1
|
Ogunro OB. An updated and comprehensive review of the health benefits and pharmacological activities of hesperidin. Biochem Biophys Res Commun 2025; 772:151974. [PMID: 40414011 DOI: 10.1016/j.bbrc.2025.151974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 05/06/2025] [Accepted: 05/07/2025] [Indexed: 05/27/2025]
Abstract
OBJECTIVES This review aims to comprehensively assess the health benefits and pharmacological activities of hesperidin, a flavonoid commonly found in citrus fruits. It consolidates recent research findings to provide insights into hesperidin's diverse health-promoting effects. KEY FINDINGS Hesperidin has gained significant attention recently for its notable pharmacological activities and potential health benefits. Studies reveal its antioxidant properties, protecting cells from oxidative damage, and its anti-inflammatory effects, inhibiting pro-inflammatory cytokines and enzymes. Also, hesperidin shows promise in cardiovascular health by reducing blood pressure and cholesterol levels and enhancing endothelial function. It also exhibits anticancer potential by hindering cell proliferation, inducing apoptosis, and suppressing tumour growth. Moreover, hesperidin demonstrates neuroprotective effects, potentially mitigating neuroinflammation and oxidative stress associated with neurodegenerative diseases. Furthermore, it displays beneficial effects in metabolic disorders such as diabetes, obesity, and fatty liver disease by influencing glucose metabolism, lipid profile, and insulin sensitivity. SUMMARY Hesperidin exhibits a wide range of health benefits and pharmacological activities, making it a promising candidate for therapeutic interventions in various diseases. Its antioxidant, anti-inflammatory, cardiovascular, anticancer, neuroprotective, and metabolic effects underscore its potential as a valuable natural compound for promoting health and preventing chronic diseases.
Collapse
Affiliation(s)
- Olalekan Bukunmi Ogunro
- Drug Discovery, Toxicology, and Pharmacology Research Laboratory, Department of Biological Sciences, KolaDaisi University, Ibadan, Nigeria.
| |
Collapse
|
2
|
Xu XW, Zhou XW, Zhang L, Wang Q, Wang XX, Jin YM, Li LL, Jin MF, Wu HY, Ding X, Ni H. Complexin 2 contributes to the protective effect of NAD + on neuronal survival following neonatal hypoxia-ischemia. Acta Pharmacol Sin 2025:10.1038/s41401-025-01555-1. [PMID: 40247039 DOI: 10.1038/s41401-025-01555-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 03/30/2025] [Indexed: 04/19/2025]
Abstract
Nicotinamide adenine dinucleotide (NAD) is a key coenzyme involved in cell metabolism associated with aging, cancer, neurodegenerative diseases and metabolic disorders. We recently showed that NAD+ therapy significantly improved neurobehavioral outcomes in neonatal mice after hypoxia-ischemia (HI), and bioinformatics analysis revealed that the expression of complexin 2 (CPLX2) in the injured cerebral cortex was significantly decreased 24 h after HI injury but could be reversed by NAD+ intervention. In this study we explored the role of CPLX2 in the survival and function of neonatal hypoxic-ischemic cortical neurons. HI models were established by permanent ligation of the left common carotid artery in mice. CPLX2-knockdown lentiviral vector was injected intraventricularly on postnatal day 1 (P1); CPLX2 knockout mice were also used. NAD+ (5 mg·kg-1·d-1, i.p.) was administered before HI surgery, thereafter once a day until sampling. We showed that NAD+ administration significantly ameliorated the morphological damages and neurobehavioral defects, and elevated the seizure thresholds in HI mice. All the beneficial effects of NAD+ were abolished by CPLX2 knockdown or knockout. In HT22 neuronal cells subjected to OGD/R, pretreated with NAD+ (100 μM) for 12 h significantly increased the cell viability, decreased the LDH levels, and inhibited the ferroptosis evidenced by the changes in redox-related parameters including concentrations of Fe2+, GSH, MDA, H2O2 as well as the expression of GPX4 and SLC7A11. CPLX2 knockdown in HT22 neuronal cells blocked the protective effects of NAD+ as in HI mice, whereas CPLX2 overexpression enhanced the inhibitory effects of NAD+ on ferroptosis in HT22 neuronal cells.
