1
|
Birks S, Howard S, Wright CS, O’Rourke C, Day EA, Lamb AJ, Walsdorf JR, Lau A, Thompson WR, Uzer G. Prrx1-driven LINC complex disruption in vivo reduces osteoid deposition but not bone quality after voluntary wheel running. PLoS One 2024; 19:e0307816. [PMID: 39565744 PMCID: PMC11578491 DOI: 10.1371/journal.pone.0307816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 07/11/2024] [Indexed: 11/22/2024] Open
Abstract
The Linker of Nucleoskeleton and Cytoskeleton (LINC) complex serves to connect the nuclear envelope and the cytoskeleton, influencing cellular processes such as nuclear arrangement, architecture, and mechanotransduction. The role LINC plays in mechanotransduction pathways in bone progenitor cells has been well studied; however, the mechanisms by which LINC complexes govern in vivo bone formation remain less clear. To bridge this knowledge gap, we established a murine model disrupting LINC using transgenic Prx-Cre mice and floxed Tg(CAG-LacZ/EGFP-KASH2) mice. Prx-Cre mice express the Cre recombinase enzyme controlled by the paired-related homeobox gene-1 promoter (Prrx1), a pivotal regulator of skeletal development. Prx-Cre animals have been widely used in the bone field to target bone progenitor cells. Tg(CAG-LacZ/EGFP-KASH2) mice carry a lox-stop-lox flanked LacZ gene allowing for the overexpression of an EGFP-KASH2 fusion protein via cre recombinase mediated deletion of the LacZ cassette. This disrupts endogenous Nesprin-Sun binding in a dominant negative manner disconnecting nesprin from the nuclear envelope. By combining these lines, we generated a Prrx1(+) cell-specific LINC disruption model to study its impact on the developing skeleton and subsequently exercise-induced bone accrual. The findings presented here indicate Prx-driven LINC disruption (PDLD) cells exhibit no change in osteogenic and adipogenic potential compared to controls in vitro nor are there bone quality changes when compared to in sedentary animals at 8 weeks. While PDLD animals displayed increased voluntary running activity andPrrx1(+) cell-specific LINC disruption abolished the exercise-induced increases in osteoid volume and surface after a 6-week exercise intervention, no other changes in bone microarchitecture or mechanical properties were found.
Collapse
Affiliation(s)
- Scott Birks
- Micron School of Materials Science and Engineering, Boise State University, Boise, Idaho, United States of America
| | - Sean Howard
- Mechanical and Biomedical Engineering, Boise State University, Boise, Idaho, United States of America
| | - Christian S. Wright
- Department of Physical Therapy, Indiana University, Bloomington, Indiana, United States of America
| | - Caroline O’Rourke
- Biomedical Engineering, The College of New Jersey, Ewing Township, New Jersey, United States of America
| | - Elicza A. Day
- Department of Physical Therapy, Indiana University, Bloomington, Indiana, United States of America
| | - Alexander J. Lamb
- Department of Physical Therapy, Indiana University, Bloomington, Indiana, United States of America
| | - James R. Walsdorf
- Department of Physical Therapy, Indiana University, Bloomington, Indiana, United States of America
| | - Anthony Lau
- Biomedical Engineering, The College of New Jersey, Ewing Township, New Jersey, United States of America
| | - William R. Thompson
- Department of Physical Therapy, Indiana University, Bloomington, Indiana, United States of America
| | - Gunes Uzer
- Mechanical and Biomedical Engineering, Boise State University, Boise, Idaho, United States of America
| |
Collapse
|
2
|
Birks S, Howard S, Wright CS, O’Rourke C, Day EA, Lamb AJ, Walsdorf JR, Lau A, Thompson WR, Uzer G. Prrx1-driven LINC complex disruption in vivo reduces osteoid deposition but not bone quality after voluntary wheel running. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.22.559054. [PMID: 37790521 PMCID: PMC10542150 DOI: 10.1101/2023.09.22.559054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
