1
|
Jordan E, Arriaga MA, Obregon H, Villalobos V, Duarte MA, Garcia K, Levy A, Chew SA. Dual delivery of metformin and Y15 from a PLGA scaffold for the treatment of platinum-resistant ovarian cancer. Future Med Chem 2025; 17:301-312. [PMID: 39887289 PMCID: PMC11792864 DOI: 10.1080/17568919.2025.2458457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/07/2025] [Indexed: 02/01/2025] Open
Abstract
AIMS Drug-loaded poly(lactic-co-glycolic acid) (PLGA) scaffolds were fabricated using a mold-less technique to investigate whether the combined delivery of both Y15 (FAK inhibitor) and metformin would result in enhanced effects on cell viability compared to the release of each drug alone for the treatment of platinum-resistant ovarian cancer (PROC). MATERIALS & METHODS Scaffolds were fabricated using an easy and economical mold-less technique that combined PLGA and the drugs (i.e. metformin and/or Y15) in tetraglycol and injected in PBS, to form a globular morphology. RESULTS The exposure of cells to metformin and Y15 resulted in a significantly enhanced cytotoxic efficacy compared to single-drug treatment with either metformin or Y15. When the drugs were delivered using the PLGA scaffolds, the combination of the two drugs was significantly more cytotoxic compared to scaffolds containing metformin only and Y15 only. CONCLUSIONS The combination of metformin and Y15 can result in an increase in antitumor activity in PROC cells through apoptosis. The delivery of both drugs from the PLGA biomaterial scaffold allowed for a more enhanced combinational effect compared to the utilization of free drugs (without a scaffold) and should be further explored as a promising treatment of PROC.
Collapse
Affiliation(s)
- Emily Jordan
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Marco A. Arriaga
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Hannah Obregon
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Viviana Villalobos
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Manuel A. Duarte
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Kristal Garcia
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Arkene Levy
- Dr Kiran C Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Sue Anne Chew
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX, USA
| |
Collapse
|
2
|
Lin WJ, Yu H, Pathak A. Gradients in cell density and shape transitions drive collective cell migration into confining environments. SOFT MATTER 2025; 21:719-728. [PMID: 39784299 PMCID: PMC11715644 DOI: 10.1039/d3sm01240a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 12/27/2024] [Indexed: 01/12/2025]
Abstract
Epithelial cell collectives migrate through tissue interfaces and crevices to orchestrate development processes, tumor invasion, and wound healing. Naturally, the traversal of cell collective through confining environments involves crowding due to narrowing spaces, which seems tenuous given the conventional inverse relationship between cell density and migration. However, the physical transitions required to overcome such epithelial densification for migration across confinements remain unclear. Here, in a system of contiguous microchannels of varying confinements, we show that epithelial (MCF10A) monolayers accumulate higher cell density and undergo fluid-like shape transitions before entering narrower channels. However, overexpression of breast cancer oncogene ErbB2 did not require such accumulation of cell density to migrate across matrix confinement. While wild-type MCF10A cells migrated faster in narrow channels, this confinement sensitivity was reduced after +ErbB2 mutation or with constitutively active RhoA. This physical interpretation of collective cell migration as density and shape transitions in granular matter could advance our understanding of complex living systems.
Collapse
Affiliation(s)
- Wan-Jung Lin
- Department of Mechanical Engineering & Materials Science, Washington University, St. Louis, USA.
| | - Hongsheng Yu
- Department of Mechanical Engineering & Materials Science, Washington University, St. Louis, USA.
| | - Amit Pathak
- Department of Mechanical Engineering & Materials Science, Washington University, St. Louis, USA.
