Open
Abstract
Pre- and post-transcriptional modifications of gene expression are emerging as foci of disease studies, with some studies revealing the importance of non-coding transcripts, like long non-coding RNAs (lncRNAs) and microRNAs (miRNAs). We hypothesize that transcription factors (TFs), lncRNAs and miRNAs modulate immune response in bovine mastitis and could potentially serve as disease biomarkers and/or drug targets. With computational analyses, we identified candidate genes potentially regulated by miRNAs and lncRNAs base pair complementation and thermodynamic stability of binding regions. Remarkably, we found six miRNAs, two being bta-miR-223 and bta-miR-24-3p, to bind to several targets. LncRNAs NONBTAT027932.1 and XR_003029725.1, were identified to target several genes. Functional and pathway analyses revealed lipopolysaccharide-mediated signaling pathway, regulation of chemokine (C-X-C motif) ligand 2 production and regulation of IL-23 production among others. The overarching interactome deserves further in vitro/in vivo explication for specific molecular regulatory mechanisms during bovine mastitis immune response and could lay the foundation for development of disease markers and therapeutic intervention.
Collapse
|
24
|
Ren FJ, Yao Y, Cai XY, Cai YT, Su Q, Fang GY. MiR-149-5p: An Important miRNA Regulated by Competing Endogenous RNAs in Diverse Human Cancers. Front Oncol 2021; 11:743077. [PMID: 34722295 PMCID: PMC8554335 DOI: 10.3389/fonc.2021.743077] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 10/01/2021] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) consist of a large family of small, non-coding RNAs with the ability to result in gene silencing post-transcriptionally. With recent advances in research technology over the past several years, the physiological and pathological potentials of miRNAs have been gradually uncovered. MiR-149-5p, a conserved miRNA, was found to regulate physiological processes, such as inflammatory response, adipogenesis and cell proliferation. Notably, increasing studies indicate miR-149-5p may act as an important regulator in solid tumors, especially cancers in reproductive system and digestive system. It has been acknowledged that miR-149-5p can function as an oncogene or tumor suppressor in different cancers, which is achieved by controlling a variety of genes expression and adjusting downstream signaling pathway. Moreover, the levels of miR-149-5p are influenced by several newly discovered long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs). However, there is blank about systematic function and mechanism of miR-149-5p in human cancers. In this review, we firstly summarize the present comprehension of miR-149-5p at the molecular level, its vital role in tumor initiation and progression, as well as its potential roles in monitoring diverse reproductive and digestive malignancies.
Collapse
Affiliation(s)
- Fu-jia Ren
- Department of Pharmacy, Hangzhou Women’s Hospital (Hangzhou Maternity and Child Health Care Hospital), Hangzhou, China
| | - Yao Yao
- Department of Pharmacy, Women’s Hospital School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiao-yu Cai
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yu-ting Cai
- Department of Pharmacy, Hangzhou Women’s Hospital (Hangzhou Maternity and Child Health Care Hospital), Hangzhou, China
| | - Qian Su
- Department of Pharmacy, Hangzhou Women’s Hospital (Hangzhou Maternity and Child Health Care Hospital), Hangzhou, China
| | - Guo-ying Fang
- Department of Pharmacy, Hangzhou Women’s Hospital (Hangzhou Maternity and Child Health Care Hospital), Hangzhou, China
| |
Collapse
|
25
|
Zhao Z, Bai Y, Tian H, Shi B, Li X, Luo Y, Wang J, Hu J, Abbas Raza SH. Interference with ACSL1 gene in bovine adipocytes: Transcriptome profiling of circRNA related to unsaturated fatty acid production. Genomics 2021; 113:3967-3977. [PMID: 34601049 DOI: 10.1016/j.ygeno.2021.09.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 07/23/2021] [Accepted: 09/27/2021] [Indexed: 01/12/2023]
Abstract
Long-chain acyl-CoA synthetase 1 (ACSL1) is a member of the acyl-CoA synthetase family that plays a vital role in lipid metabolism. We have previously shown that the ACSL1 gene regulates the composition of unsaturated fatty acids (UFAs) in bovine skeletal muscle, which in turn regulates the fatty acid synthesis and the generation of lipid droplets. Here, we used RNA-Seq to screen circRNAs that regulated the expression of ACSL1 gene and other UFA synthesis-related genes by RNA interference and noninterference in bovine adipocytes. The results of KEGG pathway analysis showed that the parental genes of differentially expressed (DE)-circRNAs were primarily enriched in the adipocytokine signaling pathway. The prediction results showed that novel_circ_0004855, novel_circ_0001507, novel_circ_0001731, novel_circ_0005276, novel_circ_0002060, novel_circ_0005405 and novel_circ_0004254 regulated UFA synthesis-related genes by interacting with the related miRNAs. These results could help expand our knowledge of the molecular mechanisms of circRNAs in the regulation of UFA synthesis in bovine adipocytes.