Collapse
Affiliation(s)
- Xiao-Wen Xu
- Department of Brain Science, Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215025, China
- Department of Endocrinology, Genetics and Metabolism, Children's Hospital of Soochow University, Suzhou, 215025, China
| | - Xiu-Wen Zhou
- Department of Brain Science, Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215025, China
| | - Li Zhang
- Department of Brain Science, Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215025, China
| | - Qing Wang
- Department of Brain Science, Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215025, China
| | - Xin-Xin Wang
- Department of Brain Science, Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215025, China
| | - Yi-Ming Jin
- Department of Brain Science, Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215025, China
| | - Li-Li Li
- Department of Brain Science, Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215025, China
| | - Mei-Fang Jin
- Department of Brain Science, Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215025, China
| | - Hai-Ying Wu
- Department of Endocrinology, Genetics and Metabolism, Children's Hospital of Soochow University, Suzhou, 215025, China.
| | - Xin Ding
- Soochow Key Laboratory of Prevention and Treatment of Child Brain Injury, Children's Hospital of Soochow University, Suzhou, 215025, China.
| | - Hong Ni
- Department of Brain Science, Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215025, China.
| |
Collapse
|
3
|
Xu X, Wang X, Zhang L, Jin Y, Li L, Jin M, Li L, Ni H. Nicotinamide adenine dinucleotide treatment confers resistance to neonatal ischemia and hypoxia: effects on neurobehavioral phenotypes. Neural Regen Res 2024; 19:2760-2772. [PMID: 38595293 PMCID: PMC11168517 DOI: 10.4103/nrr.nrr-d-23-01490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 01/16/2024] [Accepted: 01/29/2024] [Indexed: 04/11/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202412000-00031/figure1/v/2024-04-08T165401Z/r/image-tiff Neonatal hypoxic-ischemic brain injury is the main cause of hypoxic-ischemic encephalopathy and cerebral palsy. Currently, there are few effective clinical treatments for neonatal hypoxic-ischemic brain injury. Here, we investigated the neuroprotective and molecular mechanisms of exogenous nicotinamide adenine dinucleotide, which can protect against hypoxic injury in adulthood, in a mouse model of neonatal hypoxic-ischemic brain injury. In this study, nicotinamide adenine dinucleotide (5 mg/kg) was intraperitoneally administered 30 minutes before surgery and every 24 hours thereafter. The results showed that nicotinamide adenine dinucleotide treatment improved body weight, brain structure, adenosine triphosphate levels, oxidative damage, neurobehavioral test outcomes, and seizure threshold in experimental mice. Tandem mass tag proteomics revealed that numerous proteins were altered after nicotinamide adenine dinucleotide treatment in hypoxic-ischemic brain injury mice. Parallel reaction monitoring and western blotting confirmed changes in the expression levels of proteins including serine (or cysteine) peptidase inhibitor, clade A, member 3N, fibronectin 1, 5'-nucleotidase, cytosolic IA, microtubule associated protein 2, and complexin 2. Proteomics analyses showed that nicotinamide adenine dinucleotide ameliorated hypoxic-ischemic injury through inflammation-related signaling pathways (e.g., nuclear factor-kappa B, mitogen-activated protein kinase, and phosphatidylinositol 3 kinase/protein kinase B). These findings suggest that nicotinamide adenine dinucleotide treatment can improve neurobehavioral phenotypes in hypoxic-ischemic brain injury mice through inflammation-related pathways.
