1
|
Saadh MJ, Bishoyi AK, Ballal S, Singh A, Kareem RA, Devi A, Sharma GC, Naidu KS, Sead FF. MicroRNAs as behind-the-scenes molecules in breast cancer metastasis and their therapeutic role through novel microRNA-based delivery strategies. Gene 2025; 944:149272. [PMID: 39894085 DOI: 10.1016/j.gene.2025.149272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 01/20/2025] [Indexed: 02/04/2025]
Abstract
Breast cancer is the primary cause of cancer-related death and the most frequent malignancy among women in Western countries. Although there have been advancements in combination treatments and targeted therapies for the metastatic diseases management, metastatic breast cancer is still the second most common cause of cancer-related deaths among U.S. women. The routes of metastasis encompass invasion, intravasation, circulation, extravasation, infiltration into a remote location to establish a metastatic niche, and the formation of micro-metastases in a new environment. Each of these processes is regulated by changes in gene expression. MicroRNAs (miRNAs) are widely expressed by a variety of organisms and have a key role in cell activities including suppressing or promoting cancer through regulating various pathways. Target gene expression is post-transcriptionally regulated by miRNAs, which contribute to the development, spread, and metastasis of breast cancer. In this study, we comprehensively discussed the role of miRNAs as predictors of breast cancer metastasis, their correlation with the spread of the disease to certain organs, and their potential application as targets for breast cancer treatment. We also provided molecular mechanisms of miRNAs in the progression of breast cancer, as well as current challenges in miRNA-based therapeutic approaches. Furthermore, as one of the primary issues with the treatment of solid malignancies is the efficient delivery of miRNAs, we examined a number of cutting-edge carriers for miRNA-based therapies and CRISPR/Cas9 as a targeted therapy for breast cancer.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman 11831, Jordan.
| | - Ashok Kumar Bishoyi
- Marwadi University Research Center, Department of Microbiology, Faculty of Science, Marwadi University, Rajkot 360003, Gujarat, India
| | - Suhas Ballal
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Abhayveer Singh
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura 140401, Punjab, India
| | | | - Anita Devi
- Department of Chemistry Chandigarh Engineering College, Chandigarh Group of Colleges-Jhanjeri, Mohali 140307, Punjab, India
| | - Girish Chandra Sharma
- Department of Applied Sciences-Chemistry, NIMS Institute of Engineering & Technology, NIMS University Rajasthan, Jaipur, India
| | - K Satyam Naidu
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh 531162, India
| | - Fadhil Faez Sead
- Department of Dentistry, College of Dentistry, The Islamic University, Najaf, Iraq; Department of Medical Analysis, Medical Laboratory Technique College, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
| |
Collapse
|
2
|
Telkoparan-Akillilar P, Chichiarelli S, Tucci P, Saso L. Integration of MicroRNAs with nanomedicine: tumor targeting and therapeutic approaches. Front Cell Dev Biol 2025; 13:1569101. [PMID: 40260417 PMCID: PMC12009947 DOI: 10.3389/fcell.2025.1569101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 03/12/2025] [Indexed: 04/23/2025] Open
Abstract
MicroRNAs (miRNAs) are small, non-coding RNA molecules that play a pivotal role in the post-transcriptional regulation of gene expression. Over the past decade, they have emerged as key regulators in cancer progression, influencing different cellular processes such as proliferation, apoptosis, metastasis, and immune evasion. Their unique ability to target multiple genes simultaneously makes miRNAs highly attractive as potential therapeutic agents in oncology. However, several challenges have hindered their direct clinical application, most notably their inherent instability in biological fluids, rapid degradation by nucleases, and inefficient delivery to specific tumor sites. Additionally, off-target effects and the potential for toxicity further complicate the therapeutic use of miRNAs. Nanomedicine offers a promising solution to these challenges by enabling the development of advanced platforms for the stable, safe, and targeted delivery of miRNAs. Nanoparticle-based delivery systems, such as liposomes, polymeric nanoparticles, and inorganic nanocarriers, can protect miRNAs from degradation, improve their bioavailability, and allow for precise tumor targeting through passive or active targeting mechanisms. These nanocarriers can also be engineered to release miRNAs in response to specific stimuli within the tumor microenvironment, enhancing therapeutic efficacy while minimizing side effects. This review will explore the integration of miRNAs with nanotechnology, focusing on various nanoparticle formulations and their roles in enhancing miRNA stability, specificity, and function in cancer treatment. In addition, we will discuss current advances in preclinical and clinical applications, highlight promising tumor-targeting strategies, and address the remaining challenges such as toxicity, immunogenicity, and scalability. Future research should focus on overcoming these barriers, ultimately paving the way for the widespread adoption of personalized miRNA-based nanomedicine in cancer therapy.
Collapse
Affiliation(s)
| | - Silvia Chichiarelli
- Department of Biochemical Sciences “A. Rossi-Fanelli”, Sapienza University of Rome, Rome, Italy
| | - Paolo Tucci
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, La Sapienza University, Rome, Italy
| |
Collapse
|
3
|
Mathavan S, Tam YJ, Mustaffa KMF, Tye GJ. Aptamer based immunotherapy: a potential solid tumor therapeutic. Front Immunol 2025; 16:1536569. [PMID: 40034705 PMCID: PMC11873091 DOI: 10.3389/fimmu.2025.1536569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 01/27/2025] [Indexed: 03/05/2025] Open
Abstract
Aptamer-based immunotherapy can be a new hope for treating solid tumors with personalized and specific approaches toward cancer therapies. Aptamers are small synthetic single-stranded nucleic acids that may bring in a paradigm shift in treating solid tumors. These are highly selective drugs applied in cellular immunotherapy, cytokine modulation, and immune checkpoint suppression. This review provides an overview of the recent advances in aptamer-based technologies with specific key clinical trials involving AON-D21 and AM003. Aptamers are potently active in immune regulation and tumor targeting. However, aptamer stability and bioavailability are seriously compromised by the issues relating to renal clearance and rapid degradation through nucleases. The latter are reviewed here along with novel improvements, some of which involve chemical modifications that greatly enhance stability and prolong the circulation time; exemplary such modifications are PEGylation, cholesterol conjugation, and the synthesis of circular nucleic acids. The regulatory aspect is also crucial. For example, in addition to specific strategies to prevent drug-drug interactions (DDIs) in cancer remediation medications, this paper underscores the need of risk assessment, particularly because of immunogenicity and organ failure. The use of aptamers is expanded by the development of SOMAmers, X-aptamers, and bioinformatics. To make aptamer-based drugs a major part of cancer treatment, future research should concentrate more on resolving existing issues and expanding their beneficial uses.
Collapse
Affiliation(s)
- Sarmilah Mathavan
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia (USM), Minden, Pulau Pinang, Malaysia
- Biogenes Technologies Sdn Bhd, Jalan Maklumat, Universiti Putra Malaysia, Serdang, Malaysia
| | - Yew Joon Tam
- Biogenes Technologies Sdn Bhd, Jalan Maklumat, Universiti Putra Malaysia, Serdang, Malaysia
| | | | - Gee Jun Tye
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia (USM), Minden, Pulau Pinang, Malaysia
- Malaysian Institute of Pharmaceuticals and Nutraceuticals, National Institutes of Biotechnology Malaysia, Gelugor, Pulau Pinang, Malaysia
| |
Collapse
|
4
|
Weber AF, Scholl JN, Dias CK, Lima VP, Assmann TS, Anzolin E, Kus WP, Worm PV, Battastini AMO, Figueiró F. In silico, in vitro, and ex vivo analysis reveals miR-27a-3p and miR-155-5p as key microRNAs for glioblastoma progression: Insights into Th1 differentiation and apoptosis induction. FASEB J 2024; 38:e70255. [PMID: 39698937 DOI: 10.1096/fj.202401538r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 11/22/2024] [Accepted: 12/05/2024] [Indexed: 12/20/2024]
Abstract
We explored key microRNAs (miRNAs) related to tumorigenesis and immune modulation in glioblastoma (GBM), employing in silico, in vitro, and ex vivo analysis along with an assessment of the cellular impacts resulting from miRNA inhibition. GBM and T cells miRNA expression profiles from public datasets were used to evaluate differentially expressed miRNAs (DEmiRNAs). Some DEmiRNAs were chosen for validation in GBM cell lines, primary cell cultures, and brain tumor patient samples, using RT-qPCR. Target genes and pathways were identified with bioinformatic analyses. In silico functional enrichment analysis revealed that miR-27a-3p and miR-155-5p modulate immune, metabolic, and GBM-related pathways. A172 cells were transfected with miRNA inhibitors and the effects on cellular processes and immunomodulation were analyzed by co-culture assays and flow cytometry. Upon validation, miR-27a-3p and miR-155-5p miRNAs expressions were consistently increased. Inhibiting these two miRNAs reduced cell viability, but only the inhibition of miR-27a-3p led to apoptosis. Co-culture assays showed an increase in Th1 cells along with elevated Th1/Treg and Th17/Treg ratios, and an increase in Th17 cells exclusively with miR-155-5p inhibition. Immune cells' gene expression modulation induced an antitumor profile, concomitant with an increase in the expression of apoptotic genes in cancer cells after co-culture. This study unveils potential targets for immune and tumor regulation, highlighting overexpressed miRNAs modulation as a novel therapeutic approach for GBM.