Collapse
Affiliation(s)
- Zhidong Zhao
- College of Animal Science and Technology, Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou 730070, China
| | - Yanbin Bai
- College of Animal Science and Technology, Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou 730070, China
| | - Hongshan Tian
- College of Animal Science and Technology, Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou 730070, China
| | - Bingang Shi
- College of Animal Science and Technology, Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou 730070, China
| | - Xupeng Li
- College of Animal Science and Technology, Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou 730070, China
| | - Yuzhu Luo
- College of Animal Science and Technology, Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou 730070, China
| | - Jiqing Wang
- College of Animal Science and Technology, Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou 730070, China
| | - Jiang Hu
- College of Animal Science and Technology, Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou 730070, China.
| | - Sayed Haidar Abbas Raza
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
26
|
Bta-miR-2400 Targets SUMO1 to Affect Yak Preadipocytes Proliferation and Differentiation. BIOLOGY 2021; 10:biology10100949. [PMID: 34681048 PMCID: PMC8533534 DOI: 10.3390/biology10100949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 11/17/2022]
Abstract
Yak adipose tissue may have evolved a unique energy metabolism manner to accommodate the organism's seasonal growth rhythms. MiRNAs regulate multiple biological processes including systemic metabolism and energy homeostasis through post-transcriptional regulations. Rare reports have shown that miRNAs regulate lipid metabolism in domestic yaks. Therefore, we investigated the regulatory mechanisms of bta-miR-2400 in modulating yak preadipocytes proliferation and differentiation. We found that bta-miR-2400 was highly expressed in adipose tissue. Overexpression of bta-miR-2400 in yak preadipocytes significantly enhanced cell proliferation, increased the number of EdU fluorescence-stained cells, and promoted the expression of proliferation marker genes (CDK2, CDK4 and PCNA). Besides, overexpression of bta-miR-2400 repressed the expression of adipogenesis-related marker genes, and the content of cellular triglyceride was substantially reduced. Conversely, inhibition of bta-miR-2400 showed opposite effects compared to those of bta-miR-2400 overexpression in yak preadipocytes. Further, luciferase reporter assays revealed that SUMO1 is a target gene of bta-miR-2400, with bta-miR-2400 being able to down-regulate SUMO1 mRNA and protein expression. In conclusion, bta-miR-2400 regulates lipid metabolism and energy homeostasis in yak preadipocytes by directly targeting SUMO1 to promote cell proliferation and inhibit differentiation.