| |
Collapse
|
3
|
Chen H, Yuan Y, Zhang Y, Liu X, Chen Q, Liu C, Yao Q. Activation of the LKB1/AMPK/HIF-1α Pathway by Metformin to Promote Neovascularisation in Cerebral Ischaemia. Neurochem Res 2024; 49:3263-3276. [PMID: 39240424 DOI: 10.1007/s11064-024-04235-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/07/2024]
Abstract
As a difficult-to-treat neurological condition, cerebral ischemia is currently limited to treatments such as intravenous recombinant tissue plasminogen activator thrombolysis and thrombectomy. Metformin, a potent antidiabetic drug, has been reported to have an independent function in enhancing the prognosis of stroke patients, in addition to its glucose-lowering effects. However, the mechanism of action of metformin in this context remains unclear. In vivo, a rat model of permanent middle cerebral artery occlusion was established, and after administration of a low dose of 10.5 mg/mL metformin, infarct area was measured by TTC staining, and cortical blood flow was determined by laser Doppler imaging. In vitro, the study established human umbilical vein endothelial cells treated with cobalt chloride. Immunofluorescence, immunohistochemistry, and Western blot experiments were performed to observe the expression of angiogenic factors, tight junction proteins, and apoptotic factors. A TUNEL assay was utilized to appraise cell death by apoptosis. A tube formation assay and scratch assay were conducted to determine the endothelial neovascularization status. Animal experiments have revealed that the administration of the AMPK activator metformin significantly reduced the infarct area, promoted the expression of angiogenic factors, and maintained the stability of tight junction proteins in endothelial cells. Moreover, metformin reduces nerve cells apoptosis by affecting the expression of the apoptotic protein cleaved-caspase3 via the HIF-1α pathway. In vitro, the LKB1/AMPK signaling pathway is activated after hypoxic stimulation, attaining its peak within the early stages of hypoxia (1-12 h) and gradually weakening thereafter. The administration of AMPK pharmacological agonists (between 36 and 48 h) can enhance AMPK activity, which can lead to the expression of angiogenic factors, maintain the stability of tight-junction proteins in endothelial cells, and facilitate endothelial cell migration and vascular structure formation. Conversely, the AMPK inhibitors exert the opposite effects. The activation of the LKB1/AMPK/HIF-1α signaling pathway by metformin in cerebral ischemia contributes to angiogenesis, promotes tissue repair in the injured area, and enhances neurologically functional symptoms.
Collapse
Affiliation(s)
- Hongguang Chen
- Hubei Key Laboratory of Diabetes and Angiopathy, Medicine Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437000, Hubei, China
| | - Yuting Yuan
- Hubei Key Laboratory of Diabetes and Angiopathy, Medicine Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437000, Hubei, China
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, China
| | - Yue Zhang
- Hubei Key Laboratory of Diabetes and Angiopathy, Medicine Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437000, Hubei, China
| | - Xiufen Liu
- Hubei Key Laboratory of Diabetes and Angiopathy, Medicine Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437000, Hubei, China
| | - Qingjie Chen
- Hubei Key Laboratory of Diabetes and Angiopathy, Medicine Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437000, Hubei, China.
| | - Chao Liu
- Hubei Key Laboratory of Diabetes and Angiopathy, Medicine Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437000, Hubei, China.
| | - Qing Yao
- Hubei Key Laboratory of Diabetes and Angiopathy, Medicine Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437000, Hubei, China.
| |
Collapse
|
4
|
Chang Z, Liu B, He H, Li X, Shi H. High expression of RUNX1 in colorectal cancer subtype accelerates malignancy by inhibiting HMGCR. Pharmacol Res 2024; 206:107293. [PMID: 38971271 DOI: 10.1016/j.phrs.2024.107293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/09/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
Colorectal cancer (CRC) presents a complex landscape, characterized by both inter-tumor and intra-tumor heterogeneity. RUNX1, a gene implicated in modulating tumor cell growth, survival, and differentiation, remains incompletely understood regarding its impact on CRC prognosis. In our investigation, we discerned a positive correlation between elevated RUNX1 expression and aggressive phenotypes across various CRC subtypes. Notably, knockdown of RUNX1 demonstrated efficacy in restraining CRC proliferation both in vitro and in vivo, primarily through inducing apoptosis and impeding cell proliferation. Mechanistically, we unveiled a direct regulatory link between RUNX1 and cholesterol synthesis, mediated by its control over HMGCR expression. Knockdown of RUNX1 in CRC cells triggered HMGCR transcriptional activation, culminating in elevated cholesterol levels that subsequently hindered cancer progression. Clinically, heightened RUNX1 expression emerged as a prognostic marker for adverse outcomes in CRC patients. Our findings underscore the pivotal involvement of RUNX1 in CRC advancement and its potential as a therapeutic target. The unique influence of RUNX1 on cholesterol synthesis and HMGCR transcriptional regulation uncovers a novel pathway contributing to CRC progression.
