1
|
Movahed F, Ourang Z, Neshat R, Hussein WS, Saihood AS, Alarajy MS, Zareii D. PROTACs in gynecological cancers: Current knowledge and future potential as a treatment strategy. Pathol Res Pract 2024; 263:155611. [PMID: 39357191 DOI: 10.1016/j.prp.2024.155611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/01/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024]
Abstract
Cancer continues to threaten human health regardless of novel therapeutic options. Over the last two decades, targeted therapy has emerged as a significant advancement in treating malignancies, surpassing standard chemoradiotherapy and surgical procedures. Gynecological malignancies, including cervical, endometrial, and ovarian carcinoma, have a bad prognosis in advanced or metastatic stages and are difficult to treat. The advancements in understanding the molecular pathways behind cancer development offer valuable insights into promising targeted medicines, and researchers have always searched for a superior and safe technique to target cancer-related oncoproteins because of the limited therapeutic benefit, drug resistance, and off-target effects of current targeted treatments. Recently, proteolysis-targeting chimeras (PROTACs) have been developed to selectively degrade proteins using the natural ubiquitin-proteasome system (UPS). These approaches have garnered significant attention in the field of cancer research. The rapid progress in PROTACs has also eased the targeting of various oncoproteins in gynecological cancer. Therefore, this review aims to elucidate the mechanism and research advancements of PROTACs and provide a comprehensive overview of their use in gynecological tumors.
Collapse
Affiliation(s)
- Fatemeh Movahed
- Department of Gynecology and Obstetrics, Yas Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Ourang
- M.D, Arak University of Medical Sciences, Arak, Iran
| | - Razieh Neshat
- Department of Biological Sciences, Faculty of Food Biotechnology, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Wael Sheet Hussein
- Dental Prosthetics Techniques Department, Health and Medical Techniques College, Alnoor University, Mosul, Iraq
| | - Anwar Salih Saihood
- Department of Microbiology, College of Medicine, University of Al-Qadisiyah, Al-Diwaniyah, Iraq
| | - Maythum Shallan Alarajy
- Anesthesia Techniques Department, College of Health and Medical Techniques, Al-Mustaqbal University, Babylon 51001, Iraq
| | - Donya Zareii
- Department of Biology, Islamic Azad University of Sanandaj, Kurdistan, Iran.
| |
Collapse
|
2
|
Pan W, Chai B, Li L, Lu Z, Ma Z. p53/MicroRNA-34 axis in cancer and beyond. Heliyon 2023; 9:e15155. [PMID: 37095919 PMCID: PMC10121403 DOI: 10.1016/j.heliyon.2023.e15155] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/25/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023] Open
Abstract
Cancer is serious endangers human life. After a long period of research and accumulation, people's understanding of cancer and the corresponding treatment methods are constantly developing. p53 is an important tumor suppressor gene. With the more in-depth understanding of the structure and function of p53, the more importance of this tumor suppressor gene is realized in the process of inhibiting tumor formation. MicroRNAs (miRNAs) are important regulatory molecules with a length of about 22nucleotides (nt), which belong to non-coding RNA and play an important role in the occurrence and development of tumors. miR-34 is currently considered to be a master regulator of tumor suppression. The positive feedback regulatory network formed by p53 and miR-34 can inhibit the growth and metastasis of tumor cells and inhibit tumor stem cells. This review focuses on the latest progress of p53/miR-34 regulatory network, and discusses its application in tumor diagnosis and treatment.
Collapse
|
3
|
Zhai F, Wang J, Yang W, Ye M, Jin X. The E3 Ligases in Cervical Cancer and Endometrial Cancer. Cancers (Basel) 2022; 14:5354. [PMID: 36358773 PMCID: PMC9658772 DOI: 10.3390/cancers14215354] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 07/28/2023] Open
Abstract
Endometrial (EC) and cervical (CC) cancers are the most prevalent malignancies of the female reproductive system. There is a global trend towards increasing incidence and mortality, with a decreasing age trend. E3 ligases label substrates with ubiquitin to regulate their activity and stability and are involved in various cellular functions. Studies have confirmed abnormal expression or mutations of E3 ligases in EC and CC, indicating their vital roles in the occurrence and progression of EC and CC. This paper provides an overview of the E3 ligases implicated in EC and CC and discusses their underlying mechanism. In addition, this review provides research advances in the target of ubiquitination processes in EC and CC.
Collapse
Affiliation(s)
- Fengguang Zhai
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo 315211, China
| | - Jie Wang
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo 315211, China
| | - Weili Yang
- Department of Gynecology, The Affiliated People’s Hospital of Ningbo University, Ningbo 315040, China
| | - Meng Ye
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo 315211, China
| | - Xiaofeng Jin
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo 315211, China
| |
Collapse
|
4
|
Semenov O, Daks A, Fedorova O, Shuvalov O, Barlev NA. Opposing Roles of Wild-type and Mutant p53 in the Process of Epithelial to Mesenchymal Transition. Front Mol Biosci 2022; 9:928399. [PMID: 35813818 PMCID: PMC9261265 DOI: 10.3389/fmolb.2022.928399] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/01/2022] [Indexed: 12/05/2022] Open
Abstract
The central role of an aberrantly activated EMT program in defining the critical features of aggressive carcinomas is well documented and includes cell plasticity, metastatic dissemination, drug resistance, and cancer stem cell-like phenotypes. The p53 tumor suppressor is critical for leashing off all the features mentioned above. On the molecular level, the suppression of these effects is exerted by p53 via regulation of its target genes, whose products are involved in cell cycle, apoptosis, autophagy, DNA repair, and interactions with immune cells. Importantly, a set of specific mutations in the TP53 gene (named Gain-of-Function mutations) converts this tumor suppressor into an oncogene. In this review, we attempted to contrast different regulatory roles of wild-type and mutant p53 in the multi-faceted process of EMT.