Collapse
Affiliation(s)
- Xiaowen Xu
- Division of Brain Science, Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Xinxin Wang
- Division of Brain Science, Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Li Zhang
- Division of Brain Science, Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Yiming Jin
- Division of Brain Science, Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Lili Li
- Division of Brain Science, Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Meifang Jin
- Division of Brain Science, Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Lianyong Li
- Department of Pediatric Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Hong Ni
- Division of Brain Science, Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
4
|
Olasehinde TA, Ekundayo TC, Ijabadeniyi OA, Olaniran AO. The Impact of Hesperidin on Cognitive Deficit and Neurobehavioural Disorders: A Systematic Review and Meta-Analysis of Preclinical Individual Studies. Curr Behav Neurosci Rep 2024; 11:246-259. [DOI: 10.1007/s40473-024-00284-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/04/2024] [Indexed: 01/03/2025]
Abstract
AbstractPurpose of Review Experimental evidence suggests that flavonoids prevent neurodegeneration and improves cognitive function. In this study, we systematically reviewed the effect of hesperidin on cognitive deficits and neurobehavioural outcomes in in vivo studies.Recent Findings: A systematic search of PubMed, EBSCOhost, Web of Science, Scopus and ProQuest was conducted. Meta-analysis was performed on the effect of hesperidin on cognitive and neurobehavioural parameters (Morris Water Maze, Y-Maze, elevated plus maze, rotarod test, locomotion activity, passive avoidance test, open field test and forced swimming test). The mixed effect model was used to compute the standard mean difference (SMD). A total of 1069 documents were retrieved. However, 46 studies were included in the systematic review and meta-analysis. Our findings revealed that hesperidin did not significantly affect cognitive performance in normal rats compared with placebo. Moreover, hesperidin improved memory and learning, sensorimotor function and locomotion activity in cognitive impaired rats. Hesperidin did not show any significant effect on anxiety-related outcomes in the diseased model.Summary: Hesperidin improved cognitive function and neurocognitive effects could be associated with its neuroprotective effects against neuroinflammation, oxidative stress-induced neuronal damage, inhibition of cholinergic deficit and mitochondrial dysfunction. These results correlate with available scientific evidence on the effect of hesperidin on cognitive dysfunction and neurobehavioural deficits in cognitive-impaired rats.
Collapse
|
5
|
Sanaiee A, Hassanpour S, Vazir B. Protective role of the ginsenoside Rg1 against methimazole-induced gestational hypothyroidism on reflexive behaviors, conditioned fear and cortical antioxidant levels in mice offspring. IBRO Neurosci Rep 2024; 16:485-496. [PMID: 38634016 PMCID: PMC11021994 DOI: 10.1016/j.ibneur.2024.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/28/2024] [Indexed: 04/19/2024] Open
Abstract
Ginsenoside Rg1(Rg1), a monomer of a tetracyclic triterpenoid derivative, possesses diverse medicinal properties attributed to its unique chemical structure and may have beneficial effects on fetal development. This study aimed to investigate the protective effects of prenatal exposure to Rg1 against Methimazole-induced gestational hypothyroidism on reflexive behaviors, conditioned fear, and cortical antioxidant levels in mouse offspring.40 female virgin mice and 12 male NMRI mice were assigned to four groups: group 1 served as the control, group 2 received Methimazole(MMI) at a concentration of 0.02% in their drinking water, group 3 received Rg1(150 mg/kg), and group 4 received both MMI and Rg1.Groups of 2-4 were administered the substances from days 1-9 of gestation. After delivery, pups were selected, and reflexive motor behaviors and conditioned fear were assessed. Additionally, levels of brain tissue catalase(CAT), malondialdehyde(MDA), superoxide dismutase(SOD), and glutathione peroxidase(GPx) levels were measured. Furthermore, postpartum immobility time in the forced swimming test (FST), tail suspension test (TST), and the number of squares crossed in the open field test (OFT)were determined. The results demonstrated that maternal exposure to Rg1 improved ambulation score, hind-limb suspension score, grip strength, front-limb suspension, hind-limb foot angle, negative geotaxis, surface righting, and conditioned fear in hypothyroidism-induced offspring(P<0.05). Rg1 decreased immobility time in the FST, and TST, and increased the number of squares crossed in the OFT in postpartum hypothyroidism-induced mice(P<0.05). Moreover, Rg1 reduced brain tissue MDA levels and increased brain tissue CAT, SOD, and GPx levels in mice and their offspring(P<0.05). These findings indicate that Rg1 mitigated postpartum depression in mice and improved reflexive motor behaviors in their pups.
