1
|
Sarnella A, Ferrara Y, Terlizzi C, Albanese S, Monti S, Licenziato L, Mancini M. The Chicken Embryo: An Old but Promising Model for In Vivo Preclinical Research. Biomedicines 2024; 12:2835. [PMID: 39767740 PMCID: PMC11673736 DOI: 10.3390/biomedicines12122835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/06/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
The chicken embryo has emerged as a valuable model for preclinical studies due to its unique combination of accessibility, affordability, and relevance to human biology. Its rapid development, external growth environment, and clear structural visibility offer distinct advantages over traditional mammalian models. These features facilitate the study of real-time biological processes, including tissue development, tumor growth, angiogenesis, and drug delivery, using various imaging modalities, such as optical imaging, magnetic resonance imaging, positron emission tomography, computed tomography, and ultrasound. The chicken embryo model also minimizes ethical concerns compared to mammalian models, as it allows for early-stage research without the complexity of a fully developed animal. Moreover, its ability to integrate human tumor cells into xenograft models provides a reliable platform for cancer research, enabling high-throughput screening of therapeutic interventions and tracking molecular dynamics in vivo. Advances in molecular imaging techniques further enhance the resolution and depth of data obtained from these studies, offering insights into cellular and molecular mechanisms underlying disease. Given its versatility, cost-effectiveness, and translational potential, the chicken embryo represents a promising tool for advancing preclinical research, particularly in drug development, cancer biology, and regenerative medicine.
Collapse
Affiliation(s)
| | | | - Cristina Terlizzi
- Institute of Biostructures and Bioimaging, National Research Council, 80145 Naples, Italy; (A.S.); (Y.F.); (S.A.); (S.M.); (L.L.); (M.M.)
| | | | | | | | | |
Collapse
|
2
|
Li H, Long D, Lv G, Cheng X, Wang G, Yang X. The double-edged sword role of TGF-β signaling pathway between intrauterine inflammation and cranial neural crest development. FASEB J 2021; 36:e22113. [PMID: 34939699 DOI: 10.1096/fj.202101343r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/25/2021] [Accepted: 12/06/2021] [Indexed: 11/11/2022]
Abstract
Intrauterine infection would harm a developing embryo/fetus, thereby increasing the risk of developmental malformation. But, whether or not the infection-induced inflammation affects neural crest development still remains obscure. In this study, we employed meta-analysis to demonstrate the potential correlation between infection-induced inflammation and craniofacial anomalies, which was usually derived from the problems in neural crest cell development. The correlation was further verified by inflammatory cytokine release and the activation of nuclear factor kappa-light-chain enhancer of activated B cells signaling in lipopolysaccharide-treated HH10 chicken embryos. In such an inflammatory condition, AP-2α- and Pax7-labeled pre-migratory and migratory neural crest cells in HH10 chicken embryos were significantly less than the ones in control. The bioinformatics analysis of RNA-seq data demonstrated that the principal differential gene expression occurred in transforming growth factor-beta (TGF-β) signaling pathway, which was confirmed by the subsequent experimental results of quantitative PCR and immunofluorescent staining. Under this inflammatory circumstance, whole-mount in situ hybridization, immunofluorescence, and quantitative PCR showed the gene expression changes of key EMT-related transcription factors including upregulated Msx1, downregulated Slug, and FoxD3, as well as adhesion molecules and extracellular matrix protein including upregulated Cadherrin6B, E-cadherin, N-cadherin, and Laminin at the dorsal portion of neural tube of HH10 chicken embryos. Meanwhile, the bioinformatics analysis of RNA-seq data also manifested the differential gene expressions relevant to cell proliferation, which was confirmed by proliferating cell nuclear antigen Western blot data and co-immunofluorescence staining of human natural killer-1 and phosphorylated histone H3. In brief, this study revealed for the first time that the double-edged sword role of TGF-β signaling pathway between intrauterine inflammation (protective role) and cranial neural crest development (harmful role).