The Linker of Nucleoskeleton and Cytoskeleton (LINC) complex serves to connect the nuclear envelope and the cytoskeleton, influencing cellular processes such as nuclear arrangement, architecture, and mechanotransduction. The role LINC plays in mechanotransduction pathways in bone progenitor cells has been well studied; however, the mechanisms by which LINC complexes govern in vivo bone formation remain less clear. To bridge this knowledge gap, we established a murine model disrupting LINC using transgenic Prx-Cre mice and floxed Tg(CAG-LacZ/EGFP-KASH2) mice. Prx-Cre mice express the Cre recombinase enzyme controlled by the paired-related homeobox gene-1 promoter (Prrx1), a pivotal regulator of skeletal development. Prx-Cre animals have been widely used in the bone field to target bone progenitor cells. Tg(CAG-LacZ/EGFP-KASH2) mice carry a lox-stop-lox flanked LacZ gene allowing for the overexpression of an EGFP-KASH2 fusion protein via cre recombinase mediated deletion of the LacZ cassette. This disrupts endogenous Nesprin-Sun binding in a dominant negative manner disconnecting nesprin from the nuclear envelope. By combining these lines, we generated a Prrx1(+) cell-specific LINC disruption model to study its impact on the developing skeleton and subsequently exercise-induced bone accrual. The findings presented here indicate Prx-driven LINC disruption (PDLD) cells exhibit no change in osteogenic and adipogenic potential compared to controls in vitro nor are there bone quality changes when compared to in sedentary animals at 8 weeks. While PDLD animals displayed increased voluntary running activity andPrrx1(+) cell-specific LINC disruption abolished the exercise-induced increases in osteoid volume and surface after a 6-week exercise intervention, no other changes in bone microarchitecture or mechanical properties were found.
Collapse
Affiliation(s)
- Scott Birks
- Boise State University, Micron School of Materials Science and Engineering
| | - Sean Howard
- Boise State University, Mechanical and Biomedical Engineering
| | - Christian S. Wright
- Indiana University, Department of Physical Therapy, School of Health and Human Sciences
| | | | - Elicza A. Day
- Indiana University, Department of Physical Therapy, School of Health and Human Sciences
| | - Alexander J. Lamb
- Indiana University, Department of Physical Therapy, School of Health and Human Sciences
| | - James R. Walsdorf
- Indiana University, Department of Physical Therapy, School of Health and Human Sciences
| | - Anthony Lau
- The College of New Jersey, Biomedical Engineering
| | - William R. Thompson
- Indiana University, Department of Physical Therapy, School of Health and Human Sciences
| | - Gunes Uzer
- Boise State University, Mechanical and Biomedical Engineering
| |
Collapse
|
3
|
Xu X, Gong X, Zhang L, Zhang H, Sun Y. PRX1-positive mesenchymal stem cells drive molar morphogenesis. Int J Oral Sci 2024; 16:15. [PMID: 38369512 PMCID: PMC10874978 DOI: 10.1038/s41368-024-00277-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/29/2023] [Accepted: 12/30/2023] [Indexed: 02/20/2024] Open
Abstract
Mammalian teeth, developing inseparable from epithelial-mesenchymal interaction, come in many shapes and the key factors governing tooth morphology deserve to be answered. By merging single-cell RNA sequencing analysis with lineage tracing models, we have unearthed a captivating correlation between the contrasting morphology of mouse molars and the specific presence of PRX1+ cells within M1. These PRX1+ cells assume a profound responsibility in shaping tooth morphology through a remarkable divergence in dental mesenchymal cell proliferation. Deeper into the mechanisms, we have discovered that Wnt5a, bestowed by mesenchymal PRX1+ cells, stimulates mesenchymal cell proliferation while orchestrating molar morphogenesis through WNT signaling pathway. The loss of Wnt5a exhibits a defect phenotype similar to that of siPrx1. Exogenous addition of WNT5A can successfully reverse the inhibited cell proliferation and consequent deviant appearance exhibited in Prx1-deficient tooth germs. These findings bestow compelling evidence of PRX1-positive mesenchymal cells to be potential target in regulating tooth morphology.
