1
|
Chaparro-Solano HM, Rivera Paz M, Anis S, Hockings JK, Kundrick A, Piccinin CC, Assaedi E, Saadatpour L, Mata IF. Critical evaluation of the current landscape of pharmacogenomics in Parkinson's disease - What is missing? A systematic review. Parkinsonism Relat Disord 2024:107206. [PMID: 39551668 DOI: 10.1016/j.parkreldis.2024.107206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/09/2024] [Accepted: 11/10/2024] [Indexed: 11/19/2024]
Abstract
INTRODUCTION The first-line treatment for Parkinson's disease (PD) involves dopamine-replacement therapies; however, significant variability exists in patient responses. Pharmacogenomics has been explored as a potential approach to understanding and predicting treatment outcomes. This review aims to evaluate the current state of knowledge regarding the role of pharmacogenomics in PD, focusing on identifying challenges and proposing future directions. METHODS We conducted a systematic review following PRISMA 2020 guidelines. The PubMed database was searched for original, English-language studies using the R package 'RISmed.' Data were extracted and analyzed based on sample size, population origin, evaluated genes and polymorphisms, outcomes, and methodological approaches. RESULTS Out of 183 identified articles, 76 met the inclusion criteria. The COMT-rs4680 polymorphism was the most frequently studied, and levodopa-related motor complications were the most commonly assessed outcomes. All but two studies employed a candidate gene approach. In 75 % of the studies, the sample size was fewer than 225 individuals. There was a notable underrepresentation of Latino participants, with a lack of studies from Latin American countries other than Brazil. None of the studies produced consistent results across investigations. CONCLUSIONS The variability in patient responses to PD treatments suggests a genetic predisposition. While current research has enhanced our understanding of PD medication metabolism, it has not yet fully elucidated the complex genetic interactions involved in PD pharmacogenomics. Novel approaches, larger and more genetically diverse cohorts, and improved data collection are essential for advancing pharmacogenomics in PD clinical practice.
Collapse
Affiliation(s)
- Henry Mauricio Chaparro-Solano
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, 44195, Cleveland, OH, United States; Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, 44195, Cleveland, OH, United States
| | - Maria Rivera Paz
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, 44195, Cleveland, OH, United States
| | - Saar Anis
- Center for Neurological Restoration, Neurological Institute, Cleveland Clinic, 44195, Cleveland, OH, United States
| | - Jennifer K Hockings
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, 44195, Cleveland, OH, United States; Department of Pharmacy, Cleveland Clinic, 44195, Cleveland, OH, United States; Department of Medical Genetics and Genomics, Cleveland Clinic, 44195, Cleveland, OH, United States
| | - Avery Kundrick
- Center for Neurological Restoration, Neurological Institute, Cleveland Clinic, 44195, Cleveland, OH, United States
| | - Camila C Piccinin
- Center for Neurological Restoration, Neurological Institute, Cleveland Clinic, 44195, Cleveland, OH, United States
| | - Ekhlas Assaedi
- Center for Neurological Restoration, Neurological Institute, Cleveland Clinic, 44195, Cleveland, OH, United States; College of Medicine, Taibah University, Medina, Saudi Arabia
| | - Leila Saadatpour
- Center for Neurological Restoration, Neurological Institute, Cleveland Clinic, 44195, Cleveland, OH, United States; Department of Neurology, University of Texas Health Science Center at San Antonio, 78229, San Antonio, TX, United States
| | - Ignacio F Mata
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, 44195, Cleveland, OH, United States; Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, 44195, Cleveland, OH, United States.
| |
Collapse
|
2
|
Angelopoulou E, Bougea A, Papageorgiou SG, Villa C. Psychosis in Parkinson's Disease: A Lesson from Genetics. Genes (Basel) 2022; 13:genes13061099. [PMID: 35741861 PMCID: PMC9222985 DOI: 10.3390/genes13061099] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/17/2022] [Accepted: 06/18/2022] [Indexed: 02/06/2023] Open
Abstract
Psychosis in Parkinson's disease (PDP) represents a common and debilitating condition that complicates Parkinson's disease (PD), mainly in the later stages. The spectrum of psychotic symptoms are heterogeneous, ranging from minor phenomena of mild illusions, passage hallucinations and sense of presence to severe psychosis consisting of visual hallucinations (and rarely, auditory and tactile or gustatory) and paranoid delusions. PDP is associated with increased caregiver stress, poorer quality of life for patients and carers, reduced survival and risk of institutionalization with a significant burden on the healthcare system. Although several risk factors for PDP development have been identified, such as aging, sleep disturbances, long history of PD, cognitive impairment, depression and visual disorders, the pathophysiology of psychosis in PD is complex and still insufficiently clarified. Additionally, several drugs used to treat PD can aggravate or even precipitate PDP. Herein, we reviewed and critically analyzed recent studies exploring the genetic architecture of psychosis in PD in order to further understand the pathophysiology of PDP, the risk factors as well as the most suitable therapeutic strategies.