Collapse
|
27
|
MicroRNA-200b Regulates the Proliferation and Differentiation of Ovine Preadipocytes by Targeting p27 and KLF9. Animals (Basel) 2021; 11:ani11082417. [PMID: 34438874 PMCID: PMC8388755 DOI: 10.3390/ani11082417] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 01/18/2023] Open
Abstract
Simple Summary The miR-200b has been shown to play an important role in preadipocyte proliferation and differentiation. Herein, we explored the role of miR-200b in ovine adipocyte development, using Oil Red O staining, cell viability analysis, EdU and RT-qPCR. The results showed that miR-200b facilitated proliferation and suppressed the differentiation of preadipocytes. The dual fluorescent reporter vector experiments showed that miR-200b directly targeted p27 and KLF9. Meanwhile, we demonstrated that p27 significantly inhibited the proliferation, while KLF9 significantly promoted the differentiation of preadipocytes. Abstract MicroRNAs (miRNAs) are crucial regulatory molecules in lipid deposition and metabolism. However, the effect of miR-200b on the regulation of proliferation and adipogenesis of ovine preadipocytes is unknown in the sheep (Ovis aries). In this study, the expression profiles of miR-200b were investigated in the seven tissues of Tibetan ewes and differentiated preadipocytes. The effect of miR-200b, as well as its target genes p27 and KLF9, on the proliferation of ovine preadipocytes and adipogenesis was also investigated, using cell viability analysis, EdU staining, Oil Red O staining and reverse transcription-quantitative PCR (RT-qRCR). The miR-200b was expressed in all the tissues investigated, and it was highly expressed in lung, liver, subcutaneous adipose and spleen tissues. The expression of miR-200b continuously decreased when the differentiation of ovine preadipocytes initiated. The miR-200b mimic dramatically accelerated the proliferation but inhibited differentiation of ovine preadipocytes. The miR-200b inhibitor resulted in an opposite effect on the proliferation and differentiation of ovine preadipocytes. The dual luciferase reporter assay results showed that miR-200b mimic significantly decreased the luciferase activity of p27 and KLF9 in HEK293 cells transfected with wild-type dual luciferase reporter vectors. This suggests that p27 and KLF9 are the target genes of miR-200b. In over-expressed-p27 preadipocytes, the number of EdU-labeled preadipocytes and the expression levels of proliferation marker genes CDK2, CDK4, CCND1 and PCNA significantly decreased. In addition, the transfection of over-expressed-KLF9 vector into adipocytes remarkably increased the accumulation of lipid droplets and the expression levels of differentiation marker genes aP2, PPARγ, LPL and GLUT4. These results suggest that miR-200b accelerated the proliferation but inhibited the adipogenic differentiation of ovine preadipocytes by targeting p27 and KLF9, respectively.
Collapse
|
28
|
He C, Wang Y, Xu Q, Xiong Y, Zhu J, Lin Y. Overexpression of Krueppel like factor 3 promotes subcutaneous adipocytes differentiation in goat Capra hircus. Anim Sci J 2021; 92:e13514. [PMID: 33522088 DOI: 10.1111/asj.13514] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 11/28/2020] [Accepted: 12/22/2020] [Indexed: 12/15/2022]
Abstract
Previous research reported that KLF3 plays different roles in the regulation of adipose deposition across species. However, the exact function of KLF3 in goat subcutaneous adipocyte remains unknown. Here, the goat KLF3 gene was firstly cloned and showed that the mRNA sequence of the goat KLF3 gene was 1,264 bp (GenBank accession number: KU041753.1) and its coding sequence was 1,037 bp, encoding 345 amino acids with three classic zinc finger domains of KLFs family at its C-terminus. The alignment of the amino acid sequence of KLF3 among various species demonstrated that goat had the highest homology to that of sheep, presenting 99.4% similarity, while the homology similarity to that of mice presented only 93.62% in contrast. Furthermore, KLF3 had highest mRNA level in fat tissue and lowest level in the heart in comparison. Additionally, the mRNA level of KLF3 gradually tended to increase during adipogenesis. Interestingly, overexpression of KLF3 increased lipid accumulation. In line with this, the gain-of-function of KLF3 dramatically elevated the mRNA levels of TG synthetic genes and adipogenic maker genes (p < .01) . Moreover, overexpression of KLF3 upregulated all the potential target genes, except for C/EBPα. These results suggested that KLF3 is a positive regulator for subcutaneous adipocyte differentiation in goats.