Collapse
Affiliation(s)
- Zhilin Chang
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| | - Bing Liu
- Laboratory of Experimental Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China; State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China
| | - Han He
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China.
| | - Xiaoyan Li
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| | - Hui Shi
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
5
|
Wu CY, Yu JY, Chen YS, Chang HP, Hsieh BY, Lin YH, Ma CY, Tsai SF, Hsieh M. Effects of down-regulated carbonic anhydrase 8 on cell survival and glucose metabolism in human colorectal cancer cell lines. Cell Biochem Funct 2024; 42:e4001. [PMID: 38571370 DOI: 10.1002/cbf.4001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 03/17/2024] [Accepted: 03/22/2024] [Indexed: 04/05/2024]
Abstract
Carbonic anhydrase 8 (CA8) is a member of the α-carbonic anhydrase family but does not catalyze the reversible hydration of carbon dioxide. In the present study, we examined the effects of CA8 on two human colon cancer cell lines, SW480 and SW620, by suppressing CA8 expression through shRNA knockdown. Our results showed that knockdown of CA8 decreased cell growth and cell mobility in SW620 cells, but not in SW480 cells. In addition, downregulated CA8 resulted in a significant decrease of glucose uptake in both SW480 and SW620 cells. Interestingly, stable downregulation of CA8 decreased phosphofructokinase-1 expression but increased glucose transporter 3 (GLUT3) levels in SW620 cells. However, transient downregulation of CA8 fails to up-regulate GLUT3 expression, indicating that the increased GLUT3 observed in SW620-shCA8 cells is a compensatory effect. In addition, the interaction between CA8 and GLUT3 was evidenced by pull-down and IP assays. On the other hand, we showed that metformin, a first-line drug for type II diabetes patients, significantly inhibited cell migration of SW620 cells, depending on the expressions of CA8 and focal adhesion kinase. Taken together, our data demonstrate that when compared to primary colon cancer SW480 cells, metastatic colon cancer SW620 cells respond differently to downregulated CA8, indicating that CA8 in more aggressive cancer cells may play a more important role in controlling cell survival and metformin response. CA8 may affect glucose metabolism- and cell invasion-related molecules in colon cancer, suggesting that CA8 may be a potential target in future cancer therapy.
Collapse
Affiliation(s)
- Cheng-Yen Wu
- Department of Life Science, Tunghai University, Taichung, Taiwan, Republic of China
| | - Jia-Yo Yu
- Department of Life Science, Tunghai University, Taichung, Taiwan, Republic of China
| | - Yi-Shan Chen
- Department of Life Science, Tunghai University, Taichung, Taiwan, Republic of China
| | - Hui-Ping Chang
- Department of Life Science, Tunghai University, Taichung, Taiwan, Republic of China
| | - Benjamin Y Hsieh
- Department of Medicine, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Yu-Hsin Lin
- Department of Life Science, Tunghai University, Taichung, Taiwan, Republic of China
| | - Chung-Yung Ma
- Department of Life Science, Tunghai University, Taichung, Taiwan, Republic of China
| | - Shang-Feng Tsai
- Department of Life Science, Tunghai University, Taichung, Taiwan, Republic of China
- Department of Internal Medicine, Division of Nephrology, Taichung Veterans General Hospital, Taichung, Taiwan, Republic of China
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan, Republic of China
| | - Mingli Hsieh
- Department of Life Science, Tunghai University, Taichung, Taiwan, Republic of China
- Life Science Research Center, Tunghai University, Taichung, Taiwan, Republic of China
| |
Collapse
|
6
|
Lin WJ, Pathak A. Transitions in density, pressure, and effective temperature drive collective cell migration into confining environments. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.10.536258. [PMID: 37090663 PMCID: PMC10120636 DOI: 10.1101/2023.04.10.536258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Epithelial cell collectives migrate through tissue interfaces and crevices to orchestrate processes of development, tumor invasion, and wound healing. Naturally, traversal of cell collective through confining environments involves crowding due to the narrowing space, which seems tenuous given the conventional inverse relationship between cell density and migration. However, physical transitions required to overcome such epithelial densification for migration across confinements remain unclear. Here, in contiguous microchannels, we show that epithelial (MCF10A) monolayers accumulate higher cell density before entering narrower channels; however, overexpression of breast cancer oncogene +ErbB2 reduced this need for density accumulation across confinement. While wildtype MCF10A cells migrated faster in narrow channels, this confinement sensitivity reduced after +ErbB2 mutation or with constitutively-active RhoA. The migrating collective developed pressure differentials upon encountering microchannels, like fluid flow into narrowing spaces, and this pressure dropped with their continued migration. These transitions of pressure and density altered cell shapes and increased effective temperature, estimated by treating cells as granular thermodynamic system. While +RhoA cells and those in confined regions were effectively warmer, cancer-like +ErbB2 cells remained cooler. Epithelial reinforcement by metformin treatment increased density and temperature differentials across confinement, indicating that higher cell cohesion could reduce unjamming. Our results provide experimental evidence for previously proposed theories of inverse relationship between density and motility-related effective temperature. Indeed, we show across cell lines that confinement increases pressure and effective temperature, which enable migration by reducing density. This physical interpretation of collective cell migration as granular matter could advance our understanding of complex living systems.
