1
|
Irena A, Klaudia G, Maria S, Tomasz K, Patrycja R, Dorota R, Agnieszka P. Role of lactate dehydrogenase A in the regulation of podocyte metabolism and glucose uptake under hyperglycemic conditions. Sci Rep 2025; 15:14162. [PMID: 40269097 PMCID: PMC12019540 DOI: 10.1038/s41598-025-98797-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 04/15/2025] [Indexed: 04/25/2025] Open
Abstract
Lactate is a cellular product of glycolytic metabolism, serving as both an additional oxidative energy substrate and a signaling molecule in metabolic regulation. Plasma lactate levels are elevated in diabetes, and chronic extracellular lactic acidosis is recognized as a negative prognostic marker for the disease. The development of diabetic kidney disease is closely associated with podocyte injury, which forms a crucial layer of the glomerular filtration barrier. Given that high extracellular glucose concentrations also induce lactate production and excretion in podocytes, we hypothesize that an appropriate LDH expression pattern is crucial for maintaining proper podocyte metabolism and function. Our research shows that hyperglycemia significantly decreases lactate dehydrogenase activity in podocytes. Specifically, reduced LDHA expression under hyperglycemic conditions contributes to metabolic disturbances in these cells. Lower LDH activity results in decreased glycolytic activity, altered expression of monocarboxylate transporters, reduced insulin-dependent glucose uptake, and a decrease in the number of podocyte foot processes. These findings underscore the essential role of LDHA in the metabolic adaptation of podocytes to elevated glucose levels typical of diabetes. By elucidating the molecular mechanisms underlying podocyte injury, our study provides new insights into potential therapeutic targets for preventing or mitigating diabetic kidney disease.
Collapse
Affiliation(s)
- Audzeyenka Irena
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Gdańsk, Poland
| | - Grochowalska Klaudia
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Gdańsk, Poland
| | - Szrejder Maria
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Gdańsk, Poland
| | - Kulesza Tomasz
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Gdańsk, Poland
- Laboratory of Molecular Enzymology and Oncology, Intercollegiate Faculty of Biotechnology, Medical University of Gdansk, Gdansk, Poland
| | - Rachubik Patrycja
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Gdańsk, Poland
| | - Rogacka Dorota
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Gdańsk, Poland
| | - Piwkowska Agnieszka
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Gdańsk, Poland.
| |
Collapse
|
2
|
Ma S, Qiu Y, Zhang C. Cytoskeleton Rearrangement in Podocytopathies: An Update. Int J Mol Sci 2024; 25:647. [PMID: 38203817 PMCID: PMC10779434 DOI: 10.3390/ijms25010647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/14/2023] [Accepted: 01/01/2024] [Indexed: 01/12/2024] Open
Abstract
Podocyte injury can disrupt the glomerular filtration barrier (GFB), leading to podocytopathies that emphasize podocytes as the glomerulus's key organizer. The coordinated cytoskeleton is essential for supporting the elegant structure and complete functions of podocytes. Therefore, cytoskeleton rearrangement is closely related to the pathogenesis of podocytopathies. In podocytopathies, the rearrangement of the cytoskeleton refers to significant alterations in a string of slit diaphragm (SD) and focal adhesion proteins such as the signaling node nephrin, calcium influx via transient receptor potential channel 6 (TRPC6), and regulation of the Rho family, eventually leading to the disorganization of the original cytoskeletal architecture. Thus, it is imperative to focus on these proteins and signaling pathways to probe the cytoskeleton rearrangement in podocytopathies. In this review, we describe podocytopathies and the podocyte cytoskeleton, then discuss the molecular mechanisms involved in cytoskeleton rearrangement in podocytopathies and summarize the effects of currently existing drugs on regulating the podocyte cytoskeleton.
