1
|
Swann JW, Zhang R, Verovskaya EV, Calero-Nieto FJ, Wang X, Proven MA, Shyu PT, Guo XE, Göttgens B, Passegué E. Inflammation perturbs hematopoiesis by remodeling specific compartments of the bone marrow niche. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.12.612751. [PMID: 39314376 PMCID: PMC11419052 DOI: 10.1101/2024.09.12.612751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Hematopoietic stem and progenitor cells (HSPC) are regulated by interactions with stromal cells in the bone marrow (BM) cavity, which can be segregated into two spatially defined central marrow (CM) and endosteal (Endo) compartments. However, the importance of this spatial compartmentalization for BM responses to inflammation and neoplasia remains largely unknown. Here, we extensively validate a combination of scRNA-seq profiling and matching flow cytometry isolation that reproducibly identifies 7 key CM and Endo populations across mouse strains and accurately surveys both niche locations. We demonstrate that different perturbations exert specific effects on different compartments, with type I interferon responses causing CM mesenchymal stromal cells to adopt an inflammatory phenotype associated with overproduction of chemokines modulating local monocyte dynamics in the surrounding microenvironment. Our results provide a comprehensive method for molecular and functional stromal characterization and highlight the importance of altered stomal cell activity in regulating hematopoietic responses to inflammatory challenges.
Collapse
|
2
|
Liu J, Han D, Xuan J, Xie J, Wang W, Zhou Q, Chen K. COP9 signalosome complex is a prognostic biomarker and corresponds with immune infiltration in hepatocellular carcinoma. Aging (Albany NY) 2024; 16:5264-5287. [PMID: 38466642 PMCID: PMC11006475 DOI: 10.18632/aging.205646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 01/15/2024] [Indexed: 03/13/2024]
Abstract
Hepatocellular carcinoma (HCC) is among the most common deadly tumors but still lacks specific biomarkers for diagnosis, prognosis, and treatment guidance. The COP9 signalosome (COPS) is an essential regulator of the ubiquitin conjugation pathway upregulated in various cancers. We evaluated the contributions of COPS subunits to HCC tumorigenesis and their utility for prognosis. We comprehensively evaluated the tumor expression pattern and tumorigenic functions of COPS subunits using The Cancer Genome Atlas (TCGA), The Human Protein Atlas and immunohistochemistry. Kaplan-Meier, Cox regression, ROC curve, and nomogram analyses were used to assess the predictive values of COPS subunits for clinical outcome. Expression levels of COPS subunits were significantly upregulated in HCC tissues, which predicted shorter overall survival (OS). Further, Cox regression analysis identified COPS5, COPS7B, and COPS9 as independent prognostic biomarkers for OS. High mutation rates were also found in COPS subunits. Functional network analysis indicated that COPS and neighboring genes regulate 'protein neddylation', 'protein deneddylation', and 'protein ubiquitination'. The COPS PPI included strong interactions with p53, CUL1/2/3/4, and JUN. Moreover, the correlations between COPS subunit expression levels and tumor immune cell infiltration rates were examined using TIMER, TISIDB, ssGSEA, and ESTIMATE packages. COPS subunits expression levels were positively correlated with specific tumor immune cell infiltration rates, immunoregulator expression levels, and microsatellite instability in HCC. Finally, knockout of COPS6 and COPS9 in HCC cells reduced while overexpression enhanced proliferation rate and metastasis capacity. Our study revealed that COPS potential biomarker for unfavorable HCC prognosis and indicators of immune infiltration, tumorigenicity, and metastasis.