Collapse
Affiliation(s)
- Augusto Ferreira Weber
- Graduate Program in Biological Sciences: Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
- Laboratory of Cancer Immunobiochemistry, Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Juliete Nathali Scholl
- Graduate Program in Biological Sciences: Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
- Laboratory of Cancer Immunobiochemistry, Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Camila Kehl Dias
- Graduate Program in Biological Sciences: Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
- Laboratory of Cancer Immunobiochemistry, Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Vinícius Pierdoná Lima
- Graduate Program in Biological Sciences: Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Taís Silveira Assmann
- Molecular and Cellular Biology Laboratory, Endocrinology Division-Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Eduardo Anzolin
- Department of Neurosurgery, Hospital Cristo Redentor, Porto Alegre, Brazil
| | | | - Paulo Valdeci Worm
- Department of Neurosurgery, Hospital Cristo Redentor, Porto Alegre, Brazil
| | - Ana Maria Oliveira Battastini
- Graduate Program in Biological Sciences: Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Fabrício Figueiró
- Graduate Program in Biological Sciences: Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
- Laboratory of Cancer Immunobiochemistry, Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
5
|
Maatouk N, Kurdi A, Marei S, Nasr R, Talhouk R. CircRNAs and miRNAs: Key Player Duo in Breast Cancer Dynamics and Biomarkers for Breast Cancer Early Detection and Prevention. Int J Mol Sci 2024; 25:13056. [PMID: 39684767 DOI: 10.3390/ijms252313056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/15/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
Breast cancer (BC) remains a significant global health issue, necessitating advanced molecular approaches for early detection and prevention. This review delves into the roles of microRNAs (miRNAs) and circular RNAs (circRNAs) in BC, highlighting their potential as non-invasive biomarkers. Utilizing in silico tools and databases, we propose a novel methodology to establish mRNA/circRNA/miRNA axes possibly indicative of early detection and possible prevention. We propose that during early tumor initiation, some changes in oncogene or tumor suppressor gene expression (mRNA) are mirrored by alterations in corresponding circRNAs and reciprocal changes in sponged miRNAs affecting tumorigenesis pathways. We used two Gene Expression Omnibus (GEO) datasets and identified five mRNA/circRNA/miRNA axes as early possible tumor initiation biomarkers. We further validated the proposed axes through a Kaplan-Meier (KM) plot and enrichment analysis of miRNA expression using patient data. Evaluating coupled differential expression of circRNAs and miRNAs in body fluids or exosomes provides greater confidence than assessing either, with more axes providing even greater confidence. The proposed methodology not only improves early BC detection reliability but also has applications for other cancers, enhancing preventive measures.
Collapse
Affiliation(s)
- Nour Maatouk
- Department of Biology, Faculty of Arts and Sciences, American University of Beirut, Beirut 11-0236, Lebanon
| | - Abdallah Kurdi
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut 11-0236, Lebanon
| | - Sarah Marei
- Department of Biology, Faculty of Arts and Sciences, American University of Beirut, Beirut 11-0236, Lebanon
| | - Rihab Nasr
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 11-0236, Lebanon
| | - Rabih Talhouk
- Department of Biology, Faculty of Arts and Sciences, American University of Beirut, Beirut 11-0236, Lebanon
| |
Collapse
|
6
|
Li R, Ji Y, Ye R, Tang G, Wang W, Chen C, Yang Q. Potential therapies for non-coding RNAs in breast cancer. Front Oncol 2024; 14:1452666. [PMID: 39372872 PMCID: PMC11449682 DOI: 10.3389/fonc.2024.1452666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/29/2024] [Indexed: 10/08/2024] Open
Abstract
Breast cancer (BC) is one of the frequent tumors that seriously endanger the physical and mental well-being in women with strong heterogeneity, and its pathogenesis involves multiple risk factors. Depending on the type of BC, hormonal therapy, targeted therapy, and immunotherapy are the current systemic treatment options along with conventional chemotherapy. Despite significant progress in understanding BC pathogenesis and therapeutic options, there is still a need to identify new therapeutic targets and develop more effective treatments. According to recent sequencing and profiling studies, non-coding (nc) RNAs genes are deregulated in human cancers via deletion, amplification, abnormal epigenetic, or transcriptional regulation, and similarly, the expression of many ncRNAs is altered in breast cancer cell lines and tissues. The ability of single ncRNAs to regulate the expression of multiple downstream gene targets and related pathways provides a theoretical basis for studying them for cancer therapeutic drug development and targeted delivery. Therefore, it is far-reaching to explore the role of ncRNAs in tumor development and their potential as therapeutic targets. Here, our review outlines the potential of two major ncRNAs, long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) as diagnostic and prognostic biomarkers as well as targets for new therapeutic strategies in breast cancer.
Collapse
Affiliation(s)
- Ruonan Li
- Anhui Provincial Key Laboratory of Tumor Evolution and Intelligent Diagnosis and Treatment, Bengbu Medical University, Bengbu, Anhui, China
- School of Laboratory Medicine, Bengbu Medical University, Bengbu, Anhui, China
| | - Yuxin Ji
- Anhui Provincial Key Laboratory of Tumor Evolution and Intelligent Diagnosis and Treatment, Bengbu Medical University, Bengbu, Anhui, China
- School of Laboratory Medicine, Bengbu Medical University, Bengbu, Anhui, China
| | - Ruyin Ye
- Anhui Provincial Key Laboratory of Tumor Evolution and Intelligent Diagnosis and Treatment, Bengbu Medical University, Bengbu, Anhui, China
- Department of Life Sciences, Bengbu Medical University, Bengbu, Anhui, China
| | - Guohui Tang
- Anhui Provincial Key Laboratory of Tumor Evolution and Intelligent Diagnosis and Treatment, Bengbu Medical University, Bengbu, Anhui, China
- Department of Life Sciences, Bengbu Medical University, Bengbu, Anhui, China
| | - Wenrui Wang
- Department of Life Sciences, Bengbu Medical University, Bengbu, Anhui, China
| | - Changjie Chen
- School of Laboratory Medicine, Bengbu Medical University, Bengbu, Anhui, China
| | - Qingling Yang
- School of Laboratory Medicine, Bengbu Medical University, Bengbu, Anhui, China
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, Anhui, China
| |
Collapse
|
7
|
Yan B, Li Y, He S. Aptamer-mediated therapeutic strategies provide a potential approach for cancer. Int Immunopharmacol 2024; 136:112356. [PMID: 38820957 DOI: 10.1016/j.intimp.2024.112356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 06/02/2024]
Abstract
The treatment of tumors still faces considerable challenges. While conventional treatments such as surgery, chemotherapy, and radiation therapy provide some curative effects, their side effects and limitations highlight the importance of finding more precise treatment strategies. Aptamers have become an important target molecule in the field of drug delivery systems due to their good affinity and targeting, and they have gradually become an important link from basic research to clinical application. In this paper, we discussed the latest progress of aptamer-mediated nanodrugs, as well as aptamer-mediated photodynamic therapy, photothermal therapy, and immunotherapy strategies for tumor treatment, and explored the possibility of aptamer-mediated therapy for accurate tumor treatment. The purpose of this review is to provide novel insights for treating tumors with aptamer-mediated therapies by summarizing these innovative strategies, thereby ultimately enhancing the therapeutic efficacy for cancer patients.
Collapse
Affiliation(s)
- Bingshuo Yan
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, People's Republic of China
| | - Yuting Li
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, People's Republic of China
| | - Shiming He
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, People's Republic of China.
| |
Collapse
|
8
|
Saidi D, Obeidat M, Alsotari S, Ibrahim AA, Al-Buqain R, Wehaibi S, Alqudah DA, Nsairat H, Alshaer W, Alkilany AM. Formulation optimization of lyophilized aptamer-gold nanoparticles: Maintained colloidal stability and cellular uptake. Heliyon 2024; 10:e30743. [PMID: 38774322 PMCID: PMC11107208 DOI: 10.1016/j.heliyon.2024.e30743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/01/2024] [Accepted: 05/03/2024] [Indexed: 05/24/2024] Open
Abstract
Anti-nucleolin (NCL) aptamer AS1411 is the first anticancer aptamer tested in clinical trials. Gold nanoparticles (AuNP) have been widely exploited for various biomedical applications due to their unique functional properties. In this study, we evaluated the colloidal stability and targeting capacity of AS1411-funtionalized AuNP (AuNP/NCL-Apt) against MCF-7 breast cancer cell line before and after lyophilization. Trehalose, mannitol, and sucrose at various concentrations were evaluated to determine their cryoprotection effects. Our results indicate that sucrose at 10 % (w/v) exhibits the best cryoprotection effect and minimal AuNP/NCL-Apt aggregation as confirmed by UV-Vis spectroscopy and dynamic light scattering (DLS) measurements. Moreover, the lyophilized AuNP/NCL-Apt at optimized formulation maintained its targeting and cytotoxic functionality against MCF-7 cells as proven by the cellular uptake assays utilizing flow cytometry and confocal laser scanning microscopy (CLSM). Quantitative PCR (qPCR) analysis of nucleolin-target gene expression also confirmed the effectiveness of AuNP/NCL-Apt. This study highlights the importance of selecting the proper type and concentration of cryoprotectant in the typical nanoparticle lyophilization process and contributes to our understanding of the physical and biological properties of functionalized nanoparticles upon lyophilization.
Collapse
Affiliation(s)
- Dalya Saidi
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Marya Obeidat
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Shrouq Alsotari
- Cell Therapy Center, The University of Jordan, Amman, 11942, Jordan
| | - Abed-Alqader Ibrahim
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, 2907 E. Gate City Blvd, Greensboro, NC, 27401, USA
| | - Rula Al-Buqain
- Cell Therapy Center, The University of Jordan, Amman, 11942, Jordan
| | - Suha Wehaibi
- Cell Therapy Center, The University of Jordan, Amman, 11942, Jordan
| | - Dana A. Alqudah
- Cell Therapy Center, The University of Jordan, Amman, 11942, Jordan
| | - Hamdi Nsairat
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, 19328, Jordan
| | - Walhan Alshaer
- Cell Therapy Center, The University of Jordan, Amman, 11942, Jordan
| | | |
Collapse
|
9
|
Mal S, Chakraborty S, Mahapatra M, Pakeeraiah K, Das S, Paidesetty SK, Roy P. Tackling breast cancer with gold nanoparticles: twinning synthesis and particle engineering with efficacy. NANOSCALE ADVANCES 2024; 6:2766-2812. [PMID: 38817429 PMCID: PMC11134266 DOI: 10.1039/d3na00988b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 04/10/2024] [Indexed: 06/01/2024]
Abstract
The World Health Organization identifies breast cancer as the most prevalent cancer despite predominantly affecting women. Surgery, hormonal therapy, chemotherapy, and radiation therapy are the current treatment modalities. Site-directed nanotherapeutics, engineered with multidimensional functionality are now the frontrunners in breast cancer diagnosis and treatment. Gold nanoparticles with their unique colloidal, optical, quantum, magnetic, mechanical, and electrical properties have become the most valuable weapon in this arsenal. Their advantages include facile modulation of shape and size, a high degree of reproducibility and stability, biocompatibility, and ease of particle engineering to induce multifunctionality. Additionally, the surface plasmon oscillation and high atomic number of gold provide distinct advantages for tailor-made diagnosis, therapy or theranostic applications in breast cancer such as photothermal therapy, radiotherapy, molecular labeling, imaging, and sensing. Although pre-clinical and clinical data are promising for nano-dimensional gold, their clinical translation is hampered by toxicity signs in major organs like the liver, kidneys and spleen. This has instigated global scientific brainstorming to explore feasible particle synthesis and engineering techniques to simultaneously improve the efficacy and versatility and widen the safety window of gold nanoparticles. The present work marks the first study on gold nanoparticle design and maneuvering techniques, elucidating their impact on the pharmacodynamics character and providing a clear-cut scientific roadmap for their fast-track entry into clinical practice.