Collapse
Affiliation(s)
| | | | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (S.M.); (Y.Q.)
| |
Collapse
|
3
|
Suarez R, Villarreal C, Nahuelpán Y, Jara C, Oyarzún C, Alarcón S, Díaz-Encarnación MM, Guillén-Gómez E, Quezada C, San Martín R. Defective insulin-stimulated equilibrative nucleoside transporter-2 activity and altered subcellular transporter distribution drive the loss of adenosine homeostasis in diabetic kidney disease progression. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166890. [PMID: 37734469 DOI: 10.1016/j.bbadis.2023.166890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 08/23/2023] [Accepted: 09/16/2023] [Indexed: 09/23/2023]
Abstract
AIM Progression of diabetic nephropathy (DN) is linked to the dysregulated increase of adenosine and altered signaling properties. A major contribution to the maintenance of physiological extracellular adenosine levels relies on cellular uptake activity through plasma membrane nucleoside transporters. Because kidney cells are responsive to insulin, this study aims to determine how DN affects insulin regulation of the equilibrative nucleoside transporter-2 (ENT2). METHODS Human Podocytes and rat glomeruli were used to study ENT2 regulation. The effects of diabetes and insulin on ENT2 mediated transport activity were determined measuring the fraction of total adenosine uptake in sodium-free medium which is inhibitable by hypoxanthine. Alterations in ENT2 subcellular distribution were assessed in the kidney of people affected with DN and diabetic rats. The consequences of impaired ENT2 activity on the kidney were evaluated using dipyridamole in an animal model. RESULTS Insulin upregulates ENT2 uptake activity by increasing the Vmax, thus counteracting decreased adenosine uptake due to high d-glucose and achieving extracellular adenosine homeostasis. Insulin promoted ENT2 translocation to the plasma membrane dependent on PI3-kinase/Akt signaling and actin cytoskeleton integrity. However, in diabetic rats, the insulin-mediated induction of ENT2 activity was lost. Additionally, reduced Akt activation in response to insulin correlated with decreased ENT2 distribution at the plasma membrane. Kidney tissues from diabetic rats and human DN biopsies showed ENT2 redistribution to an intracellular pattern, evidencing dysfunctional adenosine uptake. Through ENT inhibition, we evidenced increased proteinuria and induced alpha-smooth muscle actin as a result of profibrotic activation of cells in the kidney. CONCLUSION Deficient insulin regulation of ENT2 activity contributes to chronically high adenosine levels and glomerular alterations that underline diabetic kidney disease progression.
Collapse
Affiliation(s)
- Raibel Suarez
- Institute of Biochemistry and Microbiology, Science Faculty, Universidad Austral de Chile, Valdivia, Chile
| | - Carolina Villarreal
- Institute of Biochemistry and Microbiology, Science Faculty, Universidad Austral de Chile, Valdivia, Chile
| | - Yessica Nahuelpán
- Institute of Biochemistry and Microbiology, Science Faculty, Universidad Austral de Chile, Valdivia, Chile
| | - Claudia Jara
- Institute of Biochemistry and Microbiology, Science Faculty, Universidad Austral de Chile, Valdivia, Chile
| | - Carlos Oyarzún
- Institute of Biochemistry and Microbiology, Science Faculty, Universidad Austral de Chile, Valdivia, Chile
| | - Sebastián Alarcón
- Institute of Biochemistry and Microbiology, Science Faculty, Universidad Austral de Chile, Valdivia, Chile
| | - Montserrat M Díaz-Encarnación
- Nephrology Service Fundació Puigvert, Biomedical Research Institute Sant Pau (IIB Sant Pau), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Elena Guillén-Gómez
- Nephrology Service Fundació Puigvert, Biomedical Research Institute Sant Pau (IIB Sant Pau), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Claudia Quezada
- Institute of Biochemistry and Microbiology, Science Faculty, Universidad Austral de Chile, Valdivia, Chile; Millennium Institute on Immunology and Immunotherapy, Valdivia, Chile
| | - Rody San Martín
- Institute of Biochemistry and Microbiology, Science Faculty, Universidad Austral de Chile, Valdivia, Chile.