Collapse
Affiliation(s)
- Efthalia Angelopoulou
- Department of Neurology, Eginition University Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (E.A.); (A.B.); (S.G.P.)
| | - Anastasia Bougea
- Department of Neurology, Eginition University Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (E.A.); (A.B.); (S.G.P.)
| | - Sokratis G. Papageorgiou
- Department of Neurology, Eginition University Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (E.A.); (A.B.); (S.G.P.)
| | - Chiara Villa
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
- Correspondence: ; Tel.: +39-02-6448-8138
| |
Collapse
|
3
|
Yalçin M, Malhan D, Basti A, Peralta AR, Ferreira JJ, Relógio A. A Computational Analysis in a Cohort of Parkinson's Disease Patients and Clock-Modified Colorectal Cancer Cells Reveals Common Expression Alterations in Clock-Regulated Genes. Cancers (Basel) 2021; 13:cancers13235978. [PMID: 34885088 PMCID: PMC8657387 DOI: 10.3390/cancers13235978] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/18/2021] [Accepted: 11/21/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Cancer and neurodegenerative diseases are two aging-related pathologies with differential developmental characteristics, but they share altered cellular pathways. Interestingly, dysregulations in the biological clock are reported in both diseases, though the extent and potential consequences of such disruption have not been fully elucidated. In this study, we aimed at characterizing global changes on common cellular pathways associated with Parkinson’s disease (PD) and colorectal cancer (CRC). We used gene expression data retrieved from an idiopathic PD (IPD) patient cohort and from CRC cells with unmodified versus genetically altered clocks. Our results highlight common differentially expressed genes between IPD patients and cells with disrupted clocks, suggesting a role for the circadian clock in the regulation of pathways altered in both pathologies. Interestingly, several of these genes are related to cancer hallmarks and may have an impact on the overall survival of colon cancer patients, as suggested by our analysis. Abstract Increasing evidence suggests a role for circadian dysregulation in prompting disease-related phenotypes in mammals. Cancer and neurodegenerative disorders are two aging related diseases reported to be associated with circadian disruption. In this study, we investigated a possible effect of circadian disruption in Parkinson’s disease (PD) and colorectal cancer (CRC). We used high-throughput data sets retrieved from whole blood of idiopathic PD (IPD) patients and time course data sets derived from an in vitro model of CRC including the wildtype and three core-clock knockout (KO) cell lines. Several gene expression alterations in IPD patients resembled the expression profiles in the core-clock KO cells. These include expression changes in DBP, GBA, TEF, SNCA, SERPINA1 and TGFB1. Notably, our results pointed to alterations in the core-clock network in IPD patients when compared to healthy controls and revealed variations in the expression profile of PD-associated genes (e.g., HRAS and GBA) upon disruption of the core-clock genes. Our study characterizes changes at the transcriptomic level following circadian clock disruption on common cellular pathways associated with cancer and neurodegeneration (e.g., immune system, energy metabolism and RNA processing), and it points to a significant influence on the overall survival of colon cancer patients for several genes resulting from our analysis (e.g., TUBB6, PAK6, SLC11A1).
Collapse
Affiliation(s)
- Müge Yalçin
- Institute for Theoretical Biology (ITB), Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (M.Y.); (D.M.); (A.B.)
- Molecular Cancer Research Center (MKFZ), Medical Department of Hematology, Oncology, and Tumour Immunology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Deeksha Malhan
- Institute for Theoretical Biology (ITB), Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (M.Y.); (D.M.); (A.B.)
- Molecular Cancer Research Center (MKFZ), Medical Department of Hematology, Oncology, and Tumour Immunology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Institute for Systems Medicine and Faculty of Human Medicine, MSH Medical School Hamburg, 20457 Hamburg, Germany
| | - Alireza Basti
- Institute for Theoretical Biology (ITB), Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (M.Y.); (D.M.); (A.B.)