Collapse
Affiliation(s)
- Xiaoqiao Xu
- Department of Implantology, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Xuyan Gong
- Department of Implantology, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Lei Zhang
- Department of Implantology, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Han Zhang
- Department of Implantology, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Yao Sun
- Department of Implantology, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China.
| |
Collapse
|
4
|
Shao R, Suo J, Zhang Z, Kong M, Ma Y, Wen Y, Liu M, Zhuang L, Ge K, Bi Q, Zhang C, Zou W. H3K36 methyltransferase NSD1 protects against osteoarthritis through regulating chondrocyte differentiation and cartilage homeostasis. Cell Death Differ 2024; 31:106-118. [PMID: 38012390 PMCID: PMC10781997 DOI: 10.1038/s41418-023-01244-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/31/2023] [Accepted: 11/14/2023] [Indexed: 11/29/2023] Open
Abstract
Osteoarthritis (OA) is one of the most common joint diseases, there are no effective disease-modifying drugs, and the pathological mechanisms of OA need further investigation. Here, we show that H3K36 methylations were decreased in senescent chondrocytes and age-related osteoarthritic cartilage. Prrx1-Cre inducible H3.3K36M transgenic mice showed articular cartilage destruction and osteophyte formation. Conditional knockout Nsd1Prrx1-Cre mice, but not Nsd2Prrx1-Cre or Setd2Prrx1-Cre mice, replicated the phenotype of K36M/+; Prrx1-Cre mice. Immunostaining results showed decreased anabolic and increased catabolic activities in Nsd1Prrx1-Cre mice, along with decreased chondrogenic differentiation. Transcriptome and ChIP-seq data revealed that Osr2 was a key factor affected by Nsd1. Intra-articular delivery of Osr2 adenovirus effectively improved the homeostasis of articular cartilage in Nsd1Prrx1-Cre mice. In human osteoarthritic cartilages, both mRNA and protein levels of NSD1 and OSR2 were decreased. Our results indicate that NSD1-induced H3K36 methylations and OSR2 expression play important roles in articular cartilage homeostasis and OA. Targeting H3K36 methylation and OSR2 would be a novel strategy for OA treatment.
Collapse
Affiliation(s)
- Rui Shao
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Jinlong Suo
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Zhong Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Sciences, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Mingxiang Kong
- Department of Orthopedics, Rehabilitation center, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang, 310014, China
| | - Yiyang Ma
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yang Wen
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Sciences, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Mengxue Liu
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Lenan Zhuang
- Adipocyte Biology and Gene Regulation Section, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, 20892, USA
| | - Kai Ge
- Adipocyte Biology and Gene Regulation Section, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, 20892, USA
| | - Qing Bi
- Department of Orthopedics, Rehabilitation center, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang, 310014, China
| | - Changqing Zhang
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| | - Weiguo Zou
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Sciences, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
5
|
Tooze RS, Miller KA, Swagemakers SMA, Calpena E, McGowan SJ, Boute O, Collet C, Johnson D, Laffargue F, de Leeuw N, Morton JV, Noons P, Ockeloen CW, Phipps JM, Tan TY, Timberlake AT, Vanlerberghe C, Wall SA, Weber A, Wilson LC, Zackai EH, Mathijssen IMJ, Twigg SRF, Wilkie AOM. Pathogenic variants in the paired-related homeobox 1 gene (PRRX1) cause craniosynostosis with incomplete penetrance. Genet Med 2023; 25:100883. [PMID: 37154149 PMCID: PMC11554955 DOI: 10.1016/j.gim.2023.100883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/30/2023] [Accepted: 04/30/2023] [Indexed: 05/10/2023] Open
Abstract
PURPOSE Studies have previously implicated PRRX1 in craniofacial development, including demonstration of murine Prrx1 expression in the preosteogenic cells of the cranial sutures. We investigated the role of heterozygous missense and loss-of-function (LoF) variants in PRRX1 associated with craniosynostosis. METHODS Trio-based genome, exome, or targeted sequencing were used to screen PRRX1 in patients with craniosynostosis; immunofluorescence analyses were used to assess nuclear localization of wild-type and mutant proteins. RESULTS Genome sequencing identified 2 of 9 sporadically affected individuals with syndromic/multisuture craniosynostosis, who were heterozygous for rare/undescribed variants in PRRX1. Exome or targeted sequencing of PRRX1 revealed a further 9 of 1449 patients with craniosynostosis harboring deletions or rare heterozygous variants within the homeodomain. By collaboration, 7 additional individuals (4 families) were identified with putatively pathogenic PRRX1 variants. Immunofluorescence analyses showed that missense variants within the PRRX1 homeodomain cause abnormal nuclear localization. Of patients with variants considered likely pathogenic, bicoronal or other multisuture synostosis was present in 11 of 17 cases (65%). Pathogenic variants were inherited from unaffected relatives in many instances, yielding a 12.5% penetrance estimate for craniosynostosis. CONCLUSION This work supports a key role for PRRX1 in cranial suture development and shows that haploinsufficiency of PRRX1 is a relatively frequent cause of craniosynostosis.