Collapse
Affiliation(s)
- Changsheng He
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, China.,Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province, Chengdu, China.,College of Animal &Veterinary Sciences, Southwest Minzu University, Chengdu, China
| | - Yong Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, China.,Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province, Chengdu, China.,College of Animal &Veterinary Sciences, Southwest Minzu University, Chengdu, China
| | - Qing Xu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, China.,Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province, Chengdu, China.,College of Animal &Veterinary Sciences, Southwest Minzu University, Chengdu, China
| | - Yan Xiong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, China.,Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province, Chengdu, China.,College of Animal &Veterinary Sciences, Southwest Minzu University, Chengdu, China
| | - Jiangjiang Zhu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, China.,Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province, Chengdu, China
| | - Yaqiu Lin
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, China.,Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province, Chengdu, China.,College of Animal &Veterinary Sciences, Southwest Minzu University, Chengdu, China
| |
Collapse
|
29
|
Liu R, Liu X, Bai X, Xiao C, Dong Y. A Study of the Regulatory Mechanism of the CB1/PPARγ2/PLIN1/HSL Pathway for Fat Metabolism in Cattle. Front Genet 2021; 12:631187. [PMID: 34017353 PMCID: PMC8129027 DOI: 10.3389/fgene.2021.631187] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 03/08/2021] [Indexed: 12/14/2022] Open
Abstract
Fat metabolism is closely related to the economic characteristics of beef cattle. Therefore, regulating fat deposition and increasing intramuscular fat deposition are among the main goals of breeders. In this study, we aim to explore the regulatory role of CB1 gene on PPARγ2/PLIN1/HSL pathway in fat metabolism, and to further explore the differential expression of regulatory factors of this pathway in Shandong black cattle and Luxi cattle. In this study, CB1 overexpression stimulated lipid synthesis in adipocytes to some extent by increasing the levels of FASN and ACSL1. CB1 inhibitors reduce the lipid content in adipocytes and reduce the expression of GLUT1 and Insig1. In addition, overexpression of CB1 decreased the expression of PPARγ2 and led to an increase in PLIN1 expression and a decrease in HSL expression in adipocytes. We also found that the CB1/PPARγ2/PLIN1/HSL was differentially expressed in the different breeds of cattle and was involved in the regulation of fat metabolism, which affected the fatty acid content in the longissimus dorsi muscle of the two breeds. In short, CB1 participates in lipid metabolism by regulating HSL in the PPARγ2 and PLIN1 pathways, and improves lipid formation in adipocytes. In conclusion, CB1/PPARγ2/PLIN1/HSL pathway may be involved in the regulation of lipid metabolism.
Collapse
Affiliation(s)
- Ruili Liu
- Laboratory of Animal Physiology and Biochemistry, Animal Embryo Center, College of Animal Science, Qingdao Agricultural University, Qingdao, China
| | - Xianxun Liu
- Laboratory of Animal Molecular Shandong Black Cattle Breeding Engineering Technology Center, College of Animal Science, Qingdao Agricultural University, Qingdao, China
| | - Xuejin Bai
- Laboratory of Animal Physiology and Biochemistry, Animal Embryo Center, College of Animal Science, Qingdao Agricultural University, Qingdao, China.,Laboratory of Animal Molecular Shandong Black Cattle Breeding Engineering Technology Center, College of Animal Science, Qingdao Agricultural University, Qingdao, China
| | - Chaozhu Xiao
- Laboratory of Animal Physiology and Biochemistry, Animal Embryo Center, College of Animal Science, Qingdao Agricultural University, Qingdao, China.,Laboratory of Animal Molecular Shandong Black Cattle Breeding Engineering Technology Center, College of Animal Science, Qingdao Agricultural University, Qingdao, China
| | - Yajuan Dong
- Laboratory of Animal Physiology and Biochemistry, Animal Embryo Center, College of Animal Science, Qingdao Agricultural University, Qingdao, China.,Laboratory of Animal Molecular Shandong Black Cattle Breeding Engineering Technology Center, College of Animal Science, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
30
|