- Molecular Cancer Research Center (MKFZ), Medical Department of Hematology, Oncology, and Tumour Immunology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Institute for Systems Medicine and Faculty of Human Medicine, MSH Medical School Hamburg, 20457 Hamburg, Germany
| | - Ana Rita Peralta
- EEG/Sleep Laboratory, Department Neurosciences and Mental Health, Hospital de Santa Maria—CHULN, 1649-035 Lisbon, Portugal;
- Department of Neurology, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
- Instituto de Fisiologia, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
- CNS-Campus Neurológico Senior, 2560-280 Torres Vedras, Portugal;
| | - Joaquim J. Ferreira
- CNS-Campus Neurológico Senior, 2560-280 Torres Vedras, Portugal;
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
- Laboratory of Clinical Pharmacology and Therapeutics, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Angela Relógio
- Institute for Theoretical Biology (ITB), Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (M.Y.); (D.M.); (A.B.)
- Molecular Cancer Research Center (MKFZ), Medical Department of Hematology, Oncology, and Tumour Immunology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Institute for Systems Medicine and Faculty of Human Medicine, MSH Medical School Hamburg, 20457 Hamburg, Germany
- Correspondence: or
| |
Collapse
|
4
|
Savitt J, Aouchiche R. Management of Visual Dysfunction in Patients with Parkinson's Disease. JOURNAL OF PARKINSONS DISEASE 2021; 10:S49-S56. [PMID: 32741840 PMCID: PMC7592686 DOI: 10.3233/jpd-202103] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Parkinson’s disease (PD) is a movement disorder with many symptoms responsive to treatment with dopamine agonists, anti-cholinergics and the dopamine precursor, levodopa. The cardinal features of PD include tremor, rigidity, bradykinesia, and postural instability. There also are non-motor features that include sleep disorders, cognitive and affective dysfunction, hyposmia, pain and dysautonomia (constipation, bloating, orthostasis, urinary symptoms, sexual dysfunction, dysphagia). Among these non-motor features are signs and symptoms of visual system impairment that range from subtle examination findings to those causing severe disability. In this review we describe common PD-related abnormalities in the visual system, how they present, and potential treatments.
Collapse
Affiliation(s)
- Joseph Savitt
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Rachid Aouchiche
- Department of Ophthalmology and Visual Sciences, University of Maryland School of Medicine, Neuro-Ophthalmology, Baltimore, MD, USA
| |
Collapse
|
5
|
Cacabelos R, Carrera I, Martínez O, Alejo R, Fernández-Novoa L, Cacabelos P, Corzo L, Rodríguez S, Alcaraz M, Nebril L, Tellado I, Cacabelos N, Pego R, Naidoo V, Carril JC. Atremorine in Parkinson's disease: From dopaminergic neuroprotection to pharmacogenomics. Med Res Rev 2021; 41:2841-2886. [PMID: 34106485 DOI: 10.1002/med.21838] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 02/11/2021] [Accepted: 05/21/2021] [Indexed: 12/15/2022]
Abstract
Atremorine is a novel bioproduct obtained by nondenaturing biotechnological processes from a genetic species of Vicia faba. Atremorine is a potent dopamine (DA) enhancer with powerful effects on the neuronal dopaminergic system, acting as a neuroprotective agent in Parkinson's disease (PD). Over 97% of PD patients respond to a single dose of Atremorine (5 g, p.o.) 1 h after administration. This response is gender-, time-, dose-, and genotype-dependent, with optimal doses ranging from 5 to 20 g/day, depending upon disease severity and concomitant medication. Drug-free patients show an increase in DA levels from 12.14 ± 0.34 pg/ml to 6463.21 ± 1306.90 pg/ml; and patients chronically treated with anti-PD drugs show an increase in DA levels from 1321.53 ± 389.94 pg/ml to 16,028.54 ± 4783.98 pg/ml, indicating that Atremorine potentiates the dopaminergic effects of conventional anti-PD drugs. Atremorine also influences the levels of other neurotransmitters (adrenaline, noradrenaline) and hormones which are regulated by DA (e.g., prolactin, PRL), with no effect on serotonin or histamine. The variability in Atremorine-induced DA response is highly attributable to pharmacogenetic factors. Polymorphic variants in pathogenic (SNCA, NUCKS1, ITGA8, GPNMB, GCH1, BCKDK, APOE, LRRK2, ACMSD), mechanistic (DRD2), metabolic (CYP2D6, CYP2C9, CYP2C19, CYP3A4/5, NAT2), transporter (ABCB1, SLC6A2, SLC6A3, SLC6A4) and pleiotropic genes (APOE) influence the DA response to Atremorine and its psychomotor and brain effects. Atremorine enhances DNA methylation and displays epigenetic activity via modulation of the pharmacoepigenetic network. Atremorine is a novel neuroprotective agent for dopaminergic neurons with potential prophylactic and therapeutic activity in PD.