Collapse
|
7
|
Shen D, Ye X, Li J, Hao X, Jin L, Jin Y, Tong L, Gao F. Metformin Preserves VE–Cadherin in Choroid Plexus and Attenuates Hydrocephalus via VEGF/VEGFR2/p-Src in an Intraventricular Hemorrhage Rat Model. Int J Mol Sci 2022; 23:ijms23158552. [PMID: 35955686 PMCID: PMC9369137 DOI: 10.3390/ijms23158552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/26/2022] [Accepted: 07/29/2022] [Indexed: 02/04/2023] Open
Abstract
Hydrocephalus induced by intraventricular hemorrhage (IVH) is associated with unfavorable prognosis. The increased permeability of choroid plexus and breakdown of the blood–brain barrier (BBB) was reported as a prominent mechanism of IVH-induced hydrocephalus, and vascular endothelial–cadherin (VE–cadherin) was demonstrated to be relevant. Metformin was reported to protect endothelial junction and preserve permeability widely; however, its role in hydrocephalus remains unclear. In this study, the decreased expression of VE–cadherin in the choroid plexus, accompanied with ventricle dilation, was investigated in an IVH rat model induced by intraventricular injection of autologous blood. Metformin treatment ameliorated hydrocephalus and upregulated VE–cadherin expression in choroid plexus meanwhile. We then observed that the internalization of VE–cadherin caused by the activation of vascular endothelial growth factor (VEGF) signaling after IVH was related to the occurrence of hydrocephalus, whereas it can be reversed by metformin treatment. Restraining VEGF signaling by antagonizing VEGFR2 or inhibiting Src phosphorylation increased the expression of VE–cadherin and decreased the severity of hydrocephalus after IVH. Our study demonstrated that the internalization of VE–cadherin via the activation of VEGF signaling may contribute to IVH-induced hydrocephalus, and metformin may be a potential protector via suppressing this pathway.
Collapse
Affiliation(s)
- Dan Shen
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China; (D.S.); (X.Y.); (J.L.); (X.H.); (L.J.); (Y.J.)
| | - Xianghua Ye
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China; (D.S.); (X.Y.); (J.L.); (X.H.); (L.J.); (Y.J.)
| | - Jiawen Li
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China; (D.S.); (X.Y.); (J.L.); (X.H.); (L.J.); (Y.J.)
| | - Xiaodi Hao
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China; (D.S.); (X.Y.); (J.L.); (X.H.); (L.J.); (Y.J.)
- Department of Neurology, Henan Province People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Luhang Jin
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China; (D.S.); (X.Y.); (J.L.); (X.H.); (L.J.); (Y.J.)
| | - Yujia Jin
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China; (D.S.); (X.Y.); (J.L.); (X.H.); (L.J.); (Y.J.)
| | - Lusha Tong
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China; (D.S.); (X.Y.); (J.L.); (X.H.); (L.J.); (Y.J.)
- Correspondence: (L.T.); (F.G.)
| | - Feng Gao
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China; (D.S.); (X.Y.); (J.L.); (X.H.); (L.J.); (Y.J.)