Collapse
Affiliation(s)
- Suvadeep Mal
- Medicinal Chemistry Research Laboratory, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University) Campus-2, Ghatikia, Kalinga Nagar Bhubaneswar Odisha 751003 India
| | | | - Monalisa Mahapatra
- Medicinal Chemistry Research Laboratory, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University) Campus-2, Ghatikia, Kalinga Nagar Bhubaneswar Odisha 751003 India
| | - Kakarla Pakeeraiah
- Medicinal Chemistry Research Laboratory, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University) Campus-2, Ghatikia, Kalinga Nagar Bhubaneswar Odisha 751003 India
| | - Suvadra Das
- Basic Science and Humanities Department, University of Engineering and Management Action Area III, B/5, Newtown Kolkata West Bengal 700160 India
| | - Sudhir Kumar Paidesetty
- Medicinal Chemistry Research Laboratory, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University) Campus-2, Ghatikia, Kalinga Nagar Bhubaneswar Odisha 751003 India
| | - Partha Roy
- GITAM School of Pharmacy, GITAM (Deemed to be University) Vishakhapatnam 530045 India
| |
Collapse
|
10
|
Seyhan AA. Trials and Tribulations of MicroRNA Therapeutics. Int J Mol Sci 2024; 25:1469. [PMID: 38338746 PMCID: PMC10855871 DOI: 10.3390/ijms25031469] [Citation(s) in RCA: 85] [Impact Index Per Article: 85.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 02/12/2024] Open
Abstract
The discovery of the link between microRNAs (miRNAs) and a myriad of human diseases, particularly various cancer types, has generated significant interest in exploring their potential as a novel class of drugs. This has led to substantial investments in interdisciplinary research fields such as biology, chemistry, and medical science for the development of miRNA-based therapies. Furthermore, the recent global success of SARS-CoV-2 mRNA vaccines against the COVID-19 pandemic has further revitalized interest in RNA-based immunotherapies, including miRNA-based approaches to cancer treatment. Consequently, RNA therapeutics have emerged as highly adaptable and modular options for cancer therapy. Moreover, advancements in RNA chemistry and delivery methods have been pivotal in shaping the landscape of RNA-based immunotherapy, including miRNA-based approaches. Consequently, the biotechnology and pharmaceutical industry has witnessed a resurgence of interest in incorporating RNA-based immunotherapies and miRNA therapeutics into their development programs. Despite substantial progress in preclinical research, the field of miRNA-based therapeutics remains in its early stages, with only a few progressing to clinical development, none reaching phase III clinical trials or being approved by the US Food and Drug Administration (FDA), and several facing termination due to toxicity issues. These setbacks highlight existing challenges that must be addressed for the broad clinical application of miRNA-based therapeutics. Key challenges include establishing miRNA sensitivity, specificity, and selectivity towards their intended targets, mitigating immunogenic reactions and off-target effects, developing enhanced methods for targeted delivery, and determining optimal dosing for therapeutic efficacy while minimizing side effects. Additionally, the limited understanding of the precise functions of miRNAs limits their clinical utilization. Moreover, for miRNAs to be viable for cancer treatment, they must be technically and economically feasible for the widespread adoption of RNA therapies. As a result, a thorough risk evaluation of miRNA therapeutics is crucial to minimize off-target effects, prevent overdosing, and address various other issues. Nevertheless, the therapeutic potential of miRNAs for various diseases is evident, and future investigations are essential to determine their applicability in clinical settings.
Collapse
Affiliation(s)
- Attila A. Seyhan
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI 02912, USA;
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, RI 02912, USA
- Legorreta Cancer Center, Brown University, Providence, RI 02912, USA
| |
Collapse
|
11
|
Hosseini SA, Kardani A, Yaghoobi H. A comprehensive review of cancer therapies mediated by conjugated gold nanoparticles with nucleic acid. Int J Biol Macromol 2023; 253:127184. [PMID: 37797860 DOI: 10.1016/j.ijbiomac.2023.127184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/16/2023] [Accepted: 09/24/2023] [Indexed: 10/07/2023]
Abstract
Nucleic acids provide a promising therapeutic platform by targeting various cell signaling pathways involved in cancer and genetic disorders. However, maintaining optimal stability during delivery limits their utility. Nucleic acid delivery vehicles are generally categorized into biological and synthetic carriers. Regardless of the efficiency of biological vectors, such as viral vectors, issues related to their immunogenicity and carcinogenesis are very important and vital for clinical applications. On the other hand, synthetic vectors such as lipids or polymers, have been widely used for nucleic acid delivery. Despite their transfection efficiency, low storage stability, targeting inefficiency, and tracking limitations are among the limitations of the clinical application of these vectors. In the past decades, gold nanoparticles with unique properties have been shown to be highly efficient mineral vectors for overcoming these obstacles. In this review, we focus on gold nanoparticle-nucleic acid combinations and highlight their use in the treatment of various types of cancers. Furthermore, by stating the biological applications of these structures, we will discuss their clinical applications.
Collapse
Affiliation(s)
- Sayedeh Azimeh Hosseini
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran; Department of Medical Biotechnology, School of Advanced Technology, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Arefeh Kardani
- Department of Medical Biotechnology, School of Advanced Technology, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Hajar Yaghoobi
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
12
|
Koerselman M, Morshuis LCM, Karperien M. The use of peptides, aptamers, and variable domains of heavy chain only antibodies in tissue engineering and regenerative medicine. Acta Biomater 2023; 170:1-14. [PMID: 37517622 DOI: 10.1016/j.actbio.2023.07.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 07/07/2023] [Accepted: 07/25/2023] [Indexed: 08/01/2023]
Abstract
Over the years, much research has been focused on the use of small molecules such as peptides or aptamers or more recently on the use of variable antigen-binding domain of heavy chain only antibodies in the field of tissue engineering and regenerative medicine. The use of these molecules originated as an alternative for the larger conventional antibodies, of which most drawbacks are derived from their size and complex structure. In the field of tissue engineering and regenerative medicine, biological functionalities are often conjugated to biomaterials in order to (re-)create an in vivo like situation, especially when bioinert biomaterials are used. Those biomaterials are functionalized with these functionalities for instance for the purpose of cell attachment or cell targeting for targeted drug delivery but also for local enrichment or blocking of ligands such as growth factors or cytokines on the biomaterial surface. In this review, we further refer to peptides, aptamers, and variable antigen-binding domain of heavy chain only antibodies as biological functionalities. Here, we compare these biological functionalities within the field of tissue engineering and regenerative medicine and give an overview of recent work in which these biological functionalities have been explored. We focus on the previously mentioned purposes of the biological functionalities. We will compare structural differences, possible modifications and (chemical) conjugation strategies. In addition, we will provide an overview of biologicals that are, or have been, involved in clinical trials. Finally, we will highlight the challenges of each of these biologicals. STATEMENT OF SIGNIFICANCE: In the field of tissue engineering there is broad application of functionalized biomaterials for cell attachment, targeted drug delivery and local enrichment or blocking of growth factors. This was previously mostly done via conventional antibodies, but their large size and complex structure impose various challenges with respect of retaining biological functionality. Peptides, aptamers and VHHs may provide an alternative solution for the use of conventional antibodies. This review discusses the use of these molecules for biological functionalization of biomaterials. For each of the molecules, their characteristics, conjugation possibilities and current use in research and clinical trials is described. Furthermore, this review sets out the benefits and challenges of using these types of molecules for different fields of application.
Collapse
Affiliation(s)
- Michelle Koerselman
- Department of Developmental BioEngineering, TechMed Institute, University of Twente, The Netherlands. Drienerlolaan 5, 7522 NB, Enschede, the Netherlands
| | - Lisanne C M Morshuis
- Department of Developmental BioEngineering, TechMed Institute, University of Twente, The Netherlands. Drienerlolaan 5, 7522 NB, Enschede, the Netherlands
| | - Marcel Karperien
- Department of Developmental BioEngineering, TechMed Institute, University of Twente, The Netherlands. Drienerlolaan 5, 7522 NB, Enschede, the Netherlands.