Collapse
Affiliation(s)
- Ramón Cacabelos
- Department of Genomic Medicine, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain
| | - Iván Carrera
- Department of Health Biotechnology, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain
| | - Olaia Martínez
- Department of Medical Epigenetics, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain
| | | | | | - Pablo Cacabelos
- Department of Digital Diagnosis, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain
| | - Lola Corzo
- Department of Medical Biochemistry, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain
| | - Susana Rodríguez
- Department of Medical Biochemistry, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain
| | - Margarita Alcaraz
- Department of Genomic Medicine, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain
| | - Laura Nebril
- Department of Genomic Medicine, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain
| | - Iván Tellado
- Department of Digital Diagnosis, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain
| | - Natalia Cacabelos
- Department of Medical Documentation, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain
| | - Rocío Pego
- Department of Neuropsychology, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain
| | - Vinogran Naidoo
- Department of Neuroscience, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain
| | - Juan C Carril
- Department of Genomics & Pharmacogenomics, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain
| |
Collapse
|
6
|
Magistrelli L, Ferrari M, Furgiuele A, Milner AV, Contaldi E, Comi C, Cosentino M, Marino F. Polymorphisms of Dopamine Receptor Genes and Parkinson's Disease: Clinical Relevance and Future Perspectives. Int J Mol Sci 2021; 22:ijms22073781. [PMID: 33917417 PMCID: PMC8038729 DOI: 10.3390/ijms22073781] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/26/2021] [Accepted: 04/01/2021] [Indexed: 12/20/2022] Open
Abstract
Parkinson’s disease (PD) is a neurodegenerative disease caused by loss of dopaminergic neurons in the midbrain. PD is clinically characterized by a variety of motor and nonmotor symptoms, and treatment relies on dopaminergic replacement. Beyond a common pathological hallmark, PD patients may present differences in both clinical progression and response to drug therapy that are partly affected by genetic factors. Despite extensive knowledge on genetic variability of dopaminergic receptors (DR), few studies have addressed their relevance as possible influencers of clinical heterogeneity in PD patients. In this review, we summarized available evidence regarding the role of genetic polymorphisms in DR as possible determinants of PD development, progression and treatment response. Moreover, we examined the role of DR in the modulation of peripheral immunity, in light of the emerging role of the peripheral immune system in PD pathophysiology. A better understanding of all these aspects represents an important step towards the development of precise and personalized disease-modifying therapies for PD.
Collapse
Affiliation(s)
- Luca Magistrelli
- PhD Program in Clinical and Experimental Medicine and Medical Humanities, University of Insubria, 21100 Varese, Italy; (L.M.); (A.F.)
- Movement Disorders Centre, Neurology Unit, Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy; (A.V.M.); (E.C.)
| | - Marco Ferrari
- Centre of Research in Medical Pharmacology, University of Insubria, 21100 Varese, Italy; (M.F.); (M.C.); (F.M.)
| | - Alessia Furgiuele
- PhD Program in Clinical and Experimental Medicine and Medical Humanities, University of Insubria, 21100 Varese, Italy; (L.M.); (A.F.)
- Centre of Research in Medical Pharmacology, University of Insubria, 21100 Varese, Italy; (M.F.); (M.C.); (F.M.)
| | - Anna Vera Milner
- Movement Disorders Centre, Neurology Unit, Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy; (A.V.M.); (E.C.)
| | - Elena Contaldi
- Movement Disorders Centre, Neurology Unit, Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy; (A.V.M.); (E.C.)