| |
Collapse
|
4
|
Rachubik P, Rogacka D, Audzeyenka I, Typiak M, Wysocka M, Szrejder M, Lesner A, Piwkowska A. Role of lysosomes in insulin signaling and glucose uptake in cultured rat podocytes. Biochem Biophys Res Commun 2023; 679:145-159. [PMID: 37696068 DOI: 10.1016/j.bbrc.2023.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/30/2023] [Accepted: 09/05/2023] [Indexed: 09/13/2023]
Abstract
Podocytes are sensitive to insulin, which governs the functional and structural integrity of podocytes that are essential for proper function of the glomerular filtration barrier. Lysosomes are acidic organelles that are implicated in regulation of the insulin signaling pathway. Cathepsin D (CTPD) and lysosome-associated membrane protein 1 (LAMP1) are major lysosomal proteins that reflect the functional state of lysosomes. However, the effect of insulin on lysosome activity and role of lysosomes in the regulation of insulin-dependent glucose uptake in podocytes are unknown. Our studies showed that the short-term incubation of podocytes with insulin decreased LAMP1 and CTPD mRNA levels. Insulin and bafilomycin A1 reduced both the amounts of LAMP1 and CTPD proteins and activity of CTPD, which were associated with a decrease in the fluorescence intensity of lysosomes that were labeled with LysoTracker. Bafilomycin A1 inhibited insulin-dependent endocytosis of the insulin receptor and increased the amounts of the insulin receptor and glucose transporter 4 on the cell surface of podocytes. Bafilomycin A1 also inhibited insulin-dependent glucose uptake despite an increase in the amount of glucose transporter 4 in the plasma membrane of podocytes. These results suggest that lysosomes are signaling hubs that may be involved in the coupling of insulin signaling with the regulation of glucose uptake in podocytes. The dysregulation of this mechanism can lead to the dysfunction of podocytes and development of insulin resistance.
Collapse
Affiliation(s)
- Patrycja Rachubik
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Wita Stwosza 63 St, Gdansk, 80-308, Poland.
| | - Dorota Rogacka
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Wita Stwosza 63 St, Gdansk, 80-308, Poland; Faculty of Chemistry, University of Gdansk, Wita Stwosza 63 St, Gdansk, 80-308, Poland.
| | - Irena Audzeyenka
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Wita Stwosza 63 St, Gdansk, 80-308, Poland; Faculty of Chemistry, University of Gdansk, Wita Stwosza 63 St, Gdansk, 80-308, Poland.
| | - Marlena Typiak
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59 St, Gdansk, 80-308, Poland.
| | - Magdalena Wysocka
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63 St, Gdansk, 80-308, Poland.
| | - Maria Szrejder
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Wita Stwosza 63 St, Gdansk, 80-308, Poland.
| | - Adam Lesner
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63 St, Gdansk, 80-308, Poland.
| | - Agnieszka Piwkowska
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Wita Stwosza 63 St, Gdansk, 80-308, Poland; Faculty of Chemistry, University of Gdansk, Wita Stwosza 63 St, Gdansk, 80-308, Poland.