Collapse
Affiliation(s)
- Oleg Semenov
- Regulation of Gene Expression Laboratory, Institute of Cytology RAS, Saint-Petersburg, Russia
| | - Alexandra Daks
- Regulation of Gene Expression Laboratory, Institute of Cytology RAS, Saint-Petersburg, Russia
| | - Olga Fedorova
- Regulation of Gene Expression Laboratory, Institute of Cytology RAS, Saint-Petersburg, Russia
| | - Oleg Shuvalov
- Regulation of Gene Expression Laboratory, Institute of Cytology RAS, Saint-Petersburg, Russia
| | - Nickolai A. Barlev
- Regulation of Gene Expression Laboratory, Institute of Cytology RAS, Saint-Petersburg, Russia
- Laboratory of Intracellular Signalling, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- The Group of Targeted Delivery Mechanisms of Nanosystems, Institute of Biomedical Chemistry, Moscow, Russia
- *Correspondence: Nickolai A. Barlev,
| |
Collapse
|
5
|
Liu YL, Yang WH, Chen BY, Nie J, Su ZR, Zheng JN, Gong ST, Chen JN, Jiang D, Li Y. miR‑29b suppresses proliferation and induces apoptosis of hepatocellular carcinoma ascites H22 cells via regulating TGF‑β1 and p53 signaling pathway. Int J Mol Med 2021; 48:157. [PMID: 34184070 PMCID: PMC8249050 DOI: 10.3892/ijmm.2021.4990] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 05/11/2021] [Indexed: 12/24/2022] Open
Abstract
MicroRNA (miR)‑29b is a key tumor regulator. It can inhibit tumor cell proliferation, induce apoptosis, suppress tumor invasion and migration, thus delaying tumor progression. Our previous studies revealed an increased level of miR‑29b in hepatoma 22 (H22) cells in ascites tumor‑bearing mice. The present study investigated the effect of miR‑29b on proliferation and apoptosis of hepatocellular carcinoma ascites H22 cells and its association with the transforming growth factor‑β1 (TGF‑β1) signaling pathway and p53‑mediated apoptotic pathway. Briefly, H22 cells were transfected with miR‑29b‑3p (hereinafter referred to as miR‑29b) mimic or miR‑29b inhibitor. MTS cell proliferation assay and flow cytometry were used to analyze cell viability and apoptosis. The expression change of the TGF‑β1 signaling pathway and p53‑mediated apoptotic pathway were detected by reverse transcription‑quantitative PCR, western blotting and immunofluorescence. Furthermore, cells were treated with exogenous TGF‑β1 and TGF‑β1 small interfering RNA to evaluate the crosstalk between TGF‑β1 and p53 under miR‑29b regulation. The overexpression of miR‑29b decreased cell viability, increased cell apoptosis, activated the TGF‑β1 signaling pathway and p53‑mediated apoptotic pathway. Conversely, these effects were reversed by the miR‑29b inhibitor. Moreover, the effect of miR‑29b mimic was further increased after treating cells with exogenous TGF‑β1. The activation of the TGF‑β1 signaling pathway and p53‑mediated apoptotic pathway induced by miR‑29b overexpression were reversed by TGF‑β1 inhibition. In summary, these data indicated that miR‑29b has an important role in proliferation and apoptosis of H22 cells by regulating the TGF‑β1 signaling pathway, the p53‑dependent apoptotic pathway, and the crosstalk between TGF‑β1 and p53.
Collapse
Affiliation(s)
- Yan-Lu Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Wen-Hao Yang
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 510006, P.R. China
- School of Medicine and Health, Shunde Polytechnic, Foshan, Guangdong 528300, P.R. China
| | - Bao-Yi Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Juan Nie
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Zi-Ren Su
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Jing-Na Zheng
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Shi-Ting Gong
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Jian-Nan Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Dongbo Jiang
- Department of Pharmacy, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, P.R. China
| | - Yucui Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| |
Collapse
|
6
|
Kuchur OA, Kuzmina DO, Dukhinova MS, Shtil AA. The p53 Protein Family in the Response of Tumor Cells to Ionizing Radiation: Problem Development. Acta Naturae 2021; 13:65-76. [PMID: 34707898 PMCID: PMC8526179 DOI: 10.32607/actanaturae.11247] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 12/24/2020] [Indexed: 12/05/2022] Open
Abstract
Survival mechanisms are activated in tumor cells in response to therapeutic ionizing radiation. This reduces a treatment's effectiveness. The p53, p63, and p73 proteins belonging to the family of proteins that regulate the numerous pathways of intracellular signal transduction play a key role in the development of radioresistance. This review analyzes the p53-dependent and p53-independent mechanisms involved in overcoming the resistance of tumor cells to radiation exposure.
Collapse
Affiliation(s)
- O. A. Kuchur
- ITMO University, Saint-Petersburg, 191002 Russia
| | | | | | - A. A. Shtil
- ITMO University, Saint-Petersburg, 191002 Russia
- Blokhin National Medical Research Center of Oncology, Moscow, 115478 Russia
| |
Collapse
|