- PhD Program in Medical Sciences and Biotechnology, University of Piemonte Orientale, 28100 Novara, Italy
| | - Cristoforo Comi
- Movement Disorders Centre, Neurology Unit, Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy; (A.V.M.); (E.C.)
- Centre of Research in Medical Pharmacology, University of Insubria, 21100 Varese, Italy; (M.F.); (M.C.); (F.M.)
- Correspondence:
| | - Marco Cosentino
- Centre of Research in Medical Pharmacology, University of Insubria, 21100 Varese, Italy; (M.F.); (M.C.); (F.M.)
- Center of Research in Neuroscience, University of Insubria, 21100 Varese, Italy
| | - Franca Marino
- Centre of Research in Medical Pharmacology, University of Insubria, 21100 Varese, Italy; (M.F.); (M.C.); (F.M.)
- Center of Research in Neuroscience, University of Insubria, 21100 Varese, Italy
| |
Collapse
|
7
|
Marino BLB, de Souza LR, Sousa KPA, Ferreira JV, Padilha EC, da Silva CHTP, Taft CA, Hage-Melim LIS. Parkinson's Disease: A Review from Pathophysiology to Treatment. Mini Rev Med Chem 2021; 20:754-767. [PMID: 31686637 DOI: 10.2174/1389557519666191104110908] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 04/02/2019] [Accepted: 09/02/2019] [Indexed: 12/15/2022]
Abstract
Parkinson's Disease (PD) is the second most common neurodegenerative disease in the elderly population, with a higher prevalence in men, independent of race and social class; it affects approximately 1.5 to 2.0% of the elderly population over 60 years and 4% for those over 80 years of age. PD is caused by the necrosis of dopaminergic neurons in the substantia nigra, which is the brain region responsible for the synthesis of the neurotransmitter dopamine (DA), resulting in its decrease in the synaptic cleft. The monoamine oxidase B (MAO-B) degrades dopamine, promoting the glutamate accumulation and oxidative stress with the release of free radicals, causing excitotoxicity. The PD symptoms are progressive physical limitations such as rigidity, bradykinesia, tremor, postural instability and disability in functional performance. Considering that there are no laboratory tests, biomarkers or imaging studies to confirm the disease, the diagnosis of PD is made by analyzing the motor features. There is no cure for PD, and the pharmacological treatment consists of a dopaminergic supplement with levodopa, COMT inhibitors, anticholinergics agents, dopaminergic agonists, and inhibitors of MAO-B, which basically aims to control the symptoms, enabling better functional mobility and increasing life expectancy of the treated PD patients. Due to the importance and increasing prevalence of PD in the world, this study reviews information on the pathophysiology, symptomatology as well as the most current and relevant treatments of PD patients.
Collapse
Affiliation(s)
- Bianca L B Marino
- Laboratorio de Quimica Farmaceutica e Medicinal (PharMedChem), Universidade Federal do Amapa, Macapa, Amapa, Brazil
| | - Lucilene R de Souza
- Laboratorio de Quimica Farmaceutica e Medicinal (PharMedChem), Universidade Federal do Amapa, Macapa, Amapa, Brazil
| | - Kessia P A Sousa
- Laboratorio de Quimica Farmaceutica e Medicinal (PharMedChem), Universidade Federal do Amapa, Macapa, Amapa, Brazil
| | - Jaderson V Ferreira
- Laboratorio de Quimica Farmaceutica e Medicinal (PharMedChem), Universidade Federal do Amapa, Macapa, Amapa, Brazil
| | - Elias C Padilha
- Faculdade de Ciencias Farmaceuticas, Universidade Estadual Paulista (UNESP), Campus Araraquara, Departamento de Principios Ativos Naturais e Toxicologia, Araraquara, Sao Paulo, Brazil
| | - Carlos H T P da Silva
- Laboratório Computacional de Química Farmacêutica, Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil.,Department of Chemistry, School of Philosophy, Sciences and Letters of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Carlton A Taft
- Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil
| | - Lorane I S Hage-Melim
- Laboratorio de Quimica Farmaceutica e Medicinal (PharMedChem), Universidade Federal do Amapa, Macapa, Amapa, Brazil
| |
Collapse
|
8
|