RNA-Seq Reveals Function of Bta-miR-149-5p in the Regulation of Bovine Adipocyte Differentiation. Animals (Basel) 2021; 11:ani11051207. [PMID: 33922274 PMCID: PMC8145242 DOI: 10.3390/ani11051207] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/16/2021] [Accepted: 04/18/2021] [Indexed: 12/11/2022] Open
Abstract
Intramuscular fat is a real challenge for the experts of animal science to improve meat quality traits. Research on the mechanism of adipogenesis provides invaluable information for the improvement of meat quality traits. This study investigated the effect of bta-miR-149-5p and its underlying mechanism on lipid metabolism in bovine adipocytes. Bovine adipocytes were differentiated and transfected with bta-miR-149-5p mimics or its negative control (NC). A total of 115 DEGs including 72 upregulated and 43 downregulated genes were identified in bovine adipocytes. The unigenes and GO term biological processes were the most annotated unigene contributor parts at 80.08%, followed by cellular component at 13.4% and molecular function at 6.7%. The KEGG pathways regulated by the DEGs were PI3K-Akt signaling pathway, calcium signaling pathway, pathways in cancer, MAPK signaling pathway, lipid metabolism/metabolic pathway, PPAR signaling pathway, AMPK signaling pathway, TGF-beta signaling pathway, cAMP signaling pathway, cholesterol metabolism, Wnt signaling pathway, and FoxO signaling pathway. In addition to this, the most important reactome enrichment pathways were R-BTA-373813 receptor CXCR2 binding ligands CXCL1 to 7, R-BTA-373791 receptor CXCR1 binding CXCL6 and CXCL8 ligands, R-BTA-210991 basigin interactions, R-BTA-380108 chemokine receptors binding chemokines, R-BTA-445704 calcium binding caldesmon, and R-BTA-5669034 TNFs binding their physiological receptors. Furthermore, the expression trend of the DEGs in these pathways were also exploited. Moreover, the bta-miR-149-5p significantly (p < 0.01) downregulated the mRNA levels of adipogenic marker genes such as CCND2, KLF6, ACSL1, Cdk2, SCD, SIK2, and ZEB1 in bovine adipocytes. In conclusion, our results suggest that bta-miR-149-5p regulates lipid metabolism in bovine adipocytes. The results of this study provide a basis for studying the function and molecular mechanism of the bta-miR-149-5p in regulating bovine adipogenesis.
Collapse
|
31
|
Jin X, Hao Z, Zhao M, Shen J, Ke N, Song Y, Qiao L, Lu Y, Hu L, Wu X, Wang J, Luo Y. MicroRNA-148a Regulates the Proliferation and Differentiation of Ovine Preadipocytes by Targeting PTEN. Animals (Basel) 2021; 11:ani11030820. [PMID: 33803986 PMCID: PMC7998426 DOI: 10.3390/ani11030820] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/07/2021] [Accepted: 03/08/2021] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) have been found to be involved in lipid deposition and metabolism. However, there have been no reports on the roles of miR-148a in the proliferation and adipogenesis of preadipocytes in sheep. In this study, the expression of miR-148a was profiled in the eight tissues of Tibetan ewes and differentiated preadipocytes, and the role of miR-148a in differentiation and proliferation of ovine preadipocytes was investigated using Oil Red O staining, CCK-8, EdU staining, cell cycle detection, and RT-qPCR. The effect of PTEN on the differentiation of ovine preadipocytes was also investigated. The miR-148a was widely expressed in the eight tissues investigated and had significantly increased expression in liver, spleen and subcutaneous adipose tissues, and the heart. The expression of miR-148a continued to increase with the differentiation of ovine preadipocytes. The over-expression of miR-148a significantly promoted differentiation but inhibited the proliferation of ovine preadipocytes. The inhibition of miR-148a had the opposite effect on the differentiation and proliferation of ovine preadipocytes with over-expressed miR-148a. The results from the dual luciferase reporter assays showed that miR-148a mimic significantly decreased the luciferase activity of PTEN-3'UTR dual luciferase reporter vector, suggesting that PTEN is a target gene of miR-148a. In over-expressed-PTEN preadipocytes, the number of lipid droplets remarkably decreased, and the expression levels of adipogenesis marker genes PPARγ, FASN, FATP4, GLUT4, C/EBPβ and LPL were also significantly down-regulated. These results suggest that miR-148a accelerated the adipogenic differentiation of ovine preadipocytes by inhibiting PTEN expression, and also inhibited the proliferation of ovine preadipocytes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Jiqing Wang
- Correspondence: (J.W.); (Y.L.); Tel.: +86-931-763-2469 (J.W.); +86-931-763-2483 (Y.L.)