- Correspondence: (L.T.); (F.G.)
| |
Collapse
|
8
|
Study on the Action Mechanism of the Yifei Jianpi Tongfu Formula in Treatment of Colorectal Cancer Lung Metastasis Based on Network Analysis, Molecular Docking, and Experimental Validation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:6229444. [PMID: 35942366 PMCID: PMC9356795 DOI: 10.1155/2022/6229444] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/28/2022] [Indexed: 11/18/2022]
Abstract
Objective The lung is the second most common site of colorectal cancer (CRC) metastasis. This study aims to investigate the therapeutic effects and potential action mechanisms of Yifei Jianpi Tongfu formula (YJTF) in CRC lung metastasis in a comprehensive and systematic way by network analysis, molecular docking, and experimental verification. Methods The main ingredients in YJTF were screened from the Traditional Chinese Medicine System Pharmacology Database and Analysis Platform (TCMSP) and Traditional Chinese Medicine Integrated Database (TCMID), and the disease-related targets from the Online Mendelian Inheritance in Man (OMIM) and GeneCards and the compound-related targets from SwissTargetPrediction were collected. Then, Metascape was used for pathway annotation and enrichment analysis, and meanwhile, a protein-protein interaction (PPI) network was constructed. Molecular docking was carried out to investigate interactions between the active compounds and the potential targets. The in vivo effect of YJTF on CRC lung metastasis was observed in a tail vein injection mouse model. Results A total of 243 active compounds and 81 disease-related targets of YJTF were selected for analysis. The results of multiple network analysis showed that the core targets of YJTF were enriched onto various cancer-related pathways, especially focal adhesion and adherens junction. The results of molecular docking demonstrated that all core compounds (quercetin, kaempferol, luteolin, apigenin, and isorhamnetin) were capable of binding with AKT1, EGFR, SRC, ESR1, and PTGS2. Experimental validation in vivo demonstrated that YJTF combined with oxaliplatin could significantly reduce the number of lung metastases and improve the quality of life in mice. Further research suggested that YJTF inhibited CRC lung metastasis probably by modulating epithelial-to-mesenchymal transition (EMT). Conclusions According to the analysis, YJTF can be considered as an effective adjuvant therapy for CRC lung metastasis.
Collapse
|
9
|
Shen W, He J, Hou T, Si J, Chen S. Common Pathogenetic Mechanisms Underlying Aging and Tumor and Means of Interventions. Aging Dis 2022; 13:1063-1091. [PMID: 35855334 PMCID: PMC9286910 DOI: 10.14336/ad.2021.1208] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 12/07/2021] [Indexed: 11/22/2022] Open
Abstract
Recently, there has been an increase in the incidence of malignant tumors among the older population. Moreover, there is an association between aging and cancer. During the process of senescence, the human body suffers from a series of imbalances, which have been shown to further accelerate aging, trigger tumorigenesis, and facilitate cancer progression. Therefore, exploring the junctions of aging and cancer and searching for novel methods to restore the junctions is of great importance to intervene against aging-related cancers. In this review, we have identified the underlying pathogenetic mechanisms of aging-related cancers by comparing alterations in the human body caused by aging and the factors that trigger cancers. We found that the common mechanisms of aging and cancer include cellular senescence, alterations in proteostasis, microbiota disorders (decreased probiotics and increased pernicious bacteria), persistent chronic inflammation, extensive immunosenescence, inordinate energy metabolism, altered material metabolism, endocrine disorders, altered genetic expression, and epigenetic modification. Furthermore, we have proposed that aging and cancer have common means of intervention, including novel uses of common medicine (metformin, resveratrol, and rapamycin), dietary restriction, and artificial microbiota intervention or selectively replenishing scarce metabolites. In addition, we have summarized the research progress of each intervention and revealed their bidirectional effects on cancer progression to compare their reliability and feasibility. Therefore, the study findings provide vital information for advanced research studies on age-related cancers. However, there is a need for further optimization of the described methods and more suitable methods for complicated clinical practices. In conclusion, targeting aging may have potential therapeutic effects on aging-related cancers.
Collapse
Affiliation(s)
- Weiyi Shen
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, Zhejiang, China.
- Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang, China.
- Prevention and Treatment Research Center for Senescent Disease, Zhejiang University School of Medicine, Zhejiang, China
| | - Jiamin He
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, Zhejiang, China.
- Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang, China.
- Prevention and Treatment Research Center for Senescent Disease, Zhejiang University School of Medicine, Zhejiang, China
| | - Tongyao Hou
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, Zhejiang, China.
- Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang, China.
- Prevention and Treatment Research Center for Senescent Disease, Zhejiang University School of Medicine, Zhejiang, China
- Correspondence should be addressed to: Dr. Shujie Chen (), Dr. Jianmin Si () and Dr. Tongyao Hou (), Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang, China
| | - Jianmin Si
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, Zhejiang, China.
- Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang, China.
- Prevention and Treatment Research Center for Senescent Disease, Zhejiang University School of Medicine, Zhejiang, China
- Correspondence should be addressed to: Dr. Shujie Chen (), Dr. Jianmin Si () and Dr. Tongyao Hou (), Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang, China
| | - Shujie Chen
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, Zhejiang, China.
- Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang, China.
- Prevention and Treatment Research Center for Senescent Disease, Zhejiang University School of Medicine, Zhejiang, China
- Correspondence should be addressed to: Dr. Shujie Chen (), Dr. Jianmin Si () and Dr. Tongyao Hou (), Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang, China
| |
Collapse
|
10
|
Repositioning metformin and propranolol for colorectal and triple negative breast cancers treatment. Sci Rep 2021; 11:8091. [PMID: 33854147 PMCID: PMC8047046 DOI: 10.1038/s41598-021-87525-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 03/22/2021] [Indexed: 12/27/2022] Open
Abstract
Drug repositioning refers to new uses for existing drugs outside the scope of the original medical indications. This approach fastens the process of drug development allowing finding effective drugs with reduced side effects and lower costs. Colorectal cancer (CRC) is often diagnosed at advanced stages, when the probability of chemotherapy resistance is higher. Triple negative breast cancer (TNBC) is the most aggressive type of breast cancer, highly metastatic and difficult to treat. For both tumor types, available treatments are generally associated to severe side effects. In our work, we explored the effect of combining metformin and propranolol, two repositioned drugs, in both tumor types. We demonstrate that treatment affects viability, epithelial-mesenchymal transition and migratory potential of CRC cells as we described before for TNBC. We show that combined treatment affects different steps leading to metastasis in TNBC. Moreover, combined treatment is also effective preventing the development of 5-FU resistant CRC. Our data suggest that combination of metformin and propranolol could be useful as a putative adjuvant treatment for both TNBC and CRC and an alternative for chemo-resistant CRC, providing a low-cost alternative therapy without associated toxicity.
Collapse
|
11
|
Chen YC, Li H, Wang J. Mechanisms of metformin inhibiting cancer invasion and migration. Am J Transl Res 2020; 12:4885-4901. [PMID: 33042396 PMCID: PMC7540116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 08/01/2020] [Indexed: 06/11/2023]
Abstract
Cancer currently ranks among the leading causes of death globally. Cancer invasion and metastasis transform locally grown cancers to a systemic and life-threatening disease, which accounts for the most significant challenge in cancer treatment. Recent studies showed that Metformin, the most commonly used first-line oral drug for the treatment of type 2 diabetes (T2DM), could prevent and treat various cancers. Moreover, multiple evidence suggested that metformin inhibited cancer invasion and metastasis, which could improve the prognosis of cancer patients administrated with metformin. To better understand the anti-cancer role of metformin, the present review summarized the potential mechanisms of inhibiting cancer invasion and metastasis by metformin, including AMPK signaling pathway, EMT signaling pathway, epigenetic modification and so on. However, multiple problems remain unresolved and more clinical trials are needed to prove the inhibition of cancer invasion and metastasis by metformin.
Collapse
Affiliation(s)
- Yong Chang Chen
- Gynecologic Oncology Clinical Research Center, Hunan Cancer Hospital, Central South UniversityChangsha 410013, Hunan, China
- University of South ChinaHengyang 421001, Hunan, China
| | - He Li
- Gynecologic Oncology Clinical Research Center, Hunan Cancer Hospital, Central South UniversityChangsha 410013, Hunan, China
| | - Jing Wang
- Gynecologic Oncology Clinical Research Center, Hunan Cancer Hospital, Central South UniversityChangsha 410013, Hunan, China
| |
Collapse
|