Dos Santos EUD, da Silva IIFG, Asano AGC, Asano NMJ, De Mascena Diniz Maia M, de Souza PRE. Pharmacogenetic profile and the development of the dyskinesia induced by levodopa-therapy in Parkinson's disease patients: a population-based cohort study. Mol Biol Rep 2020; 47:8997-9004. [PMID: 33151475 DOI: 10.1007/s11033-020-05956-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/28/2020] [Indexed: 12/21/2022]
Abstract
Levodopa-induced dyskinesia (LID) is an adverse effect that negatively impacts the quality of life of patients with Parkinson's disease (PD). Studies report that genetic variations in the genes of the pharmacogenetic pathway of the levodopa (L-DOPA) might be associated with LID development. The goal of the present study was to investigate a possible influence of functional genetic variants in the DRD1 (rs4532), DRD2 (rs1800497), DAT1 (rs28363170), and COMT (rs4680) genes with LID development. A total of 220 patients with idiopathic PD were enrolled. The genotyping for DRD1 (rs4532), DRD2 (rs1800497), DAT1 (rs28363170), and COMT (rs4680) polymorphisms were performed using Restriction Fragment Length Polymorphism (PCR-RFLP). Univariate and multivariate analyses were performed to assess the association of these polymorphisms and risk factors with LID development. Multivariate Cox regression analysis showed increased risk to LID development for both Levodopa Dose Equivalency (LED) (Hazard ratios (HR) = 1.001; 95% CI 1.00-1.01; p = 0.009) and individuals carrying the COMT L/L genotype (HR = 2.974; 95% CI 1.12-7.83; p = 0.010). Furthermore, when performed a Cox regression analysis adjusted for a total LED, we observed that the genotype COMT L/L had a 3.84-fold increased risk for LID development (HR = 3.841; 95% CI 1.29-11.37; p = 0.012). Our results suggest that before treating LID in PD patients, it is important to take into consideration genetic variant in the COMT gene, since COMT LL genotype may increase the risk for LID development.
Collapse
Affiliation(s)
- Erinaldo Ubirajara Damasceno Dos Santos
- Graduate Program in Applied Cellular and Molecular Biology, University of Pernambuco (UPE), Rua Dom Manuel de Medeiros, S/N -Dois Irmãos, CEP:52171-900, Recife, PE, Brazil
| | | | - Amdore Guescel C Asano
- Department of Clinical Medicine, Faculty of Medicine, Federal University of Pernambuco (UFPE), Recife, PE, Brazil.,Pro-Parkinson Program of the Clinical Hospital of the Federal University of Pernambuco Recife (HC/UFPE), Recife, PE, Brazil
| | - Nadja Maria Jorge Asano
- Department of Clinical Medicine, Faculty of Medicine, Federal University of Pernambuco (UFPE), Recife, PE, Brazil.,Pro-Parkinson Program of the Clinical Hospital of the Federal University of Pernambuco Recife (HC/UFPE), Recife, PE, Brazil
| | | | - Paulo Roberto Eleutério de Souza
- Graduate Program in Applied Cellular and Molecular Biology, University of Pernambuco (UPE), Rua Dom Manuel de Medeiros, S/N -Dois Irmãos, CEP:52171-900, Recife, PE, Brazil. .,Graduate Program in Genetics, Federal University of Pernambuco (UFPE), Recife, PE, Brazil. .,Department of Biology, Federal Rural University of Pernambuco (UFRPE), Recife, PE, Brazil.
| |
Collapse
|
9
|
Redenšek S, Dolžan V. The role of pharmacogenomics in the personalization of Parkinson's disease treatment. Pharmacogenomics 2020; 21:1033-1043. [PMID: 32893736 DOI: 10.2217/pgs-2020-0031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Parkinson's disease (PD)-related phenotypes can vary among patients substantially, including response to dopaminergic treatment in terms of efficacy and occurrence of adverse events. Many pharmacogenetic studies have already been conducted to find genetic markers of response to dopaminergic treatment. Integration of genetic and clinical data has already resulted in construction of clinical pharmacogenetic models for prediction of adverse events. However, the results of pharmacogenetic studies are inconsistent. More comprehensive genome-wide approaches are needed to find genetic biomarkers of PD-related phenotypes to better explain the variability in response to treatment. These genetic markers should be integrated with clinical, environmental, imaging, and other omics data to build clinically useful algorithms for personalization of PD management.