| | - Yuzhu Luo
- Correspondence: (J.W.); (Y.L.); Tel.: +86-931-763-2469 (J.W.); +86-931-763-2483 (Y.L.)
| |
Collapse
|
32
|
Chen X, Raza SHA, Ma X, Wang J, Wang X, Liang C, Yang X, Mei C, Suhail SM, Zan L. Bovine Pre-adipocyte Adipogenesis Is Regulated by bta-miR-150 Through mTOR Signaling. Front Genet 2021; 12:636550. [PMID: 33633792 PMCID: PMC7901978 DOI: 10.3389/fgene.2021.636550] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/04/2021] [Indexed: 12/12/2022] Open
Abstract
Micro RNA (miR) are recognized for their important roles in biological processes, particularly in regulatory componentization. Among the miR, miR-150 has been the focus of intense scrutiny, mostly due to its role in malignant tumors. A comparison between steer and bull adipose tissues identified bta-miR-150 as one of the nine downregulated miRNAs, although its function remains unknown (GEO:GSE75063). The present study aimed to further characterize the role of bta-miR-150 in cattle. bta-miR-150 has a negative regulatory effect on the differentiation of bovine adipocytes and promotes proliferation. Overexpression of bta-miR-150 can promote mRNA and protein expression of the marker genes CDK1, CDK2, and PCNA, increase the number of EdU-stained cells, promote adipocyte proliferation, inhibit adipocyte differentiation, and reduce lipid droplet formation. Results of RNA-seq and WGCNA analyses showed that the mammalian target of the rapamycin signaling pathway, which plays a major regulatory role, is dysregulated by the overexpression and inhibition of miR-150. We found that the target gene of bta-miR-150 is AKT1 and that bta-miR-150 affects AKT1 phosphorylation levels. These results showed that bta-miR-150 plays a role in adipogenic differentiation and might therefore have applications in the beef industry.
Collapse
Affiliation(s)
- Xingyi Chen
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | | | - Xinhao Ma
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Jiangfang Wang
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Xiaohui Wang
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Chengcheng Liang
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Xinran Yang
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Chugang Mei
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Syed Muhammad Suhail
- Department of Livestock Management, Breeding and Genetics, The University of Agriculture, Peshawar, Pakistan
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China.,National Beef Cattle Improvement Center, Northwest A&F University, Xianyang, China
| |
Collapse
|
33
|
Zhang Q, Cai R, Tang G, Zhang W, Pang W. MiR-146a-5p targeting SMAD4 and TRAF6 inhibits adipogenensis through TGF-β and AKT/mTORC1 signal pathways in porcine intramuscular preadipocytes. J Anim Sci Biotechnol 2021; 12:12. [PMID: 33531066 PMCID: PMC7856799 DOI: 10.1186/s40104-020-00525-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 11/16/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Intramuscular fat (IMF) content is a vital parameter for assessing pork quality. Increasing evidence has shown that microRNAs (miRNAs) play an important role in regulating porcine IMF deposition. Here, a novel miRNA implicated in porcine IMF adipogenesis was found, and its effect and regulatory mechanism were further explored with respect to intramuscular preadipocyte proliferation and differentiation. RESULTS By porcine adipose tissue miRNA sequencing analysis, we found that miR-146a-5p is a potential regulator of porcine IMF adipogenesis. Further studies showed that miR-146a-5p mimics inhibited porcine intramuscular preadipocyte proliferation and differentiation, while the miR-146a-5p inhibitor promoted cell proliferation and adipogenic differentiation. Mechanistically, miR-146a-5p suppressed cell proliferation by directly targeting SMAD family member 4 (SMAD4) to attenuate TGF-β signaling. Moreover, miR-146a-5p inhibited the differentiation of intramuscular preadipocytes by targeting TNF receptor-associated factor 6 (TRAF6) to weaken the AKT/mTORC1 signaling downstream of the TRAF6 pathway. CONCLUSIONS MiR-146a-5p targets SMAD4 and TRAF6 to inhibit porcine intramuscular adipogenesis by attenuating TGF-β and AKT/mTORC1 signaling, respectively. These findings provide a novel miRNA biomarker for regulating intramuscular adipogenesis to promote pork quality.