| |
Collapse
|
13
|
Ghafouri-Fard S, Shoorei H, Noferesti L, Hussen BM, Moghadam MHB, Taheri M, Rashnoo F. Nanoparticle-mediated delivery of microRNAs-based therapies for treatment of disorders. Pathol Res Pract 2023; 248:154667. [PMID: 37422972 DOI: 10.1016/j.prp.2023.154667] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/01/2023] [Accepted: 07/02/2023] [Indexed: 07/11/2023]
Abstract
miRNAs represent appropriate candidates for treatment of several disorders. However, safe and efficient delivery of these small-sized transcripts has been challenging. Nanoparticle-based delivery of miRNAs has been used for treatment of a variety of disorders, particularly cancers as well as ischemic stroke and pulmonary fibrosis. The wide range application of this type of therapy is based on the important roles of miRNAs in the regulation of cell behavior in physiological and pathological conditions. Besides, the ability of miRNAs to inhibit or increase expression of several genes gives them the superiority over mRNA or siRNA-based therapies. Preparation of nanoparticles for miRNA delivery is mainly achieved through using protocols originally developed for drugs or other types of biomolecules. In brief, nanoparticle-based delivery of miRNAs is regarded as a solution for overcoming all challenges in the therapeutic application of miRNAs. Herein, we provide an overview of studies which used nanoparticles as delivery systems for facilitation of miRNAs entry into target cells for the therapeutic purposes. However, our knowledge about miRNA-loaded nanoparticles is limited, and it is expected that numerous therapeutic possibilities will be revealed for miRNA-loaded nanoparticles in future.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran; Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leili Noferesti
- Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Bashdar Mahmud Hussen
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region, Iraq
| | | | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany; Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Fariborz Rashnoo
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
14
|
Yang M, Zhang Y, Li M, Liu X, Darvishi M. The various role of microRNAs in breast cancer angiogenesis, with a special focus on novel miRNA-based delivery strategies. Cancer Cell Int 2023; 23:24. [PMID: 36765409 PMCID: PMC9912632 DOI: 10.1186/s12935-022-02837-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/20/2022] [Indexed: 02/12/2023] Open
Abstract
After skin malignancy, breast cancer is the most widely recognized cancer detected in women in the United States. Breast cancer (BCa) can happen in all kinds of people, but it's much more common in women. One in four cases of cancer and one in six deaths due to cancer are related to breast cancer. Angiogenesis is an essential factor in the growth of tumors and metastases in various malignancies. An expanded level of angiogenesis is related to diminished endurance in BCa patients. This function assumes a fundamental part inside the human body, from the beginning phases of life to dangerous malignancy. Various factors, referred to as angiogenic factors, work to make a new capillary. Expanding proof demonstrates that angiogenesis is managed by microRNAs (miRNAs), which are small non-coding RNA with 19-25 nucleotides. MiRNA is a post-transcriptional regulator of gene expression that controls many critical biological processes. Endothelial miRNAs, referred to as angiomiRs, are probably concerned with tumor improvement and angiogenesis via regulation of pro-and anti-angiogenic factors. In this article, we reviewed therapeutic functions of miRNAs in BCa angiogenesis, several novel delivery carriers for miRNA-based therapeutics, as well as CRISPR/Cas9 as a targeted therapy in breast cancer.
Collapse
Affiliation(s)
- Min Yang
- College of Traditional Chinese Medicine, Jilin Agricultural Science and Technology University, Jilin, 132101 China
| | - Ying Zhang
- College of Traditional Chinese Medicine, Jilin Agricultural Science and Technology University, Jilin, 132101 China
| | - Min Li
- College of Traditional Chinese Medicine, Jilin Agricultural Science and Technology University, Jilin, 132101 China
| | - Xinglong Liu
- College of Traditional Chinese Medicine, Jilin Agricultural Science and Technology University, Jilin, 132101 China
| | - Mohammad Darvishi
- Infectious Diseases and Tropical Medicine Research Center (IDTMRC), Department of Aerospace and Subaquatic Medicine, AJA University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Zheng Z, Wu L, Li Z, Tang R, Li H, Huang Y, Wang T, Xu S, Cheng H, Ye Z, Xiao D, Lin X, Wu G, Jaspers RT, Pathak JL. Mir155 regulates osteogenesis and bone mass phenotype via targeting S1pr1 gene. eLife 2023; 12:77742. [PMID: 36598122 PMCID: PMC9839347 DOI: 10.7554/elife.77742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 01/03/2023] [Indexed: 01/05/2023] Open
Abstract
MicroRNA-155 (miR155) is overexpressed in various inflammatory diseases and cancer, in which bone resorption and osteolysis are frequently observed. However, the role of miR155 on osteogenesis and bone mass phenotype is still unknown. Here, we report a low bone mass phenotype in the long bone of Mir155-Tg mice compared with wild-type mice. In contrast, Mir155-KO mice showed a high bone mass phenotype and protective effect against inflammation-induced bone loss. Mir155-KO mice showed robust bone regeneration in the ectopic and orthotopic model, but Mir155-Tg mice showed compromised bone regeneration compared with the wild-type mice. Similarly, the osteogenic differentiation potential of bone marrow stromal stem cells (BMSCs) from Mir155-KO mice was robust and Mir155-Tg was compromised compared with that of wild-type mice. Moreover, Mir155 knockdown in BMSCs from wild-type mice showed higher osteogenic differentiation potential, supporting the results from Mir155-KO mice. TargetScan analysis predicted sphingosine 1-phosphate receptor-1 (S1pr1) as a target gene of Mir155, which was further confirmed by luciferase assay and Mir155 knockdown. S1pr1 overexpression in BMSCs robustly promoted osteogenic differentiation without affecting cell viability and proliferation. Furthermore, osteoclastogenic differentiation of Mir155-Tg bone marrow-derived macrophages was inhibited compared with that of wild-type mice. Thus, Mir155 showed a catabolic effect on osteogenesis and bone mass phenotype via interaction with the S1pr1 gene, suggesting inhibition of Mir155 as a potential strategy for bone regeneration and bone defect healing.
Collapse
Affiliation(s)
- Zhichao Zheng
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative MedicineGuangzhouChina,Laboratory for Myology, Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement SciencesAmsterdamNetherlands
| | - Lihong Wu
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative MedicineGuangzhouChina
| | - Zhicong Li
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative MedicineGuangzhouChina
| | - Ruoshu Tang
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative MedicineGuangzhouChina
| | - Hongtao Li
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Yinyin Huang
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative MedicineGuangzhouChina
| | - Tianqi Wang
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative MedicineGuangzhouChina
| | - Shaofen Xu
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative MedicineGuangzhouChina
| | - Haoyu Cheng
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative MedicineGuangzhouChina
| | - Zhitong Ye
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative MedicineGuangzhouChina
| | - Dong Xiao
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy Research and Guangzhou Key Laboratory of Tumour Immunology Research, Cancer Research Institute, School of Basic Medical Science, Southern Medical UniversityGuangzhouChina,Institute of Comparative Medicine & Laboratory Animal Center, Southern Medical UniversityGuangzhouChina
| | - Xiaolin Lin
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy Research and Guangzhou Key Laboratory of Tumour Immunology Research, Cancer Research Institute, School of Basic Medical Science, Southern Medical UniversityGuangzhouChina,Institute of Comparative Medicine & Laboratory Animal Center, Southern Medical UniversityGuangzhouChina
| | - Gang Wu
- Department of Oral and Maxillofacial Surgery/Pathology, Amsterdam UMC and Academic Center for Dentistry Amsterdam (ACTA), Amsterdam Movement Science, Vrije Universiteit AmsterdamAmsterdamNetherlands,Department of Oral Cell Biology, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit AmsterdamAmsterdamNetherlands
| | - Richard T Jaspers
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative MedicineGuangzhouChina,Laboratory for Myology, Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement SciencesAmsterdamNetherlands
| | - Janak L Pathak
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative MedicineGuangzhouChina
| |
Collapse
|
16
|
Abedi-Gaballu F, Kamal Kazemi E, Salehzadeh SA, Mansoori B, Eslami F, Emami A, Dehghan G, Baradaran B, Mansoori B, Cho WC. Metabolic Pathways in Breast Cancer Reprograming: An Insight to Non-Coding RNAs. Cells 2022; 11:2973. [PMID: 36230935 PMCID: PMC9563138 DOI: 10.3390/cells11192973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/10/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022] Open
Abstract
Cancer cells reprogram their metabolisms to achieve high energetic requirements and produce precursors that facilitate uncontrolled cell proliferation. Metabolic reprograming involves not only the dysregulation in glucose-metabolizing regulatory enzymes, but also the enzymes engaging in the lipid and amino acid metabolisms. Nevertheless, the underlying regulatory mechanisms of reprograming are not fully understood. Non-coding RNAs (ncRNAs) as functional RNA molecules cannot translate into proteins, but they do play a regulatory role in gene expression. Moreover, ncRNAs have been demonstrated to be implicated in the metabolic modulations in breast cancer (BC) by regulating the metabolic-related enzymes. Here, we will focus on the regulatory involvement of ncRNAs (microRNA, circular RNA and long ncRNA) in BC metabolism, including glucose, lipid and glutamine metabolism. Investigation of this aspect may not only alter the approaches of BC diagnosis and prognosis, but may also open a new avenue in using ncRNA-based therapeutics for BC treatment by targeting different metabolic pathways.
Collapse
Affiliation(s)
- Fereydoon Abedi-Gaballu
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 51666-14731, Iran
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz 51666-16471, Iran
| | - Elham Kamal Kazemi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 51666-14731, Iran
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz 51666-16471, Iran
| | - Seyed Ahmad Salehzadeh
- Department of Medicinal Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 175-14115, Iran
| | - Behnaz Mansoori
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran 175-14115, Iran
| | - Farhad Eslami
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz 51666-16471, Iran
| | - Ali Emami
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz 51666-16471, Iran
| | - Gholamreza Dehghan
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz 51666-16471, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 51666-14731, Iran
| | - Behzad Mansoori
- Cellular and Molecular Oncogenesis Program, The Wistar Institute, Philadelphia, PA 19104, USA
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, China
| |
Collapse
|
17
|
Sousa DP, Conde J. Gold Nanoconjugates for miRNA Modulation in Cancer Therapy: From miRNA Silencing to miRNA Mimics. ACS MATERIALS AU 2022; 2:626-640. [PMID: 36397876 PMCID: PMC9650716 DOI: 10.1021/acsmaterialsau.2c00042] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 12/03/2022]
Abstract
![]()
Cancer is a major healthcare burden and cause of death
worldwide,
with an estimated 19.3 million new cancer cases and 10 million cancer
deaths globally only in 2020. While several anticancer therapeutics
are available to date, many of these still show low treatment efficacy
and high off-target effects and adverse reactions. This prompts a
serious need to develop novel therapies that can decrease the side
effects and increase treatment efficacy. MicroRNAs (miRNAs) can have
a role in tumor development and progression, making them important
targets for the improvement of anticancer therapies. In this context,
gold nanoparticles have been widely studied for different clinical
applications due to their biocompatibility and possibility of customization,
and gold nanoconjugates targeting miRNAs are being developed for cancer
diagnosis and treatment. Here we summarize the research developed
so far and how it can contribute to cancer treatment, discuss how
it can be improved, and present the current challenges and future
perspectives on their design and application.