Collapse
Affiliation(s)
- Rebecca S Tooze
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Kerry A Miller
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Sigrid M A Swagemakers
- Department of Pathology & Clinical Bioinformatics, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Eduardo Calpena
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Simon J McGowan
- Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Odile Boute
- Univ. Lille, CHU Lille, ULR 7364 - RADEME - Maladies Rares du Développement Embryonnaire et du Métabolisme, Clinique de Génétique, Lille, France
| | - Corinne Collet
- Genetics Department, Robert Debré University Hospital, APHP, Paris, France
| | - David Johnson
- Craniofacial Unit, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Fanny Laffargue
- Clinical Genetics Service and Reference Centre for Rare Developmental Abnormalities and Intellectual Disabilities, University Hospital of Clermont-Ferrand, Clermont-Ferrand, France
| | - Nicole de Leeuw
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jenny V Morton
- West Midlands Regional Clinical Genetics Service and Birmingham Health Partners, Birmingham Women's and Children's Hospitals NHS Foundation Trust, Birmingham, United Kingdom
| | - Peter Noons
- Department of Craniofacial Surgery, Birmingham Children's Hospital NHS Foundation Trust, Birmingham, United Kingdom
| | - Charlotte W Ockeloen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Julie M Phipps
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom; Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Tiong Yang Tan
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Australia; Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Andrew T Timberlake
- Hansjörg Wyss Department of Plastic Surgery, NYU Langone Medical Center, New York, NY
| | - Clemence Vanlerberghe
- Univ. Lille, CHU Lille, ULR 7364 - RADEME - Maladies Rares du Développement Embryonnaire et du Métabolisme, Clinique de Génétique, Lille, France
| | - Steven A Wall
- Craniofacial Unit, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Astrid Weber
- Liverpool Centre for Genomic Medicine, Liverpool Women's NHS Foundation Trust, Liverpool, United Kingdom
| | - Louise C Wilson
- North East Thames Regional Genetics Service, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Elaine H Zackai
- Clinical Genetics Center, Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Irene M J Mathijssen
- Department of Plastic and Reconstructive Surgery and Hand Surgery, Erasmus Medical Centre, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Stephen R F Twigg
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom.
| | - Andrew O M Wilkie
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
6
|
Root SH, Vrhovac Madunic I, Kronenberg MS, Cao Y, Novak S, Kalajzic I. Lineage Tracing of RGS5-CreER-Labeled Cells in Long Bones During Homeostasis and Injury. Stem Cells 2023; 41:493-504. [PMID: 36888549 PMCID: PMC10183968 DOI: 10.1093/stmcls/sxad020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 02/21/2023] [Indexed: 03/09/2023]
Abstract
Regulator of G protein signaling 5 (RGS5) is a GTPase activator for heterotrimeric G-protein α-subunits, shown to be a marker of pericytes. Bone marrow stromal cell population (BMSCs) is heterogeneous. Populations of mesenchymal progenitors, cells supportive of hematopoiesis, and stromal cells regulating bone remodeling have been recently identified. Periosteal and bone marrow mesenchymal stem cells (MSCs) are participating in fracture healing, but it is difficult to distinguish the source of cells within the callus. Considering that perivascular cells exert osteoprogenitor potential, we generated an RGS5 transgenic mouse model (Rgs5-CreER) which when crossed with Ai9 reporter animals (Rgs5/Tomato), is suitable for lineage tracing during growth and post-injury. Flow cytometry analysis and histology confirmed the presence of Rgs5/Tomato+ cells within CD31+ endothelial, CD45+ hematopoietic, and CD31-CD45- mesenchymal/perivascular cells. A tamoxifen chase showed expansion of Rgs5/Tomato+ cells expressing osterix within the trabeculae positioned between mineralized matrix and vasculature. Long-term chase showed proportion of Rgs5/Tomato+ cells contributes to mature osteoblasts expressing osteocalcin. Following femoral fracture, Rgs5/Tomato+ cells are observed around newly formed bone within the BM cavity and expressed osterix and osteocalcin, while contribution within periosteum was low and limited to fibroblastic callus with very few positive chondrocytes. In addition, BM injury model confirmed that RGS5-Cre labels population of BMSCs expands during injury and participates in osteogenesis. Under homeostatic conditions, lineage-traced RGS5 cells within the trabecular area demonstrate osteoprogenitor capacity that in an injury model contributes to new bone formation primarily within the BM niche.