| |
Collapse
|
5
|
Liang J, Liu Q, Xia L, Lin J, Oyang L, Tan S, Peng Q, Jiang X, Xu X, Wu N, Tang Y, Su M, Luo X, Yang Y, Liao Q, Zhou Y. Rac1 promotes the reprogramming of glucose metabolism and the growth of colon cancer cells through upregulating SOX9. Cancer Sci 2023; 114:822-836. [PMID: 36369902 PMCID: PMC9986058 DOI: 10.1111/cas.15652] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/28/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022] Open
Abstract
Metabolic reprogramming is the survival rule of tumor cells, and tumor cells can meet their high metabolic requirements by changing the energy metabolism mode. Metabolic reprogramming of tumor cells is an important biochemical basis of tumor malignant phenotypes. Ras-related C3 botulinum toxin substrate 1 (Rac1) is abnormally expressed in a variety of tumors and plays an important role in the proliferation, invasion, and migration of tumor cells. However, the role of Rac1 in tumor metabolic reprogramming is still unclear. Herein, we revealed that Rac1 was highly expressed in colon cancer tissues and cell lines. Rac1 promotes the proliferation, migration, and invasion of colon cancer cells by upregulating SOX9, which as a transcription factor can directly bind to the promoters of HK2 and G6PD genes and regulate their transcriptional activity. Rac1 upregulates the expression of SOX9 through the PI3K/AKT signaling pathway. Moreover, Rac1 can promote glycolysis and the activation of the pentose phosphate pathway in colon cancer cells by mediating the axis of SOX9/HK2/G6PD. These findings reveal novel regulatory axes involving Rac1/SOX9/HK2/G6PD in the development and progression of colon cancer, providing novel promising therapeutic targets.
Collapse
Affiliation(s)
- Jiaxin Liang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Qiang Liu
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Longzheng Xia
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Jinguan Lin
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Linda Oyang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Shiming Tan
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Qiu Peng
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Xianjie Jiang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Xuemeng Xu
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Nayiyuan Wu
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Yanyan Tang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Min Su
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Xia Luo
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Yiqing Yang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Qianjin Liao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Hunan Key Laboratory of Translational Radiation Oncology, Changsha, China
| | - Yujuan Zhou
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Hunan Key Laboratory of Translational Radiation Oncology, Changsha, China
| |
Collapse
|
6
|
Rachubik P, Rogacka D, Audzeyenka I, Szrejder M, Topolewska A, Rychłowski M, Piwkowska A. The Role of PKGIα and AMPK Signaling Interplay in the Regulation of Albumin Permeability in Cultured Rat Podocytes. Int J Mol Sci 2023; 24:ijms24043952. [PMID: 36835364 PMCID: PMC9964913 DOI: 10.3390/ijms24043952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
The permeability of the glomerular filtration barrier (GFB) is mainly regulated by podocytes and their foot processes. Protein kinase G type Iα (PKGIα) and adenosine monophosphate-dependent kinase (AMPK) affect the contractile apparatus of podocytes and influence the permeability of the GFB. Therefore, we studied the interplay between PKGIα and AMPK in cultured rat podocytes. The glomerular permeability to albumin and transmembrane FITC-albumin flux decreased in the presence of AMPK activators and increased in the presence of PKG activators. The knockdown of PKGIα or AMPK with small-interfering RNA (siRNA) revealed a mutual interaction between PKGIα and AMPK and influenced podocyte permeability to albumin. Moreover, PKGIα siRNA activated the AMPK-dependent signaling pathway. AMPKα2 siRNA increased basal levels of phosphorylated myosin phosphate target subunit 1 and decreased the phosphorylation of myosin light chain 2. Podocytes that were treated with AMPK or PKG activators were characterized by the different organization of actin filaments within the cell. Our findings suggest that mutual interactions between PKGIα and AMPKα2 regulate the contractile apparatus and permeability of the podocyte monolayer to albumin. Understanding this newly identified molecular mechanism in podocytes provides further insights into the pathogenesis of glomerular disease and novel therapeutic targets for glomerulopathies.