Collapse
Affiliation(s)
- Diana P. Sousa
- NOVA Medical School
- Faculdade de Ciências Médicas, NMS
- FCM, Universidade Nova de Lisboa, Lisboa 1169-056, Portugal
- ToxOmics, NOVA Medical School
- Faculdade de Ciências Médicas, NMS
- FCM, Universidade Nova de Lisboa, Lisboa 1169-056, Portugal
| | - João Conde
- NOVA Medical School
- Faculdade de Ciências Médicas, NMS
- FCM, Universidade Nova de Lisboa, Lisboa 1169-056, Portugal
- ToxOmics, NOVA Medical School
- Faculdade de Ciências Médicas, NMS
- FCM, Universidade Nova de Lisboa, Lisboa 1169-056, Portugal
| |
Collapse
|
18
|
Erturk E, Enes Onur O, Akgun O, Tuna G, Yildiz Y, Ari F. Mitochondrial miRNAs (MitomiRs): Their potential roles in breast and other cancers. Mitochondrion 2022; 66:74-81. [PMID: 35963496 DOI: 10.1016/j.mito.2022.08.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/19/2022] [Accepted: 08/02/2022] [Indexed: 11/15/2022]
Abstract
Breast cancer is the most common cancer in women worldwide. MicroRNAs (miRNAs) are non-coding RNAs that are involved in the post-transcriptional regulation of gene expression. Although miRNAs mainly act in the cytoplasm, they can be found in the mitochondrial compartment of the cell. These miRNAs called "MitomiR", they can change mitochondrial functions by regulating proteins at the mitochondrial level and cause cancer. In this review, we have aimed to explain miRNA biogenesis, transport pathways to mitochondria, and summarize mitomiRs that have been shown to play an important role in mitochondrial function, especially in the initiation and progression of breast cancer.
Collapse
Affiliation(s)
- Elif Erturk
- Bursa Uludag University, Vocational School of Health Services, 16059, Bursa, Turkey
| | - Omer Enes Onur
- Bursa Uludag University, Department of Biology, Science and Art Faculty, 16059, Bursa, Turkey
| | - Oguzhan Akgun
- Bursa Uludag University, Department of Biology, Science and Art Faculty, 16059, Bursa, Turkey
| | - Gonca Tuna
- Bursa Uludag University, Department of Biology, Science and Art Faculty, 16059, Bursa, Turkey
| | - Yaren Yildiz
- Bursa Uludag University, Department of Biology, Science and Art Faculty, 16059, Bursa, Turkey
| | - Ferda Ari
- Bursa Uludag University, Department of Biology, Science and Art Faculty, 16059, Bursa, Turkey.
| |
Collapse
|
19
|
Biogenic Gold Nanoparticles: Current Applications and Future Prospects. J CLUST SCI 2022. [DOI: 10.1007/s10876-022-02304-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
20
|
Ni D, Lin J, Zhang N, Li S, Xue Y, Wang Z, Liu Q, Liu K, Zhang H, Zhao Y, Chen C, Liu Y. Combinational application of metal-organic frameworks-based nanozyme and nucleic acid delivery in cancer therapy. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1773. [PMID: 35014211 DOI: 10.1002/wnan.1773] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
The rapid development of nanotechnology has generated numerous ideas for cancer treatment, and a wide variety of relevant nanoparticle platforms have been reported. Metal-organic frameworks (MOFs) have been widely investigated as an anti-cancer drug delivery vehicle owing to their unique porous hybrid structure, biocompatibility, structural tunability, and multi-functionality. MOF materials with catalytic activity, known as nanozymes, have applications in photodynamic and chemodynamic therapy. Nucleic acids have also attracted increasing research attention owing to their programmability, ease of synthesis, and versatility. A variety of functional DNAs and RNAs have been applied both therapeutically (gene-targeting drugs for cancer treatment) and nontherapeutically (used as modified materials to enhance the therapeutic effects of other nanomedicines). The combined use of MOFs and functional nucleic acids have been extensively investigated and has been associated with excellent tumor-suppressor activity in various treatment methods. In this review, we summarize the progress in the research and development of tumor therapy based on MOFs and nucleic acid delivery over recent years, focusing on the combinational use of different delivery and design strategies for MOF/therapeutic nucleic acid platforms. We further summarize the strategies for combining MOFs (universal carrier, functional carrier) and nucleic acids (therapeutic nucleic acids, nontherapeutic nucleic acids) and discuss the corresponding therapeutic effects in cancer treatment. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Dongqi Ni
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jinhui Lin
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Nuozi Zhang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, China
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China
| | - Shilin Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yueguang Xue
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, China
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Ziyao Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qianglin Liu
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Kai Liu
- Department of Chemistry, Tsinghua University, Beijing, China
| | - Hongjie Zhang
- Department of Chemistry, Tsinghua University, Beijing, China
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- GBA National Institute for Nanotechnology Innovation, Guangdong, China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- GBA National Institute for Nanotechnology Innovation, Guangdong, China
| | - Ying Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, China
- GBA National Institute for Nanotechnology Innovation, Guangdong, China
| |
Collapse
|
21
|
Azlan A, Rajasegaran Y, Kang Zi K, Rosli AA, Yik MY, Yusoff NM, Heidenreich O, Moses EJ. Elucidating miRNA Function in Cancer Biology via the Molecular Genetics' Toolbox. Biomedicines 2022; 10:915. [PMID: 35453665 PMCID: PMC9029477 DOI: 10.3390/biomedicines10040915] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/23/2021] [Accepted: 11/30/2021] [Indexed: 11/16/2022] Open
Abstract
Micro-RNA (miRNAs) are short non-coding RNAs of about 18-20 nucleotides in length and are implicated in many cellular processes including proliferation, development, differentiation, apoptosis and cell signaling. Furthermore, it is well known that miRNA expression is frequently dysregulated in many cancers. Therefore, this review will highlight the various mechanisms by which microRNAs are dysregulated in cancer. Further highlights include the abundance of molecular genetics tools that are currently available to study miRNA function as well as their advantages and disadvantages with a special focus on various CRISPR/Cas systems This review provides general workflows and some practical considerations when studying miRNA function thus enabling researchers to make informed decisions in regards to the appropriate molecular genetics tool to be utilized for their experiments.
Collapse
Affiliation(s)
- Adam Azlan
- Cluster of Regenerative Medicine, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas 13200, Pulau Pinang, Malaysia
| | - Yaashini Rajasegaran
- Cluster of Regenerative Medicine, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas 13200, Pulau Pinang, Malaysia
| | - Khor Kang Zi
- Cluster of Regenerative Medicine, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas 13200, Pulau Pinang, Malaysia
| | - Aliaa Arina Rosli
- Cluster of Regenerative Medicine, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas 13200, Pulau Pinang, Malaysia
| | - Mot Yee Yik
- Cluster of Regenerative Medicine, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas 13200, Pulau Pinang, Malaysia
| | - Narazah Mohd Yusoff
- Cluster of Regenerative Medicine, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas 13200, Pulau Pinang, Malaysia
| | - Olaf Heidenreich
- Northern Institute for Cancer Research, Paul O'Gorman Building, Medical School, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
- Prinses Máxima Centrum Voor Kinderoncologie Heidelberglaan 25, 3584 CS Utrecht, The Netherlands
| | - Emmanuel Jairaj Moses
- Cluster of Regenerative Medicine, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas 13200, Pulau Pinang, Malaysia
| |
Collapse
|
22
|
Yardım-Akaydin S, Karahalil B, Nacak Baytas S. New therapy strategies in the management of breast cancer. Drug Discov Today 2022; 27:1755-1762. [PMID: 35337961 DOI: 10.1016/j.drudis.2022.03.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 02/13/2022] [Accepted: 03/20/2022] [Indexed: 12/19/2022]
Abstract
Breast cancer (BC), the second leading cause of cancer-related deaths after lung cancer, is the most common cancer type among women worldwide. BC comprises multiple subtypes based on molecular properties. Depending on the type of BC, hormone therapy, targeted therapy, and immunotherapy are the current systemic treatment options along with conventional chemotherapy. Several new molecular targets, miRNAs, and long non-coding RNAs (lncRNAs), have been discovered over the past few decades and are powerful potential therapeutic targets. Here, we review advanced therapeutics as new players in BC management.
Collapse
Affiliation(s)
- Sevgi Yardım-Akaydin
- Department of Biochemistry, Faculty of Pharmacy, Gazi University, 06330-Ankara, Turkey
| | - Bensu Karahalil
- Department of Toxicology, Faculty of Pharmacy, Gazi University, 06330-Ankara, Turkey
| | - Sultan Nacak Baytas
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, 06330-Ankara, Turkey.
| |
Collapse
|
23
|
Diener C, Keller A, Meese E. Emerging concepts of miRNA therapeutics: from cells to clinic. Trends Genet 2022; 38:613-626. [PMID: 35303998 DOI: 10.1016/j.tig.2022.02.006] [Citation(s) in RCA: 421] [Impact Index Per Article: 140.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 12/14/2022]
Abstract
MicroRNAs (miRNAs) are very powerful genetic regulators, as evidenced by the fact that a single miRNA can direct entire cellular pathways via interacting with a broad spectrum of target genes. This property renders miRNAs as highly interesting therapeutic tools to restore cell functions that are altered as part of a disease phenotype. However, this strength of miRNAs is also a weakness because their cellular effects are so numerous that off-target effects can hardly be avoided. In this review, we point out the main challenges and the strategies to specifically address the problems that need to be surmounted in the push toward a therapeutic application of miRNAs. Particular emphasis is given to approaches that have already found their way into clinical studies.
Collapse
Affiliation(s)
- Caroline Diener
- Institute of Human Genetics, Medical Faculty, Saarland University, 66421 Homburg, Germany
| | - Andreas Keller
- Center for Bioinformatics, Medical Faculty, Saarland University, 66123 Saarbrücken, Germany; Department of Neurology and Neurological Sciences, Stanford University, School of Medicine, Stanford, CA 94305, USA.
| | - Eckart Meese
- Institute of Human Genetics, Medical Faculty, Saarland University, 66421 Homburg, Germany
| |
Collapse
|
24
|
Jiang Y, Ghias K, Gupta S, Gupta A. MicroRNAs as Potential Biomarkers for Exercise-Based Cancer Rehabilitation in Cancer Survivors. Life (Basel) 2021; 11:1439. [PMID: 34947970 PMCID: PMC8707107 DOI: 10.3390/life11121439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/14/2022] Open
Abstract
Expression and functions of microRNAs (miRNAs) have been widely investigated in cancer treatment-induced complications and as a response to physical activity, respectively, but few studies focus on the application of miRNAs as biomarkers in exercise-based cancer rehabilitation. Research has shown that certain miRNA expression is altered substantially due to tissue damage caused by cancer treatment and chronic inflammation. MiRNAs are released from the damaged tissue and can be easily detected in blood plasma. Levels of the miRNA present in peripheral circulation can therefore be used to measure the extent of tissue damage. Moreover, damage to tissues such as cardiac and skeletal muscle significantly affects the individual's health-related fitness, which can be determined using physiologic functional assessments. These physiologic parameters are a measure of tissue health and function and can therefore be correlated with the levels of circulating miRNAs. In this paper, we reviewed miRNAs whose expression is altered during cancer treatment and may correlate to physiological, physical, and psychological changes that significantly impact the quality of life of cancer survivors and their role in response to physical activity. We aim to identify potential miRNAs that can not only be used for monitoring changes that occur in health-related fitness during cancer treatment but can also be used to evaluate response to exercise-based rehabilitation and monitor individual progress through the rehabilitation programme.