Collapse
Affiliation(s)
- Ali Sanaiee
- Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Shahin Hassanpour
- Division of Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Bita Vazir
- Division of Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
6
|
Zhou H, Zheng X, Xia W, Ma Q, Li J, Zeng Q, Huang J. The Efficacy and Safety of the Zhuyun Formula and Auricular Acupressure for the Infertile Women with Recurrent Implantation Failure: A Randomized Controlled Trial. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:5274638. [PMID: 36267092 PMCID: PMC9578856 DOI: 10.1155/2022/5274638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022]
Abstract
Background Recurrent implantation failure (RIF), a clinical disorder characterized by failure to achieve pregnancy after repeated (≥3) embryo transfer, is a challenge for reproductive demands worldwide. In our preliminary work, the Zhuyun formula (ZYF) with auricular acupressure, a complementary and alternative medicine (CAM) with a small sample size for RIF, can improve the clinical pregnancy rate (41.2% vs. 26.7%, treatment group vs. control group, p < 0.05). Based on the toxicological and pregnancy-related pharmacological analysis of ZYF for RIF, the T-cell receptor signaling pathway might be involved in the pharmacological activity. This study aimed at evaluating the efficacy and safety of the CAM therapy according to pregnancy outcomes and maternal and child health and investigating the changes of T-helper (Th) cells in the peripheral blood of unexplained RIF women. Materials and Methods We conducted a prospective, two-arms, randomized, nonblinded study. All eligible women were randomly assigned to the treatment group (TG) and the control group (CG) according to a computer-generated randomization list in sealed opaque envelopes. Blood samples were collected from the two groups, and serum Th1, Th2, and Treg were detected by flow cytometry. The cytokines were detected by an enzyme-linked immunosorbent assay (ELISA). The TG was administrated with ZYF and auricular acupressure for three months before ovarian stimulation, while the control group was on a waiting list for the same period. The primary outcome was CPR. The second outcomes were the serum levels of immune parameters. For the safety evaluation, the perinatal outcomes of maternal and child were obtained by follow-up. Post-hoc sensitivity analyses were performed to assess the effect of missing data. Results One hundred and twenty-three women were randomized into the TG (n = 62) and CG (n = 61). The CPR was increased significantly in the TG (45.2%) than CG (26.2%) (p = 0.029). Twenty blood samples were collected, and the Th2/Th1 and Treg expression level was significantly higher in the TG than in the CG. IL-2, IL-10, and Foxp3 were higher significantly in the TG than in the CG. The maternal and child perinatal outcomes were not significantly different between the two groups. Conclusions The ZYF with auricular acupressure was effective and safe in improving the pregnancy outcomes of RIF. It might be related to balancing the level of cytokines related to the immune tolerance of the maternal-fetal interface to protect the embryo from the maternal immune system. Clinical Trial Registration: Clinical Trial Registry; date: 14/Dec/2013; no. NCT03078205.