Collapse
Affiliation(s)
- Sara Redenšek
- Pharmacogenetics Laboratory, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Vita Dolžan
- Pharmacogenetics Laboratory, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| |
Collapse
|
10
|
Hejazi NS. Visual Hallucinations and Impulse Control Disorder in Parkinson's Disease. Int J Neuropsychopharmacol 2020; 23:639-641. [PMID: 32658290 PMCID: PMC7727485 DOI: 10.1093/ijnp/pyaa045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 06/19/2020] [Indexed: 11/12/2022] Open
Affiliation(s)
- Nadia S Hejazi
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland,Correspondence: Nadia S. Hejazi, MD, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, 10 center Drive, CRC Room 7-5543, Bethesda, Maryland 20814 ()
| |
Collapse
|
11
|
Dos Santos EUD, Duarte EBC, Miranda LMR, Asano AGC, Asano NMJ, Maia MDMD, de Souza PRE. Influence of DRD1 and DRD3 Polymorphisms in the Occurrence of Motor Effects in Patients with Sporadic Parkinson's Disease. Neuromolecular Med 2019; 21:295-302. [PMID: 31119645 DOI: 10.1007/s12017-019-08549-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 05/17/2019] [Indexed: 12/16/2022]
Abstract
Parkinson's disease (PD) is a multisystem disorder that affects 2-3% of the population ≥ 65 years of age. The main pharmacologic agent use in the treatment of clinical symptoms of PD is levodopa (L-DOPA). However, the chronic use of L-DOPA might result in the emergence of motor complications such as motor fluctuation and dyskinesia. Previous studies have shown that the inter-individual variability and pharmacogenetic profile of PD patients seem to influence the occurrence of motor complications. For these reasons, the purpose of this study was to evaluate a possible relationship between DRD1 A48G and DRD3 Ser9Gly genetic variants with the occurrence of motor complications in PD patients in a Brazilian population. A total of 228 patients with idiopathic PD were enrolled. Patients were genotyped for DRD1 A48G and DRD3 Ser9Gly polymorphisms using PCR-RFLP. The univariate and multivariate analyses were performed to assess the association of these polymorphisms with the occurrence of motor fluctuation and dyskinesia in PD patients. Multiple Poisson regression analyses showed a protector effect to the occurrence of dyskinesia for individuals carrying of the DRD1 G/G genotype (PR 0.294; CI 0.09-0.87; p ≤ 0.020) after the threshold Bonferroni's. Besides, we verified risk increased to the occurrence of motor complications with daily L-DOPA dosage, disease duration, and users of rasagiline, selegiline, or entacapone (p < 0.05 for all). Our results suggest that the DRD1 A48G polymorphism and the presence of extrinsic and intrinsic factors may role an effect in the occurrence of dyskinesia in PD patients.
Collapse
Affiliation(s)
| | | | - Laura Maria Ramos Miranda
- Postgraduate Program in Tropical Animal Science, Rural Federal University of Pernambuco (UFRPE), Recife, PE, Brazil
| | - Andore Guescel C Asano
- Department of Clinical Medicine, Faculty of Medicine, Federal University of Pernambuco (UFPE), Recife, PE, Brazil.,Pro-Parkinson Program of Clinical Hospital of Federal, University of Pernambuco Recife (HC/UFPE), Recife, PE, Brazil
| | - Nadja Maria Jorge Asano
- Department of Clinical Medicine, Faculty of Medicine, Federal University of Pernambuco (UFPE), Recife, PE, Brazil.,Pro-Parkinson Program of Clinical Hospital of Federal, University of Pernambuco Recife (HC/UFPE), Recife, PE, Brazil
| | - Maria de Mascena Diniz Maia
- Department of Biology, Federal Rural University of Pernambuco (UFRPE), Rua Dom Manuel de Medeiros, S/N - Dois Irmãos, CEP: 52171-900, Recife, PE, Brazil
| | - Paulo Roberto Eleutério de Souza
- Postgraduate Program in Applied Cellular and Molecular Biology, University of Pernambuco (UPE), Recife, PE, Brazil. .,Postgraduate Program in Tropical Animal Science, Rural Federal University of Pernambuco (UFRPE), Recife, PE, Brazil. .,Department of Biology, Federal Rural University of Pernambuco (UFRPE), Rua Dom Manuel de Medeiros, S/N - Dois Irmãos, CEP: 52171-900, Recife, PE, Brazil.
| |
Collapse
|