Collapse
Affiliation(s)
| | | | | | - Ananya Gupta
- Department of Physiology, National University of Ireland, H91 TK33 Galway, Ireland; (Y.J.); (K.G.); (S.G.)
| |
Collapse
|
25
|
Fatima I, Rahdar A, Sargazi S, Barani M, Hassanisaadi M, Thakur VK. Quantum Dots: Synthesis, Antibody Conjugation, and HER2-Receptor Targeting for Breast Cancer Therapy. J Funct Biomater 2021; 12:75. [PMID: 34940554 PMCID: PMC8708439 DOI: 10.3390/jfb12040075] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/08/2021] [Accepted: 12/13/2021] [Indexed: 12/13/2022] Open
Abstract
Breast cancer is becoming one of the main lethal carcinomas in the recent era, and its occurrence rate is increasing day by day. There are different breast cancer biomarkers, and their overexpression takes place in the metastasis of cancer cells. The most prevalent breast cancer biomarker is the human epidermal growth factor receptor2 (HER2). As this biomarker is overexpressed in malignant breast tissues, it has become the main focus in targeted therapies to fight breast cancer. There is a cascade of mechanisms involved in metastasis and cell proliferation in cancer cells. Nanotechnology has become extremely advanced in targeting and imaging cancerous cells. Quantum dots (QDs) are semiconductor NPs, and they are used for bioimaging, biolabeling, and biosensing. They are synthesized by different approaches such as top-down, bottom-up, and synthetic methods. Fully human monoclonal antibodies synthesized using transgenic mice having human immunoglobulin are used to target malignant cells. For the HER2 receptor, herceptin® (trastuzumab) is the most specific antibody (Ab), and it is conjugated with QDs by using different types of coupling mechanisms. This quantum dot monoclonal antibody (QD-mAb) conjugate is localized by injecting it into the blood vessel. After the injection, it goes through a series of steps to reach the intracellular space, and bioimaging of specifically the HER2 receptor occurs, where apoptosis of the cancer cells takes place either by the liberation of Ab or the free radicals.
Collapse
Affiliation(s)
- Iqra Fatima
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan;
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol 98613-35856, Iran
| | - Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan 98167-43463, Iran;
| | - Mahmood Barani
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman 76169-13555, Iran; (M.B.); (M.H.)
| | - Mohadeseh Hassanisaadi
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman 76169-13555, Iran; (M.B.); (M.H.)
- Department of Plant Protection, Shahid Bahonar University of Kerman, Kerman 76184-11764, Iran
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, SRUC, Edinburgh EH9 3JG, UK
- School of Engineering, University of Petroleum & Energy Studies (UPES), Dehradun 248007, Uttarakhand, India
| |
Collapse
|
26
|
Dastjerd NT, Valibeik A, Rahimi Monfared S, Goodarzi G, Moradi Sarabi M, Hajabdollahi F, Maniati M, Amri J, Samavarchi Tehrani S. Gene therapy: A promising approach for breast cancer treatment. Cell Biochem Funct 2021; 40:28-48. [PMID: 34904722 DOI: 10.1002/cbf.3676] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/11/2021] [Accepted: 11/16/2021] [Indexed: 02/06/2023]
Abstract
Breast cancer (BC) is the most prevalent malignancy and the second leading cause of death among women worldwide that is caused by numerous genetic and environmental factors. Hence, effective treatment for this type of cancer requires new therapeutic approaches. The traditional methods for treating this cancer have side effects, therefore so much research have been performed in last decade to find new methods to alleviate these problems. The study of the molecular basis of breast cancer has led to the introduction of gene therapy as an effective therapeutic approach for this cancer. Gene therapy involves sending genetic material through a vector into target cells, which is followed by a correction, addition, or suppression of the gene. In this technique, it is necessary to target tumour cells without affecting normal cells. In addition, clinical trial studies have shown that this approach is less toxic than traditional therapies. This study will review various aspects of breast cancer, gene therapy strategies, limitations, challenges and recent studies in this area.
Collapse
Affiliation(s)
- Niloufar Tavakoli Dastjerd
- Department of Medical Biotechnology, School of Allied Medical Sciences, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Ali Valibeik
- Department of Clinical Biochemistry, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Sobhan Rahimi Monfared
- Department of Clinical Biochemistry, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Golnaz Goodarzi
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Student Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mostafa Moradi Sarabi
- Department of Biochemistry and Genetics, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Faezeh Hajabdollahi
- Department of Anatomical Sciences, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mahmood Maniati
- English Department, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Jamal Amri
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Student Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Sadra Samavarchi Tehrani
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Student Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
27
|
Nitheesh Y, Pradhan R, Hejmady S, Taliyan R, Singhvi G, Alexander A, Kesharwani P, Dubey SK. Surface engineered nanocarriers for the management of breast cancer. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 130:112441. [PMID: 34702526 DOI: 10.1016/j.msec.2021.112441] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 12/19/2022]
Abstract
Breast cancer is commonly known life-threatening malignancy in women after lung cancer. The standard of care (SOC) treatment for breast cancer primarily includes surgery, radiotherapy, hormonal therapy, and chemotherapy. However, the effectiveness of conventional chemotherapy is restricted by several limitations such as poor targeting, drug resistance, poor drug delivery, and high toxicity. Nanoparticulate drug delivery systems have gained a lot of interest in the scientific community because of its unique features and promising potential in breast cancer diagnosis and treatment. The unique physicochemical and biological properties of the nanoparticulate drug delivery systems promotes the drug accumulation, Pharmacokinetic profile towards the tumor site and thereby, reduces the cytotoxicity towards healthy cells. In addition, to improve tumor-specific drug delivery, researchers have focused on surface engineered nanocarrier system with targeting molecules/ligands that are specific to overexpressed receptors present on cancer cells. In this review, we have summarized the different biological ligands and surface-engineered nanoparticles, enlightening the physicochemical characteristics, toxic effects, and regulatory considerations of nanoparticles involved in treatment of breast cancer.
Collapse
Affiliation(s)
- Yanamandala Nitheesh
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan 333031, India
| | - Rajesh Pradhan
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan 333031, India
| | - Siddhant Hejmady
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan 333031, India
| | - Rajeev Taliyan
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan 333031, India
| | - Gautam Singhvi
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan 333031, India
| | - Amit Alexander
- National Institute of Pharmaceutical Education and Research (NIPER-G), Ministry of Chemicals & Fertilizers, Govt. of India NH 37, NITS Mirza, Kamrup-781125, Guwahati, Assam, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Sunil Kumar Dubey
- R&D Healthcare Division, Emami Ltd, 13, BT Road, Belgharia 700056, Kolkata, India.
| |
Collapse
|
28
|
McDaid WJ, Lissin N, Pollheimer E, Greene M, Leach A, Smyth P, Bossi G, Longley D, Cole DK, Scott CJ. Enhanced target-specific delivery of docetaxel-loaded nanoparticles using engineered T cell receptors. NANOSCALE 2021; 13:15010-15020. [PMID: 34533174 PMCID: PMC8447836 DOI: 10.1039/d1nr04001d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/18/2021] [Indexed: 06/13/2023]
Abstract
For effective targeted therapy of cancer with chemotherapy-loaded nanoparticles (NPs), antigens that are selective for cancer cells should be targeted to minimise off-tumour toxicity. Human leukocyte antigens (HLAs) are attractive cancer targets as they can present peptides from tumour-selective proteins on the cell surface, which can be recognised by T cells via T cell receptors (TCRs). In this study, docetaxel-loaded polymeric NPs were conjugated to recombinant affinity-enhanced TCRs to target breast cancer cells presenting a tumour-selective peptide-HLA complex. The TCR-conjugated nanoparticles enabled enhanced delivery of docetaxel and induced cell death through tumour-specific peptide-HLA targeting. These in vitro data demonstrate the potential of targeting tumour-restricted peptide-HLA epitopes using high affinity TCR-conjugated nanoparticles, representing a novel treatment strategy to deliver therapeutic drugs specifically to cancer cells.
Collapse
Affiliation(s)
- William J McDaid
- The Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK, BT9 7AE.
- Cancer Research UK Manchester Institute, Alderley Park, Congleton Rd, Alderley Edge, Macclesfield, UK, SK10 4TG
| | - Nikolai Lissin
- Immunocore Ltd, 101 Park Dr, Milton, Abingdon, United Kingdom OX14 4RY
| | - Ellen Pollheimer
- The Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK, BT9 7AE.
| | - Michelle Greene
- The Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK, BT9 7AE.
| | - Adam Leach
- The Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK, BT9 7AE.