Collapse
Affiliation(s)
- Que Zhang
- Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Rui Cai
- Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Guorong Tang
- Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Wanrong Zhang
- Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Weijun Pang
- Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
34
|
Bta-miR-376a Targeting KLF15 Interferes with Adipogenesis Signaling Pathway to Promote Differentiation of Qinchuan Beef Cattle Preadipocytes. Animals (Basel) 2020; 10:ani10122362. [PMID: 33321855 PMCID: PMC7763857 DOI: 10.3390/ani10122362] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/05/2020] [Accepted: 12/08/2020] [Indexed: 02/07/2023] Open
Abstract
Intramuscular fat (IMF) is a quality index associated with the taste and juiciness of meat. The deposition of IMF is affected by genetic and non-genetic factors, such as age, slaughter location, gender of the animal, and diet. Micro-ribonucleic acids (miRNA) are transcriptional regulators involved in adipogenesis, but the specific role of miR-376a in regulation of bovine adipocytes remains unknown. Our findings indicated that miR-376a was a potential negative regulator of bovine adipocyte differentiation. A bta-miR-376a mimic inhibited mRNA and protein expression of the marker genes, CDK1, CDK2, PCNA, C/EBPα, FAS, and PPAR γ, and significantly reduced ratios (%) of S-phase cells, the number of cells stained with 5-ethynyl-2'-deoxyuridine, and adipocyte proliferation. Oil red O staining and triglyceride content analysis also confirmed that bta-miR-376a was involved in adipocyte differentiation. Luciferase activities confirmed that Krüppel-like transcription factor 15 (KLF15) was a direct target gene of bta-miR-376a, and that KLF15 was a key transcription factor in adipogenesis. Therefore, bta-miR-376a might be a target for increasing beef IMF.
Collapse
|
35
|
Mir BA, Reyer H, Komolka K, Ponsuksili S, Kühn C, Maak S. Differentially Expressed miRNA-Gene Targets Related to Intramuscular Fat in Musculus Longissimus Dorsi of Charolais × Holstein F 2-Crossbred Bulls. Genes (Basel) 2020; 11:genes11060700. [PMID: 32630492 PMCID: PMC7348786 DOI: 10.3390/genes11060700] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 12/12/2022] Open
Abstract
Intramuscular fat (IMF) is a meat quality indicator associated with taste and juiciness. IMF deposition, influenced by genetic and non-genetic factors, occurs through a transcriptionally coordinated process of adipogenesis. MicroRNAs (miRNAs) are transcriptional regulators of vital biological processes, including lipid metabolism and adipogenesis. However, in bovines, limited data on miRNA profiling and association with divergent intramuscular fat content, regulated exclusively by genetic parameters, have been reported. Here, a microarray experiment was performed to identify and characterize the miRNA expression pattern in the Musculus longissimus dorsi of F2-cross (Charolais × German Holstein) bulls with high and low IMF. A total of 38 differentially expressed miRNAs (DE miRNAs), including 33 upregulated and 5 downregulated (corrected p-value ≤ 0.05, FC ≥ ±1.2), were reported. Among DE miRNAs, the upregulated miRNAs miR-105a/b, miR-695, miR-1193, miR-1284, miR-1287-5p, miR-3128, miR-3178, miR-3910, miR-4443, miR-4445 and miR-4745, and the downregulated miRNAs miR-877-5p, miR-4487 and miR-4706 were identified as novel fat deposition regulators. DE miRNAs were further analyzed, along with previously identified differentially expressed genes (DEGs) from the same samples and predicted target genes, using multiple bioinformatic approaches, including target prediction tools and co-expression networks, as well as Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment. We identified DE miRNAs and their gene targets associated with bovine intramuscular adipogenesis, and we provide a basis for further functional investigations.