Collapse
Affiliation(s)
- Patrycja Rachubik
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Wita Stwosza 63 St., 80-308 Gdansk, Poland
- Correspondence: ; Tel.: +48-585235486
| | - Dorota Rogacka
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Wita Stwosza 63 St., 80-308 Gdansk, Poland
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63 St., 80-308 Gdansk, Poland
| | - Irena Audzeyenka
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Wita Stwosza 63 St., 80-308 Gdansk, Poland
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63 St., 80-308 Gdansk, Poland
| | - Maria Szrejder
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Wita Stwosza 63 St., 80-308 Gdansk, Poland
| | - Anna Topolewska
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Wita Stwosza 63 St., 80-308 Gdansk, Poland
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63 St., 80-308 Gdansk, Poland
| | - Michał Rychłowski
- Intercollegiate Faculty of Biotechnology, University of Gdansk, Medical University of Gdansk, Abrahama 58 St., 80-307 Gdansk, Poland
| | - Agnieszka Piwkowska
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Wita Stwosza 63 St., 80-308 Gdansk, Poland
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63 St., 80-308 Gdansk, Poland
| |
Collapse
|
7
|
Zha D, Wu X. Nutrient sensing, signaling transduction, and autophagy in podocyte injury: implications for kidney disease. J Nephrol 2023; 36:17-29. [PMID: 35704261 DOI: 10.1007/s40620-022-01365-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 03/05/2022] [Indexed: 02/07/2023]
Abstract
Podocytes are terminally differentiated epithelial cells of the renal glomerular tuft and these highly specialized cells are essential for the integrity of the slit diaphragm. The biological function of podocytes is primarily based on a complex ramified structure that requires sufficient nutrients and a large supply of energy in support of their unique structure and function in the glomeruli. Of note, the dysregulation of nutrient signaling and energy metabolic pathways in podocytes has been associated with a range of kidney diseases i.e., diabetic nephropathy. Therefore, nutrient-related and energy metabolic signaling pathways are critical to maintaining podocyte homeostasis and the pathogenesis of podocyte injury. Recently, a growing body of evidence has indicated that nutrient starvation induces autophagy, which suggests crosstalk between nutritional signaling with the modulation of autophagy for podocytes to adapt to nutrient deprivation. In this review, the current knowledge and advancement in the understanding of nutrient sensing, signaling, and autophagy in the podocyte biology, injury, and pathogenesis of kidney diseases is summarized. Based on the existing findings, the implications and perspective to target these signaling pathways and autophagy in podocytes during the development of novel preventive and therapeutic strategies in patients with podocyte injury-associated kidney diseases are discussed.
Collapse
Affiliation(s)
- Dongqing Zha
- Division of Nephrology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430070, Hubei, China
| | - Xiaoyan Wu
- Division of Nephrology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430070, Hubei, China.
| |
Collapse
|
8
|
Rogacka D, Rachubik P, Audzeyenka I, Szrejder M, Kulesza T, Myślińska D, Angielski S, Piwkowska A. Enhancement of cGMP-dependent pathway activity ameliorates hyperglycemia-induced decrease in SIRT1-AMPK activity in podocytes: Impact on glucose uptake and podocyte function. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119362. [PMID: 36152759 DOI: 10.1016/j.bbamcr.2022.119362] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/01/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
Hyperglycemia significantly decreases 3',5'-cyclic guanosine monophosphate (cGMP)-dependent pathway activity in the kidney. A well-characterized downstream signaling effector of cGMP is cGMP-dependent protein kinase G (PKG), exerting a wide range of downstream effects, including vasodilation and vascular smooth muscle cells relaxation. In podocytes that are exposed to high glucose concentrations, crosstalk between the protein deacetylase sirtuin 1 (SIRT1) and adenosine monophosphate-dependent protein kinase (AMPK) decreased, attenuating insulin responsiveness and impairing podocyte function. The present study examined the effect of enhancing cGMP-dependent pathway activity on SIRT1-AMPK crosstalk in podocytes under hyperglycemic conditions. We found that enhancing cGMP-dependent pathway activity using a cGMP analog was associated with increases in SIRT1 protein levels and activity, with a concomitant increase in the degree of AMPK phosphorylation. The beneficial effects of enhancing cGMP-dependent pathway activity on SIRT1-AMPK crosstalk also included improvements in podocyte function. Based on our findings, we postulate an important role for SIRT1-AMPK crosstalk in the regulation of albumin permeability in hyperglycemia that is strongly associated with activity of the cGMP-dependent pathway.