Collapse
Affiliation(s)
- Jiahui Liu
- Department of Clinical Laboratory, Zhongshan City People’s Hospital, The Affiliated Zhongshan Hospital of Sun Yat-Sen University, Zhongshan 528400, Guangdong, China
- Laboratory of Basic Medical Science, General Hospital of Southern Theater Command of PLA, Guangzhou 510000, Guangdong, China
| | - Dexing Han
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou 510000, Guangdong, China
| | - Junfeng Xuan
- Laboratory of Basic Medical Science, General Hospital of Southern Theater Command of PLA, Guangzhou 510000, Guangdong, China
| | - Jinye Xie
- Department of Clinical Laboratory, Zhongshan City People’s Hospital, The Affiliated Zhongshan Hospital of Sun Yat-Sen University, Zhongshan 528400, Guangdong, China
| | - Weijia Wang
- Department of Clinical Laboratory, Zhongshan City People’s Hospital, The Affiliated Zhongshan Hospital of Sun Yat-Sen University, Zhongshan 528400, Guangdong, China
| | - Quan Zhou
- Laboratory of Basic Medical Science, General Hospital of Southern Theater Command of PLA, Guangzhou 510000, Guangdong, China
- Research Centre of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510000, Guangdong, China
| | - Kang Chen
- Department of Clinical Laboratory, Zhongshan City People’s Hospital, The Affiliated Zhongshan Hospital of Sun Yat-Sen University, Zhongshan 528400, Guangdong, China
| |
Collapse
|
3
|
Ma W, Tan X, Xie Z, Yu J, Li P, Lin X, Ouyang S, Liu Z, Hou Q, Xie N, Peng T, Li L, Dai Z, Chen X, Xie W. P53: A Key Target in the Development of Osteoarthritis. Mol Biotechnol 2024; 66:1-10. [PMID: 37154864 DOI: 10.1007/s12033-023-00736-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 03/25/2023] [Indexed: 05/10/2023]
Abstract
Osteoarthritis (OA), a chronic degenerative disease characterized mainly by damage to the articular cartilage, is increasingly relevant to the pathological processes of senescence, apoptosis, autophagy, proliferation, and differentiation of chondrocytes. Clinical strategies for osteoarthritis can only improve symptoms and even along with side effects due to age, sex, disease, and other factors. Therefore, there is an urgent need to identify new ideas and targets for current clinical treatment. The tumor suppressor gene p53, which has been identified as a potential target for tumor therapeutic intervention, is responsible for the direct induction of the pathological processes involved in OA modulation. Consequently, deciphering the characteristics of p53 in chondrocytes is essential for investigating OA pathogenesis due to p53 regulation in an array of signaling pathways. This review highlights the effects of p53 on senescence, apoptosis, and autophagy of chondrocytes and its role in the development of OA. It also elucidates the underlying mechanism of p53 regulation in OA, which may help provide a novel strategies for the clinical treatment of OA.
Collapse
Affiliation(s)
- Wentao Ma
- Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China
| | - Xiaoqian Tan
- Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China
| | - Zhongcheng Xie
- Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China
| | - Jiang Yu
- Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China
| | - Pin Li
- Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China
| | - Xiaoyan Lin
- Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China
| | - Siyu Ouyang
- Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China
| | - Zhiyang Liu
- Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China
| | - Qin Hou
- Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China
| | - Nan Xie
- Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China
| | - Tianhong Peng
- Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China
| | - Liang Li
- Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China
| | - Zhu Dai
- Department of Orthopedics, Hengyang Medical School, The First Affiliated Hospital of University of South China, Hengyang, 421001, Hunan, China.
| | - Xi Chen
- Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China.
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Wei Xie
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
4
|
Du W, Zhang R, Muhammad B, Pei D. Targeting the COP9 signalosome for cancer therapy. Cancer Biol Med 2022; 19:j.issn.2095-3941.2021.0605. [PMID: 35315259 PMCID: PMC9196064 DOI: 10.20892/j.issn.2095-3941.2021.0605] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/18/2022] [Indexed: 11/24/2022] Open
Abstract
The COP9 signalosome (CSN) is a highly conserved protein complex composed of 8 subunits (CSN1 to CSN8). The individual subunits of the CSN play essential roles in cell proliferation, tumorigenesis, cell cycle regulation, DNA damage repair, angiogenesis, and microenvironmental homeostasis. The CSN complex has an intrinsic metalloprotease that removes the ubiquitin-like activator NEDD8 from cullin-RING ligases (CRLs). Binding of neddylated CRLs to CSN is sensed by CSN4 and communicated to CSN5 with the assistance of CSN6, thus leading to the activation of deneddylase. Therefore, CSN is a crucial regulator at the intersection between neddylation and ubiquitination in cancer progression. Here, we summarize current understanding of the roles of individual CSN subunits in cancer progression. Furthermore, we explain how the CSN affects tumorigenesis through regulating transcription factors and the cell cycle. Finally, we discuss individual CSN subunits as potential therapeutic targets to provide new directions and strategies for cancer therapy.