- Institute of Cancer Research, 15 Cotswold Rd, Sutton, London, SM2 5NG, UK
| | - Peter Smyth
- The Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK, BT9 7AE.
| | - Giovanna Bossi
- Immunocore Ltd, 101 Park Dr, Milton, Abingdon, United Kingdom OX14 4RY
| | - Daniel Longley
- The Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK, BT9 7AE.
| | - David K Cole
- Immunocore Ltd, 101 Park Dr, Milton, Abingdon, United Kingdom OX14 4RY
| | - Christopher J Scott
- The Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK, BT9 7AE.
| |
Collapse
|
29
|
Fu Z, Wang L, Li S, Chen F, Au-Yeung KKW, Shi C. MicroRNA as an Important Target for Anticancer Drug Development. Front Pharmacol 2021; 12:736323. [PMID: 34512363 PMCID: PMC8425594 DOI: 10.3389/fphar.2021.736323] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/10/2021] [Indexed: 12/15/2022] Open
Abstract
Cancer has become the second greatest cause of death worldwide. Although there are several different classes of anticancer drugs that are available in clinic, some tough issues like side-effects and low efficacy still need to dissolve. Therefore, there remains an urgent need to discover and develop more effective anticancer drugs. MicroRNAs (miRNAs) are a class of small endogenous non-coding RNAs that regulate gene expression by inhibiting mRNA translation or reducing the stability of mRNA. An abnormal miRNA expression profile was found to exist widely in cancer cell, which induces limitless replicative potential and evading apoptosis. MiRNAs function as oncogenes (oncomiRs) or tumor suppressors during tumor development and progression. It was shown that regulation of specific miRNA alterations using miRNA mimics or antagomirs can normalize the gene regulatory network and signaling pathways, and reverse the phenotypes in cancer cells. The miRNA hence provides an attractive target for anticancer drug development. In this review, we will summarize the latest publications on the role of miRNA in anticancer therapeutics and briefly describe the relationship between abnormal miRNAs and tumorigenesis. The potential of miRNA-based therapeutics for anticancer treatment has been critically discussed. And the current strategies in designing miRNA targeting therapeutics are described in detail. Finally, the current challenges and future perspectives of miRNA-based therapy are conferred.
Collapse
Affiliation(s)
- Zhiwen Fu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China
| | - Liu Wang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China
| | - Shijun Li
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China
| | - Fen Chen
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China
| | | | - Chen Shi
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China
| |
Collapse
|
30
|
Oravczová V, Garaiová Z, Hianik T. Nanoparticles and Nanomotors Modified by Nucleic Acids Aptamers for Targeted Drug Delivery. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1068162021020187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
31
|
Romano G, Acunzo M, Nana-Sinkam P. microRNAs as Novel Therapeutics in Cancer. Cancers (Basel) 2021; 13:1526. [PMID: 33810332 PMCID: PMC8037786 DOI: 10.3390/cancers13071526] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 02/07/2023] Open
Abstract
In the last 20 years, the functional roles for miRNAs in gene regulation have been well established. MiRNAs act as regulators in virtually all biological pathways and thus have been implicated in numerous diseases, including cancer. They are particularly relevant in regulating the basic hallmarks of cancer, including apoptosis, proliferation, migration, and invasion. Despite the substantial progress made in identifying the molecular mechanisms driving the deregulation of miRNAs in cancer, the clinical translation of these important molecules to therapy remains in its infancy. The paucity of vehicles available for the safe and efficient delivery of miRNAs and ongoing concerns for toxicity remain major obstacles to clinical application. Novel formulations and the development of new vectors have significantly improved the stability of oligonucleotides, increasing the effectiveness of therapy. Furthermore, the use of specific moieties for delivery in target tissues or cells has increased the specificity of treatment. The use of new technologies has allowed small but important steps toward more specific therapeutic delivery in tumor tissues and cells. Although a long road remains, the path ahead holds great potential. Currently, a few miRNA drugs are under investigation in human clinical trials with promising results ahead.
Collapse
Affiliation(s)
| | | | - Patrick Nana-Sinkam
- Department of Internal Medicine, Division of Pulmonary Diseases and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (G.R.); (M.A.)
| |
Collapse
|
32
|
Raue R, Frank AC, Syed SN, Brüne B. Therapeutic Targeting of MicroRNAs in the Tumor Microenvironment. Int J Mol Sci 2021; 22:ijms22042210. [PMID: 33672261 PMCID: PMC7926641 DOI: 10.3390/ijms22042210] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/16/2021] [Accepted: 02/18/2021] [Indexed: 02/06/2023] Open
Abstract
The tumor-microenvironment (TME) is an amalgamation of various factors derived from malignant cells and infiltrating host cells, including cells of the immune system. One of the important factors of the TME is microRNAs (miRs) that regulate target gene expression at a post transcriptional level. MiRs have been found to be dysregulated in tumor as well as in stromal cells and they emerged as important regulators of tumorigenesis. In fact, miRs regulate almost all hallmarks of cancer, thus making them attractive tools and targets for novel anti-tumoral treatment strategies. Tumor to stroma cell cross-propagation of miRs to regulate protumoral functions has been a salient feature of the TME. MiRs can either act as tumor suppressors or oncogenes (oncomiRs) and both miR mimics as well as miR inhibitors (antimiRs) have been used in preclinical trials to alter cancer and stromal cell phenotypes. Owing to their cascading ability to regulate upstream target genes and their chemical nature, which allows specific pharmacological targeting, miRs are attractive targets for anti-tumor therapy. In this review, we cover a recent update on our understanding of dysregulated miRs in the TME and provide an overview of how these miRs are involved in current cancer-therapeutic approaches from bench to bedside.
Collapse
Affiliation(s)
- Rebecca Raue
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (R.R.); (A.-C.F.)
| | - Ann-Christin Frank
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (R.R.); (A.-C.F.)
| | - Shahzad Nawaz Syed
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (R.R.); (A.-C.F.)
- Correspondence: (S.N.S.); (B.B.); Tel.: +49-69-6301-7424 (B.B.)
| | - Bernhard Brüne
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (R.R.); (A.-C.F.)
- Project Group Translational Medicine and Pharmacology TMP, Fraunhofer Institute for Molecular Biology and Applied Ecology, 60596 Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt, 60590 Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe-University Frankfurt, 60596 Frankfurt, Germany
- Correspondence: (S.N.S.); (B.B.); Tel.: +49-69-6301-7424 (B.B.)
| |
Collapse
|
33
|
Mehrnia SS, Hashemi B, Mowla SJ, Nikkhah M, Arbabi A. Radiosensitization of breast cancer cells using AS1411 aptamer-conjugated gold nanoparticles. Radiat Oncol 2021; 16:33. [PMID: 33568174 PMCID: PMC7877080 DOI: 10.1186/s13014-021-01751-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 01/28/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Gold nanoparticles (GNPs) have been used to sensitize cancer cells and enhance the absorbed dose delivered to such cells. Active targeting can provide specific effect and higher uptake of the GNPs in the tumor cells, while having small effect on healthy cells. The aim of this study was to assess the possible radiosensitiazation effect of GNPs conjugated with AS1411 aptamer (AS1411/GNPs) on cancer cells treated with 4 MeV electron beams. MATERIALS AND METHODS Cytotoxicity studies of the GNPs and AS1411/GNPs were carried out with MTT and MTS assay in different cancer cell lines of MCF-7, MDA-MB-231 and mammospheres of MCF-7 cells. Atomic absorption spectroscopy confirmed the cellular uptake of the gold particles. Radiosensitizing effect of the GNPs and AS1411/GNPs on the cancer cells was assessed by clonogenic assay. RESULT AS1411 aptamer increased the Au uptake in MCF-7 and MDA-MB-231 cells. Clonogenic survival data revealed that AS1411/GNPs at 12.5 mg/L could result in radiosensitization of the breast cancer cells and lead to a sensitizer enhancement ratio of 1.35 and 1.66 and 1.91 for MCf-7, MDA-MB-231 and mammosphere cells. CONCLUSION Gold nanoparticles delivery to the cancer cells was enhanced by AS1411 aptamer and led to enhanced radiation induced cancer cells death. The combination of our clonogenic assay and Au cell uptake results suggested that AS1411 aptamer has enhanced the radiation-induced cell death by increasing Au uptake. This enhanced sensitization contributed to cancer stem cell-like cells to 4 MeV electron beams. This is particularly important for future preclinical testing to open a new insight for the treatment of cancers.
Collapse
Affiliation(s)
- Somayeh Sadat Mehrnia
- Department of Medical Physics, Faculty of Medical Sciences, Tarbiat Modares University, P.O. Box: 14115-331, Tehran, Iran
| | - Bijan Hashemi
- Department of Medical Physics, Faculty of Medical Sciences, Tarbiat Modares University, P.O. Box: 14115-331, Tehran, Iran.
| | - Seyed Javad Mowla
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Maryam Nikkhah
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Azim Arbabi
- Department of Radiotherapy, Imam Hossein (A.S.) Hospital, Shahid Beheshti University of Medical Science, Tehran, Iran
| |
Collapse
|
34
|
Zhu M, Wang S. Functional Nucleic‐Acid‐Decorated Spherical Nanoparticles: Preparation Strategies and Current Applications in Cancer Therapy. SMALL SCIENCE 2021. [DOI: 10.1002/smsc.202000056] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Min Zhu
- Department of Pharmaceutical Engineering College of Chemistry and Chemical Engineering Central South University No. 932 South Lushan Rd Changsha Hunan 410083 P. R. China
| | - Shan Wang
- Department of Pharmaceutical Engineering College of Chemistry and Chemical Engineering Central South University No. 932 South Lushan Rd Changsha Hunan 410083 P. R. China
| |
Collapse
|
35
|
Fu Z, Xiang J. Aptamer-Functionalized Nanoparticles in Targeted Delivery and Cancer Therapy. Int J Mol Sci 2020; 21:ijms21239123. [PMID: 33266216 PMCID: PMC7730239 DOI: 10.3390/ijms21239123] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 12/13/2022] Open
Abstract
Using nanoparticles to carry and delivery anticancer drugs holds much promise in cancer therapy, but nanoparticles per se are lacking specificity. Active targeting, that is, using specific ligands to functionalize nanoparticles, is attracting much attention in recent years. Aptamers, with their several favorable features like high specificity and affinity, small size, very low immunogenicity, relatively low cost for production, and easiness to store, are one of the best candidates for the specific ligands of nanoparticle functionalization. This review discusses the benefits and challenges of using aptamers to functionalize nanoparticles for active targeting and especially presents nearly all of the published works that address the topic of using aptamers to functionalize nanoparticles for targeted drug delivery and cancer therapy.