Collapse
Affiliation(s)
- Dorota Rogacka
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Gdansk, Poland; Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdansk, Gdansk, Poland.
| | - Patrycja Rachubik
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Gdansk, Poland
| | - Irena Audzeyenka
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Gdansk, Poland; Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | - Maria Szrejder
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Gdansk, Poland
| | - Tomasz Kulesza
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Gdansk, Poland
| | - Dorota Myślińska
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Stefan Angielski
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Gdansk, Poland
| | - Agnieszka Piwkowska
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Gdansk, Poland; Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| |
Collapse
|
9
|
Rachubik P, Szrejder M, Rogacka D, Typiak M, Audzeyenka I, Kasztan M, Pollock DM, Angielski S, Piwkowska A. Insulin controls cytoskeleton reorganization and filtration barrier permeability via the PKGIα-Rac1-RhoA crosstalk in cultured rat podocytes. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119301. [PMID: 35642843 DOI: 10.1016/j.bbamcr.2022.119301] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 05/16/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
Podocyte foot processes are an important cellular layer of the glomerular barrier that regulates glomerular permeability. Insulin via the protein kinase G type Iα (PKGIα) signaling pathway regulates the balance between contractility and relaxation (permeability) of the podocyte barrier by regulation of the actin cytoskeleton. This mechanism was shown to be disrupted in diabetes. Rho family guanosine-5'-triphosphates (GTPases) are dynamic modulators of the actin cytoskeleton and expressed in cells that form the glomerular filtration barrier. Thus, changes in Rho GTPase activity may affect glomerular permeability to albumin. The present study showed that Rho family GTPases control podocyte migration and permeability. Moreover these processes are regulated by insulin in PKGIα-dependent manner. Modulation of the PKGI-dependent activity of Rac1 and RhoA GTPases with inhibitors or small-interfering RNA impair glomerular permeability to albumin. We also demonstrated this mechanism in obese, insulin-resistant Zucker rats. We propose that PKGIα-Rac1-RhoA crosstalk is necessary in proper organization of the podocyte cytoskeleton and consequently the stabilization of glomerular architecture and regulation of filtration barrier permeability.
Collapse
Affiliation(s)
- Patrycja Rachubik
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Laboratory of Molecular and Cellular Nephrology, Gdańsk, Poland
| | - Maria Szrejder
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Laboratory of Molecular and Cellular Nephrology, Gdańsk, Poland
| | - Dorota Rogacka
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Laboratory of Molecular and Cellular Nephrology, Gdańsk, Poland; University of Gdańsk, Faculty of Chemistry, Department of Molecular Biotechnology, Gdańsk, Poland
| | - Marlena Typiak
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Laboratory of Molecular and Cellular Nephrology, Gdańsk, Poland; University of Gdańsk, Faculty of Biology, Department of General and Medical Biochemistry, Gdańsk, Poland
| | - Irena Audzeyenka
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Laboratory of Molecular and Cellular Nephrology, Gdańsk, Poland; University of Gdańsk, Faculty of Chemistry, Department of Molecular Biotechnology, Gdańsk, Poland
| | - Małgorzata Kasztan
- Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - David M Pollock
- Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Stefan Angielski
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Laboratory of Molecular and Cellular Nephrology, Gdańsk, Poland
| | - Agnieszka Piwkowska
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Laboratory of Molecular and Cellular Nephrology, Gdańsk, Poland; University of Gdańsk, Faculty of Chemistry, Department of Molecular Biotechnology, Gdańsk, Poland.
| |
Collapse
|
10
|
Leitner BP, Siebel S, Akingbesote ND, Zhang X, Perry RJ. Insulin and cancer: a tangled web. Biochem J 2022; 479:583-607. [PMID: 35244142 PMCID: PMC9022985 DOI: 10.1042/bcj20210134] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 02/13/2022] [Accepted: 02/15/2022] [Indexed: 12/13/2022]
Abstract
For a century, since the pioneering work of Otto Warburg, the interwoven relationship between metabolism and cancer has been appreciated. More recently, with obesity rates rising in the U.S. and worldwide, epidemiologic evidence has supported a link between obesity and cancer. A substantial body of work seeks to mechanistically unpack the association between obesity, altered metabolism, and cancer. Without question, these relationships are multifactorial and cannot be distilled to a single obesity- and metabolism-altering hormone, substrate, or factor. However, it is important to understand the hormone-specific associations between metabolism and cancer. Here, we review the links between obesity, metabolic dysregulation, insulin, and cancer, with an emphasis on current investigational metabolic adjuncts to standard-of-care cancer treatment.