Collapse
Affiliation(s)
- Wenqi Du
- Department of Pathology, Xuzhou Medical University, Xuzhou 221004, China
- Department of Human Anatomy, Xuzhou Medical University, Xuzhou 221004, China
| | - Ruicheng Zhang
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221006, China
| | - Bilal Muhammad
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221006, China
| | - Dongsheng Pei
- Department of Pathology, Xuzhou Medical University, Xuzhou 221004, China
| |
Collapse
|
5
|
Mamidi MK, Samsa WE, Danielpour D, Chan R, Zhou G. The transcription co-factor JAB1/COPS5, serves as a potential oncogenic hub of human chondrosarcoma cells in vitro. Am J Cancer Res 2021; 11:5063-5075. [PMID: 34765312 PMCID: PMC8569363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 06/07/2021] [Indexed: 06/13/2023] Open
Abstract
Chondrosarcoma (CS) is the second most common skeletal malignancy in humans. High-grade CS is aggressive and extremely resistant to chemo- and radio-therapies. The lack of effective treatment options warrants the development of novel therapies. The evolutionarily conserved transcriptional co-factor JAB1 (also known as COPS5/CSN5) has emerged as a novel regulator of tumorigenesis. JAB1 overexpression occurs in many common cancers and is associated with poor prognosis. However, the role of JAB1 in CS pathogenesis was completely unknown. To study JAB1's function in CS, we performed shRNA knockdown (KD) of JAB1 in two high-grade human CS cell lines, SW1353 and Hs819.T, and observed significantly decreased proliferation and colony formations, and increased apoptosis in both CS cell lines upon JAB1-KD. Interestingly, we found that endogenous JAB1 interacted with endogenous SOX9, a potent oncogene and a master regulator of skeletogenesis, in chondrosarcoma cells, but not in primary chondrocytes. JAB1 also binds to the same SOX9-mediated chondrocyte-specific enhancer elements in CS cells. Furthermore, we found that a recently developed, novel, potent, and JAB1-specific small molecule inhibitor, CSN5i-3, can significantly increase apoptosis, drastically alter the activities of several signaling pathways, and modulates the expression of specific Cullin-ring-ligases (CRLs) in CS cells. Finally, our RNA-sequencing analysis in JAB1-KD CS cells identified a total of 2945 differentially expressed genes. Gene set enrichment analysis revealed that JAB1 regulates several essential pathways such as DNA damage response and cell cycle regulation. In conclusion, our study showed that JAB1 might regulate a distinct pro-tumorigenic regulatory network to promote chondrosarcoma pathogenesis.
Collapse
Affiliation(s)
- Murali K Mamidi
- Department of Orthopaedics, Case Western Reserve University, Biomedical Research Building#328, 2109 Adelbert Road, Cleveland, OH 44106, USA
- Case Comprehensive Cancer Cancer, Case Western Reserve University, Biomedical Research Building#328, 2109 Adelbert Road, Cleveland, OH 44106, USA
- Stephenson Cancer Center, University of Oklahoma Health Sciences CenterOklahoma, USA
| | - William E Samsa
- Department of Orthopaedics, Case Western Reserve University, Biomedical Research Building#328, 2109 Adelbert Road, Cleveland, OH 44106, USA
- Case Comprehensive Cancer Cancer, Case Western Reserve University, Biomedical Research Building#328, 2109 Adelbert Road, Cleveland, OH 44106, USA
| | - David Danielpour
- Case Comprehensive Cancer Cancer, Case Western Reserve University, Biomedical Research Building#328, 2109 Adelbert Road, Cleveland, OH 44106, USA
- Division of General Medical Sciences, Case Western Reserve University, Biomedical Research Building#328, 2109 Adelbert Road, Cleveland, OH 44106, USA
| | - Ricky Chan
- Institute for Computational Biology, Case Western Reserve University, Biomedical Research Building#328, 2109 Adelbert Road, Cleveland, OH 44106, USA
| | - Guang Zhou
- Department of Orthopaedics, Case Western Reserve University, Biomedical Research Building#328, 2109 Adelbert Road, Cleveland, OH 44106, USA
- Case Comprehensive Cancer Cancer, Case Western Reserve University, Biomedical Research Building#328, 2109 Adelbert Road, Cleveland, OH 44106, USA
- Department of Genetics and Genome Sciences, Case Western Reserve University, Biomedical Research Building#328, 2109 Adelbert Road, Cleveland, OH 44106, USA
| |
Collapse
|