Collapse
Affiliation(s)
- Sierra H Root
- Center for Regenerative Medicine and Skeletal Development, UConn Health, Farmington, CT, USA
| | - Ivana Vrhovac Madunic
- Center for Regenerative Medicine and Skeletal Development, UConn Health, Farmington, CT, USA
| | - Mark S Kronenberg
- Center for Regenerative Medicine and Skeletal Development, UConn Health, Farmington, CT, USA
| | - Ye Cao
- Center for Regenerative Medicine and Skeletal Development, UConn Health, Farmington, CT, USA
| | - Sanja Novak
- Center for Regenerative Medicine and Skeletal Development, UConn Health, Farmington, CT, USA
| | - Ivo Kalajzic
- Center for Regenerative Medicine and Skeletal Development, UConn Health, Farmington, CT, USA
| |
Collapse
|
7
|
Solidum JGN, Jeong Y, Heralde F, Park D. Differential regulation of skeletal stem/progenitor cells in distinct skeletal compartments. Front Physiol 2023; 14:1137063. [PMID: 36926193 PMCID: PMC10013690 DOI: 10.3389/fphys.2023.1137063] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/16/2023] [Indexed: 03/06/2023] Open
Abstract
Skeletal stem/progenitor cells (SSPCs), characterized by self-renewal and multipotency, are essential for skeletal development, bone remodeling, and bone repair. These cells have traditionally been known to reside within the bone marrow, but recent studies have identified the presence of distinct SSPC populations in other skeletal compartments such as the growth plate, periosteum, and calvarial sutures. Differences in the cellular and matrix environment of distinct SSPC populations are believed to regulate their stemness and to direct their roles at different stages of development, homeostasis, and regeneration; differences in embryonic origin and adjacent tissue structures also affect SSPC regulation. As these SSPC niches are dynamic and highly specialized, changes under stress conditions and with aging can alter the cellular composition and molecular mechanisms in place, contributing to the dysregulation of local SSPCs and their activity in bone regeneration. Therefore, a better understanding of the different regulatory mechanisms for the distinct SSPCs in each skeletal compartment, and in different conditions, could provide answers to the existing knowledge gap and the impetus for realizing their potential in this biological and medical space. Here, we summarize the current scientific advances made in the study of the differential regulation pathways for distinct SSPCs in different bone compartments. We also discuss the physical, biological, and molecular factors that affect each skeletal compartment niche. Lastly, we look into how aging influences the regenerative capacity of SSPCs. Understanding these regulatory differences can open new avenues for the discovery of novel treatment approaches for calvarial or long bone repair.