Collapse
Affiliation(s)
- Brooks P. Leitner
- Departments of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, U.S.A
- Departments of Internal Medicine, Yale School of Medicine, New Haven, CT, U.S.A
| | - Stephan Siebel
- Departments of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, U.S.A
- Departments of Internal Medicine, Yale School of Medicine, New Haven, CT, U.S.A
- Departments of Pediatrics, Yale School of Medicine, New Haven, CT, U.S.A
| | - Ngozi D. Akingbesote
- Departments of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, U.S.A
- Departments of Internal Medicine, Yale School of Medicine, New Haven, CT, U.S.A
| | - Xinyi Zhang
- Departments of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, U.S.A
- Departments of Internal Medicine, Yale School of Medicine, New Haven, CT, U.S.A
| | - Rachel J. Perry
- Departments of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, U.S.A
- Departments of Internal Medicine, Yale School of Medicine, New Haven, CT, U.S.A
| |
Collapse
|
11
|
Kulesza T, Typiak M, Rachubik P, Audzeyenka I, Rogacka D, Angielski S, Saleem MA, Piwkowska A. Hyperglycemic environment disrupts phosphate transporter function and promotes calcification processes in podocytes and isolated glomeruli. J Cell Physiol 2022; 237:2478-2491. [PMID: 35150131 DOI: 10.1002/jcp.30700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/20/2022] [Accepted: 02/02/2022] [Indexed: 11/10/2022]
Abstract
Soft tissue calcification is a pathological phenomenon that often occurs in end-stage chronic kidney disease (CKD), which is caused by diabetic nephropathy, among other factors. Hyperphosphatemia present during course of CKD contributes to impairments in kidney function, particularly damages in the glomerular filtration barrier (GFB). Essential elements of the GFB include glomerular epithelial cells, called podocytes. In the present study, we found that human immortalized podocytes express messenger RNA and protein of phosphate transporters, including NaPi 2c (SLC34A3), Pit 1 (SLC20A1), and Pit 2 (SLC20A2), which are sodium-dependent and mediate intracellular phosphate (Pi) transport, and XPR1, which is responsible for extracellular Pi transport. We found that cells that were grown in a medium with a high glucose (HG) concentration (30 mM) expressed less Pit 1 and Pit 2 protein than podocytes that were cultured in a standard glucose medium (11 mM). We found that exposure of the analyzed transporters in the cell membrane of the podocyte is altered by HG conditions. We also found that the activity of tissue nonspecific alkaline phosphatase increased in HG, causing a rise in Pi generation. Additionally, HG led to a reduction of the amount of ectonucleotide pyrophosphatase/phosphodiesterase 1 in the cell membrane of podocytes. The extracellular concentration of pyrophosphate also decreased under HG conditions. These data suggest that a hyperglycemic environment enhances the production of Pi in podocytes and its retention in the extracellular space, which may induce glomerular calcification.
Collapse
Affiliation(s)
- Tomasz Kulesza
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Gdansk, Poland
| | - Marlena Typiak
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Gdansk, Poland.,Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Patrycja Rachubik
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Gdansk, Poland
| | - Irena Audzeyenka
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Gdansk, Poland.,Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | - Dorota Rogacka
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Gdansk, Poland.,Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | - Stefan Angielski
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Gdansk, Poland
| | | | - Agnieszka Piwkowska
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Gdansk, Poland.,Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| |
Collapse
|