Collapse
Affiliation(s)
- Zhaoying Fu
- Institute of Molecular Biology and Immunology, College of Medicine, Yanan University, Yanan 716000, China
- Correspondence: (Z.F.); (J.X.)
| | - Jim Xiang
- Division of Oncology, University of Saskatchewan, Saskatoon, SK S7N 4H4, Canada
- Correspondence: (Z.F.); (J.X.)
| |
Collapse
|
36
|
Kunz M, Brandl M, Bhattacharya A, Nobereit-Siegel L, Ewe A, Weirauch U, Hering D, Reinert A, Kalwa H, Guzman J, Weigelt K, Wach S, Taubert H, Aigner A. Nanoparticle-complexed antimiRs for inhibiting tumor growth and metastasis in prostate carcinoma and melanoma. J Nanobiotechnology 2020; 18:173. [PMID: 33228711 PMCID: PMC7685669 DOI: 10.1186/s12951-020-00728-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 11/05/2020] [Indexed: 02/06/2023] Open
Abstract
Background MiRNAs act as negative regulators of gene expression through target mRNA degradation or inhibition of its translation. In cancer, several miRNAs are upregulated and play crucial roles in tumorigenesis, making the inhibition of these oncomiRs an interesting therapeutic approach. This can be achieved by directly complementary single-stranded anti-miRNA oligonucleotides (antimiRs). A major bottleneck in antimiR therapy, however, is their efficient delivery. The nanoparticle formation with polyethylenimine (PEI) may be particularly promising, based on the PEI’s ability to electrostatically interact with oligonucleotides. This leads to their protection and supports delivery. In the present study, we explore for the first time PEI for antimiR formulation and delivery. We use the branched low molecular weight PEI F25-LMW for the complexation of different antimiRs, and analyse tumor- and metastasis-inhibitory effects of PEI/antimiR complexes in different tumor models. Results In prostate carcinoma, transfection of antimiRs against miR-375 and miR-141 leads to tumor cell inhibition in 2D- and 3D-models. More importantly, an in vivo tumor therapy study in prostate carcinoma xenografts reveals anti-tumor effects of the PEI/antimiR complexes. In advanced melanoma and metastasis, we identify by a microRNA screen miR-150 as a particularly relevant oncomiR candidate, and validate this result in vitro and in vivo. Again, the systemic application of PEI/antimiR complexes inhibiting this miRNA, or the previously described antimiR-638, leads to profound tumor growth inhibition. These effects are associated with the upregulation of direct miRNA target genes. In a melanoma metastasis mouse model, anti-metastatic effects of PEI/antimiR treatment are observed as well. Conclusions We thus describe PEI-based complexes as efficient platform for antimiR therapy, as determined in two different tumor entities using in vivo models of tumor growth or metastasis. Our study also highlights the therapeutic relevance of miR-375, miR-141, miR-150 and miR-638 as target miRNAs for antimiR-mediated inhibition.![]()
Collapse
Affiliation(s)
- Manfred Kunz
- Department of Dermatology, Venereology and Allergology, Leipzig University Medical Center, Leipzig, Germany
| | - Madeleine Brandl
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, University of Leipzig, Haertelstrasse 16-18, 04107, Leipzig, Germany
| | - Animesh Bhattacharya
- Department of Dermatology, Venereology and Allergology, Leipzig University Medical Center, Leipzig, Germany.,Department of Hematology, Oncology and Tumor Immunology, Charité-University Medical Center, Virchow Campus, Berlin, Germany
| | - Lars Nobereit-Siegel
- Department of Dermatology, Venereology and Allergology, Leipzig University Medical Center, Leipzig, Germany.,Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, University of Leipzig, Haertelstrasse 16-18, 04107, Leipzig, Germany
| | - Alexander Ewe
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, University of Leipzig, Haertelstrasse 16-18, 04107, Leipzig, Germany
| | - Ulrike Weirauch
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, University of Leipzig, Haertelstrasse 16-18, 04107, Leipzig, Germany
| | - Doreen Hering
- Department of Dermatology, Venereology and Allergology, Leipzig University Medical Center, Leipzig, Germany
| | - Anja Reinert
- Faculty of Veterinary Medicine, Institute of Anatomy, Histology and Embryology, Leipzig University, Leipzig, Germany
| | - Hermann Kalwa
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, University of Leipzig, Leipzig, Germany
| | - Juan Guzman
- Department of Urology, Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Katrin Weigelt
- Department of Urology, Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Sven Wach
- Department of Urology, Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Helge Taubert
- Department of Urology, Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Achim Aigner
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, University of Leipzig, Haertelstrasse 16-18, 04107, Leipzig, Germany.
| |
Collapse
|
37
|
Ortega MA, Fraile-Martínez O, Guijarro LG, Casanova C, Coca S, Álvarez-Mon M, Buján J, García-Honduvilla N, Asúnsolo Á. The Regulatory Role of Mitochondrial MicroRNAs (MitomiRs) in Breast Cancer: Translational Implications Present and Future. Cancers (Basel) 2020; 12:cancers12092443. [PMID: 32872155 PMCID: PMC7564393 DOI: 10.3390/cancers12092443] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Mitochondrial microRNAs (mitomiRs) are an emerging field of study in a wide range of tumours including breast cancer. By targeting mitochondrial, or non-mitochondrial products, mitomiRs are able to regulate the functions of this organelle, thus controlling multiple carcinogenic processes. The knowledge of this system may provide a novel approach for targeted therapies, as potential biomarkers or helping in the diagnosis of such a complex malignancy. Abstract Breast cancer is the most prevalent and incident female neoplasm worldwide. Although survival rates have considerably improved, it is still the leading cause of cancer-related mortality in women. MicroRNAs are small non-coding RNA molecules that regulate the posttranscriptional expression of a wide variety of genes. Although it is usually located in the cytoplasm, several studies have detected a regulatory role of microRNAs in other cell compartments such as the nucleus or mitochondrion, known as “mitomiRs”. MitomiRs are essential modulators of mitochondrion tasks and their abnormal expression has been linked to the aetiology of several human diseases related to mitochondrial dysfunction, including breast cancer. This review aims to examine basic knowledge of the role of mitomiRs in breast cancer and discusses their prospects as biomarkers or therapeutic targets.
Collapse
Affiliation(s)
- Miguel A. Ortega
- Department of Medicine and Medical Specialities, Unit of Histology and Pathology, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (O.F.-M.); (C.C.); (S.C.); (M.Á.-M.); (J.B.); (N.G.-H.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain;
- Cancer Registry and Pathology Department, Hospital Universitario Principe de Asturias, 28806 Alcalá de Henares, Madrid, Spain
- Correspondence: ; Tel.: +34-91-885-4540; Fax: +34-91-885-4885
| | - Oscar Fraile-Martínez
- Department of Medicine and Medical Specialities, Unit of Histology and Pathology, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (O.F.-M.); (C.C.); (S.C.); (M.Á.-M.); (J.B.); (N.G.-H.)
| | - Luis G. Guijarro
- Department of System Biology, Unit of Biochemistry and Molecular Biology (CIBEREHD), University of Alcalá, 28801 Alcalá de Henares, Spain;
| | - Carlos Casanova
- Department of Medicine and Medical Specialities, Unit of Histology and Pathology, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (O.F.-M.); (C.C.); (S.C.); (M.Á.-M.); (J.B.); (N.G.-H.)
| | - Santiago Coca
- Department of Medicine and Medical Specialities, Unit of Histology and Pathology, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (O.F.-M.); (C.C.); (S.C.); (M.Á.-M.); (J.B.); (N.G.-H.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain;
| | - Melchor Álvarez-Mon
- Department of Medicine and Medical Specialities, Unit of Histology and Pathology, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (O.F.-M.); (C.C.); (S.C.); (M.Á.-M.); (J.B.); (N.G.-H.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain;
- Immune System Diseases-Rheumatology, Oncology Service an Internal Medicine, University Hospital Príncipe de Asturias, (CIBEREHD), 28806 Alcalá de Henares, Madrid, Spain
| | - Julia Buján
- Department of Medicine and Medical Specialities, Unit of Histology and Pathology, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (O.F.-M.); (C.C.); (S.C.); (M.Á.-M.); (J.B.); (N.G.-H.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain;
| | - Natalio García-Honduvilla
- Department of Medicine and Medical Specialities, Unit of Histology and Pathology, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (O.F.-M.); (C.C.); (S.C.); (M.Á.-M.); (J.B.); (N.G.-H.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain;
| | - Ángel Asúnsolo
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain;
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Madrid, Spain
| |
Collapse
|
38
|
Ashrafizadeh M, Javanmardi S, Moradi-Ozarlou M, Mohammadinejad R, Farkhondeh T, Samarghandian S, Garg M. Natural products and phytochemical nanoformulations targeting mitochondria in oncotherapy: an updated review on resveratrol. Biosci Rep 2020; 40:BSR20200257. [PMID: 32163546 PMCID: PMC7133519 DOI: 10.1042/bsr20200257] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 12/11/2022] Open
Abstract
Mitochondria are intracellular organelles with two distinct membranes, known as an outer mitochondrial membrane and inner cell membrane. Originally, mitochondria have been derived from bacteria. The main function of mitochondria is the production of ATP. However, this important organelle indirectly protects cells by consuming oxygen in the route of energy generation. It has been found that mitochondria are actively involved in the induction of the intrinsic pathways of apoptosis. So, there have been efforts to sustain mitochondrial homeostasis and inhibit its dysfunction. Notably, due to the potential role of mitochondria in the stimulation of apoptosis, this organelle is a promising target in cancer therapy. Resveratrol is a non-flavonoid polyphenol that exhibits significant pharmacological effects such as antioxidant, anti-diabetic, anti-inflammatory and anti-tumor. The anti-tumor activity of resveratrol may be a consequence of its effect on mitochondria. Multiple studies have investigated the relationship between resveratrol and mitochondria, and it has been demonstrated that resveratrol is able to significantly enhance the concentration of reactive oxygen species, leading to the mitochondrial dysfunction and consequently, apoptosis induction. A number of signaling pathways such as sirtuin and NF-κB may contribute to the mitochondrial-mediated apoptosis by resveratrol. Besides, resveratrol shifts cellular metabolism from glycolysis into mitochondrial respiration to induce cellular death in cancer cells. In the present review, we discuss the possible interactions between resveratrol and mitochondria, and its potential application in cancer therapy.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Sara Javanmardi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Masoumeh Moradi-Ozarlou
- Department of Pathobiology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Reza Mohammadinejad
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Samarghandian
- Healthy Ageing Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Manoj Garg
- Amity Institute of Molecular Medicine and Stem cell Research (AIMMSCR), Amity University, Noida, Uttar Pradesh 201313, India
| |
Collapse
|