Collapse
Affiliation(s)
- Jea Giezl Niedo Solidum
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, Manila, Philippines
- Department of Molecular and Human Genetics, Houston, TX, United States
| | - Youngjae Jeong
- Department of Molecular and Human Genetics, Houston, TX, United States
| | - Francisco Heralde
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, Manila, Philippines
| | - Dongsu Park
- Department of Molecular and Human Genetics, Houston, TX, United States
- Center for Skeletal Biology, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
8
|
Liu Y, Ilinski A, Gerstenfeld LC, Bragdon B. Prx1 cell subpopulations identified in various tissues with diverse quiescence and activation ability following fracture and BMP2 stimulation. Front Physiol 2023; 14:1106474. [PMID: 36793419 PMCID: PMC9922707 DOI: 10.3389/fphys.2023.1106474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/18/2023] [Indexed: 01/31/2023] Open
Abstract
The expression of Prx1 has been used as a marker to define the skeletal stem cells (SSCs) populations found within the bone marrow and periosteum that contribute to bone regeneration. However, Prx1 expressing SSCs (Prx1-SSCs) are not restricted to the bone compartments, but are also located within the muscle and able to contribute to ectopic bone formation. Little is known however, about the mechanism(s) regulating Prx1-SSCs that reside in muscle and how they participate in bone regeneration. This study compared both the intrinsic and extrinsic factors of the periosteum and muscle derived Prx1-SSCs and analyzed their regulatory mechanisms of activation, proliferation, and skeletal differentiation. There was considerable transcriptomic heterogeneity in the Prx1-SSCs found in muscle or the periosteum however in vitro cells from both tissues showed tri-lineage (adipose, cartilage and bone) differentiation. At homeostasis, periosteal-derived Prx1 cells were proliferative and low levels of BMP2 were able to promote their differentiation, while the muscle-derived Prx1 cells were quiescent and refractory to comparable levels of BMP2 that promoted periosteal cell differentiation. The transplantation of Prx1-SCC from muscle and periosteum into either the same site from which they were isolated, or their reciprocal sites showed that periosteal cell transplanted onto the surface of bone tissues differentiated into bone and cartilage cells but was incapable of similar differentiation when transplanted into muscle. Prx1-SSCs from the muscle showed no ability to differentiate at either site of transplantation. Both fracture and ten times the BMP2 dose was needed to promote muscle-derived cells to rapidly enter the cell cycle as well as undergo skeletal cell differentiation. This study elucidates the diversity of the Prx1-SSC population showing that cells within different tissue sites are intrinsically different. While muscle tissue must have factors that promote Prx1-SSC to remain quiescent, either bone injury or high levels of BMP2 can activate these cells to both proliferate and undergo skeletal cell differentiation. Finally, these studies raise the possibility that muscle SSCs are potential target for skeletal repair and bone diseases.
Collapse
Affiliation(s)
| | | | | | - Beth Bragdon
- Department of Orthopaedic Surgery, Boston University School of Medicine, Boston, MA, United States
| |
Collapse
|
9
|
Novak S, Kalajzic I. AcanCreER lacks specificity to chondrocytes and targets periosteal progenitors in the fractured callus. Bone 2023; 166:116599. [PMID: 36309308 PMCID: PMC9832919 DOI: 10.1016/j.bone.2022.116599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/19/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
Abstract
Aggrecan (Acan) is a large proteoglycan molecule constituting the extracellular matrix of cartilage, secreted by chondrocytes. To specifically target the chondrocyte lineage, researchers have widely used the AcanCreER mouse model. Evaluation of specificity and efficiency of recombination, requires Cre animals to be crossed with reporter mice. In order to accurately interpret data from Cre models, it is imperative to consider A) the amount of recombination occurring in cells/tissues that are not intended for targeting (i.e., non-specific expression), B) the efficiency of Cre recombination, which can depend on dose and duration of tamoxifen treatment, and C) the activation of CreER without tamoxifen induction, known as "Cre leakage." Using a highly sensitive reporter mouse (Ai9, tdTomato), we performed a comprehensive analysis of the AcanCreER system. Surprisingly, we observed expression in cells within the periosteum. These cells expand at a stage when chondrocytes are not yet present within the forming callus tissue (Acan/Ai9+ cells). In pulse-chase experiments, we confirmed that fibroblastic Acan/Ai9+ cells within the periosteum can directly give rise to osteoblasts. Our results show that Acan/Ai9+ is not specific for the chondrocyte lineage in the fracture callus or with the tibial holes. The expression of AcanCreER in periosteal progenitor cells complicates the interpretation of studies evaluating the transition of chondrocytes to osteoblasts (termed transdifferentiation). Awareness of these issues and the limitations of the system will lead to better data interpretation.
Collapse
Affiliation(s)
- Sanja Novak
- Department of Reconstructive Sciences, UConn Health, Farmington, CT, USA
| | - Ivo Kalajzic
- Department of Reconstructive Sciences, UConn Health, Farmington, CT, USA.
| |
Collapse
|