Collapse
Affiliation(s)
- Hang Zhou
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Department of Gynecology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610037, China
| | - Xiaoyan Zheng
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- Chengdu Xi'nan Gynecology Hospital, Chengdu, 610020, China
| | - Wanting Xia
- Department of Gynecology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610037, China
| | - Qianhong Ma
- Department of Gynecology, West China Second University Hospital of Sichuan University, Chengdu 610000, China
| | - Jinmei Li
- Department of Gynecology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610037, China
- Department of Gynecology, Zhumadian TCM Hospital, Zhumadian 463000, China
| | - Qian Zeng
- Department of Gynecology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610037, China
| | - Jinzhu Huang
- School of Nursing, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
7
|
Taheri-Amlashi M, Hassanpour S, Vazir B. Effects of the prenatal exposure to crocin in the expression of withdrawal syndrome on reflexive motor behaviors in mice offspring's. Neurosci Lett 2022; 766:136352. [PMID: 34788677 DOI: 10.1016/j.neulet.2021.136352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 11/10/2021] [Indexed: 12/01/2022]
Abstract
The aim of the current study was to determine effects of the prenatal exposure to crocin in the expression of withdrawal syndrome on reflexive motor behaviors in mice offspring's. Fourteen male mice and 56 adult female mice were randomly divided into seven groups as: control group (morphine-abstinent male and female); group 2, drug-naïve female and morphine-abstinent male; group 3, drug-naïve male and morphine-abstinent females; group 4, drug-naïve male and female. Groups 5-7, were similar to groups 2-4, except crocin (5 mg/kg) were injected to drug-naïve subjects. Following delivery, 20 pups from each litter were selected and behavior and reflexive motor behaviors were determined. Also, blood samples were taken to determine serum antioxidant activity. According to the results, immobility time significantly increased in offspring of the paternal + maternal exposed to morphine swimming test and tail suspension tests (P < 0.05) and significantly decreased in offspring of paternal + maternal exposed to morphine + crocin group (P < 0.05). Ambulation, surface righting, hind-limb suspension, grip strength and front limb suspension significantly decreased in offspring of the mice exposed to morphine (P < 0.05) and significantly improved in offspring of paternal + maternal exposed to morphine + crocin group (P < 0.05). Hind-limb foot angle and negative geotaxis significantly increased in mice with morphine-exposed offspring's (P < 0.05) while improved in offspring of paternal + maternal exposed to morphine + crocin group (P < 0.05). Prenatal exposure to morphine increased Malondialdehyde while decreased Superoxide dismutase, Glutathione peroxidase and total antioxidant status in mice offspring's (P < 0.05) and these results reversed by prenatal exposure to crocin (P < 0.05). In all studied factors, paternal + maternal exposed to morphine + crocin group had better results compared to the other crocin-received drug-naïve groups (P < 0.05). These results suggested prenatal exposure to crocin decreased morphine-induced adverse effect which paternal and maternal exposed to morphine + crocin had the highest prevention against these effects in mice offspring's.
Collapse
Affiliation(s)
- Mozhdeh Taheri-Amlashi
- Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Shahin Hassanpour
- Division of Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Bita Vazir
- Division of Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
8
|
Elahinia A, Hassanpour S, Asghari A, Khaksar E. Prenatal exposure to α-pinine improves reflexive motor behaviours in mice offspring. Int J Dev Neurosci 2021; 82:124-132. [PMID: 34957588 DOI: 10.1002/jdn.10164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 10/19/2021] [Accepted: 10/26/2021] [Indexed: 11/10/2022] Open
Abstract
α-pinene is a well-known compound representative of the monoterpenes group with a wide range of pharmacological activities. This article aims to determine effects of the prenatal exposure to α-pinene on reflexive motor behaviours in mice offspring. Forty pregnant female NMRI mice (8-10 weeks old) were allocated into four groups. Group 1 served as control and groups 2-4 were intraperitoneally (i.p.) injected α-pinene (0.1, 0.5 and 1 mg/kg) on 5, 8, 11, 14 and 17 days of gestation (GD). The control group was injected with saline at the same days. Following delivery, 20 pups from each litter were selected and reflexive motor behaviours determined using ambulation, hindlimb foot angle, surface righting, hindlimb strength, grip strength, front-limb suspension and negative geotaxis tests. Based on the findings of the present study, maternal exposure to α-pinene increased ambulation score, hind-limb suspension score, grip strength, front-limb suspension compared with the control group (P < 0.05). Also, prenatal exposure to α-pinene decreased surface righting, hind-limb foot angle and negative geotaxis in mice offspring compared with the control group (P < 0.05). α-pinene (0.1, 0.5 and 1 mg/kg) decreased blood MDA and increased SOD and GPx levels in mice offspring (P < 0.05). These results suggested α-pinene exposure during pregnancy has positive effect on reflexive motor behaviours in mice offspring possibly due to its antioxidant properties.
Collapse
Affiliation(s)
- Ali Elahinia
- Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Shahin Hassanpour
- Division of Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ahmad Asghari
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ehssan Khaksar
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|