Collapse
Affiliation(s)
- Bilal Ahmad Mir
- Institute of Muscle Biology and Growth, Leibniz Institute for Farm Animal Biology (FBN), D-18196 Dummerstorf, Germany; (K.K.); (S.M.)
- Correspondence: ; Tel.: +49-38208-68885
| | - Henry Reyer
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), D-18196 Dummerstorf, Germany; (H.R.); (S.P.); (C.K.)
| | - Katrin Komolka
- Institute of Muscle Biology and Growth, Leibniz Institute for Farm Animal Biology (FBN), D-18196 Dummerstorf, Germany; (K.K.); (S.M.)
| | - Siriluck Ponsuksili
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), D-18196 Dummerstorf, Germany; (H.R.); (S.P.); (C.K.)
| | - Christa Kühn
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), D-18196 Dummerstorf, Germany; (H.R.); (S.P.); (C.K.)
| | - Steffen Maak
- Institute of Muscle Biology and Growth, Leibniz Institute for Farm Animal Biology (FBN), D-18196 Dummerstorf, Germany; (K.K.); (S.M.)
| |
Collapse
|
36
|
Ashrafizadeh M, Zarrabi A, Hushmandi K, Hashemi F, Hashemi F, Samarghandian S, Najafi M. MicroRNAs in cancer therapy: Their involvement in oxaliplatin sensitivity/resistance of cancer cells with a focus on colorectal cancer. Life Sci 2020; 256:117973. [PMID: 32569779 DOI: 10.1016/j.lfs.2020.117973] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/06/2020] [Accepted: 06/10/2020] [Indexed: 02/08/2023]
Abstract
The resistance of cancer cells into chemotherapy has restricted the efficiency of anti-tumor drugs. Oxaliplatin (OX) being an anti-tumor agent/drug is extensively used in the treatment of various cancer diseases. However, its frequent application has led to chemoresistance. As a consequence, studies have focused in finding underlying molecular pathways involved in OX resistance. MicroRNAs (miRs) are short endogenous non-coding RNAs that are able to regulate vital biological mechanisms such as cell proliferation and cell growth. The abnormal expression of miRs occurs in pathological events, particularly cancer. In the present review, we describe the involvement of miRs in OX resistance and sensitivity. The miRs are able to induce the oncogene factors and mechanisms, resulting in stimulation OX chemoresistance. Also, onco-suppressor miRs can enhance the sensitivity of cancer cells into OX chemotherapy and trigger apoptosis and cell cycle arrest, leading to reduced viability and progression of cancer cells. MiRs can also enhance the efficacy of OX chemotherapy. It is worth mentioning that miRs affect various down-stream targets in OX resistance/sensitivity such as STAT3, TGF-β, ATG4B, FOXO1, LATS2, NF-κB and so on. By identification of these miRs and their upstream and down-stream mediators, further studies can focus on targeting them to sensitize cancer cells into OX chemotherapy and induce apoptotic cell death.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla 34956, Istanbul, Turkey; Center of Excellence for Functional Surfaces and Interfaces (EFSUN), Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul 34956, Turkey
| | | | - Farid Hashemi
- DVM. Graduated, Young Researcher and Elite Club, Kazerun Branch, Islamic Azad University, Kazeroon, Iran
| | - Fardin Hashemi
- Student Research Committee, Department of Physiotherapy, Faculty of Rehabilitation, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Saeed Samarghandian
- Healthy Ageing Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|