Collapse
Affiliation(s)
- Haiyang Li
- Division of Histology and Embryology, International Joint Laboratory for Embryonic Development & Prenatal Medicine, Medical College, Jinan University, Guangzhou, China
| | - Denglu Long
- Division of Histology and Embryology, International Joint Laboratory for Embryonic Development & Prenatal Medicine, Medical College, Jinan University, Guangzhou, China.,Medical Records Department, Quality and Safety Management Office, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Guohua Lv
- Division of Histology and Embryology, International Joint Laboratory for Embryonic Development & Prenatal Medicine, Medical College, Jinan University, Guangzhou, China
| | - Xin Cheng
- Division of Histology and Embryology, International Joint Laboratory for Embryonic Development & Prenatal Medicine, Medical College, Jinan University, Guangzhou, China
| | - Guang Wang
- Division of Histology and Embryology, International Joint Laboratory for Embryonic Development & Prenatal Medicine, Medical College, Jinan University, Guangzhou, China
| | - Xuesong Yang
- Division of Histology and Embryology, International Joint Laboratory for Embryonic Development & Prenatal Medicine, Medical College, Jinan University, Guangzhou, China.,Key Laboratory for Regenerative Medicine of the Ministry of Education, Jinan University, Guangzhou, China
| |
Collapse
|
3
|
Houssin NS, Martin JB, Coppola V, Yoon SO, Plageman TF. Formation and contraction of multicellular actomyosin cables facilitate lens placode invagination. Dev Biol 2020; 462:36-49. [PMID: 32113830 DOI: 10.1016/j.ydbio.2020.02.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/06/2020] [Accepted: 02/25/2020] [Indexed: 01/23/2023]
Abstract
Embryonic morphogenesis relies on the intrinsic ability of cells, often through remodeling the cytoskeleton, to shape epithelial tissues during development. Epithelial invagination is an example of morphogenesis that depends on this remodeling but the cellular mechanisms driving arrangement of cytoskeletal elements needed for tissue deformation remain incompletely characterized. To elucidate these mechanisms, live fluorescent microscopy and immunohistochemistry on fixed specimens were performed on chick and mouse lens placodes. This analysis revealed the formation of peripherally localized, circumferentially orientated and aligned junctions enriched in F-actin and MyoIIB. Once formed, the aligned junctions contract in a Rho-kinase and non-muscle myosin dependent manner. Further molecular characterization of these junctions revealed a Rho-kinase dependent accumulation of Arhgef11, a RhoA-specific guanine exchange factor known to regulate the formation of actomyosin cables and junctional contraction. In contrast, the localization of the Par-complex protein Par3, was reduced in these circumferentially orientated junctions. In an effort to determine if Par3 plays a negative role in MyoIIB accumulation, Par3-deficient mouse embryos were analyzed which not only revealed an increase in bicellular junctional accumulation of MyoIIB, but also a reduction of Arhgef11. Together, these results highlight the importance of the formation of the multicellular actomyosin cables that appear essential to the initiation of epithelial invagination and implicate the potential role of Arhgef11 and Par3 in their contraction and formation.
Collapse
Affiliation(s)
| | - Jessica B Martin
- College of Optometry, The Ohio State University, Columbus, OH, USA
| | - Vincenzo Coppola
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, USA
| | - Sung Ok Yoon
- Department of Biological Chemistry and Pharmacology, Ohio State University, Columbus, OH, USA
| | | |
Collapse
|
4
|
De Bellard ME, Ortega B, Sao S, Kim L, Herman J, Zuhdi N. Neuregulin-1 is a chemoattractant and chemokinetic molecule for trunk neural crest cells. Dev Dyn 2018. [PMID: 29516589 DOI: 10.1002/dvdy.24625] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Trunk neural crest cells migrate rapidly along characteristic pathways within the developing vertebrate embryo. Proper trunk neural crest cell migration is necessary for the morphogenesis of much of the peripheral nervous system, melanocytes, and the adrenal medulla. Numerous molecules help guide trunk neural crest cell migration throughout the early embryo. RESULTS The trophic factor NRG1 is a chemoattractant through in vitro chemotaxis assays and in vivo silencing via a DN-erbB receptor. Interestingly, we also observed changes in migratory responses consistent with a chemokinetic effect of NRG1 in trunk neural crest velocity. CONCLUSIONS NRG1 is a trunk neural crest cell chemoattractant and chemokinetic molecule. Developmental Dynamics 247:888-902, 2018.. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - Blanca Ortega
- Biology Department, California State University Northridge, Northridge, California
| | - Sothy Sao
- Biology Department, California State University Northridge, Northridge, California
| | - Lino Kim
- Biology Department, California State University Northridge, Northridge, California
| | - Joshua Herman
- Biology Department, California State University Northridge, Northridge, California
| | - Nora Zuhdi
- Biology Department, California State University Northridge, Northridge, California
| |
Collapse
|
5
|
Kowalski WJ, Pekkan K, Tinney JP, Keller BB. Investigating developmental cardiovascular biomechanics and the origins of congenital heart defects. Front Physiol 2014; 5:408. [PMID: 25374544 PMCID: PMC4204442 DOI: 10.3389/fphys.2014.00408] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 10/02/2014] [Indexed: 11/24/2022] Open
Abstract
Innovative research on the interactions between biomechanical load and cardiovascular (CV) morphogenesis by multiple investigators over the past 3 decades, including the application of bioengineering approaches, has shown that the embryonic heart adapts both structure and function in order to maintain cardiac output to the rapidly growing embryo. Acute adaptive hemodynamic mechanisms in the embryo include the redistribution of blood flow within the heart, dynamic adjustments in heart rate and developed pressure, and beat to beat variations in blood flow and vascular resistance. These biomechanically relevant events occur coincident with adaptive changes in gene expression and trigger adaptive mechanisms that include alterations in myocardial cell growth and death, regional and global changes in myocardial architecture, and alterations in central vascular morphogenesis and remodeling. These adaptive mechanisms allow the embryo to survive these biomechanical stresses (environmental, maternal) and to compensate for developmental errors (genetic). Recent work from numerous laboratories shows that a subset of these adaptive mechanisms is present in every developing multicellular organism with a “heart” equivalent structure. This chapter will provide the reader with an overview of some of the approaches used to quantify embryonic CV functional maturation and performance, provide several illustrations of experimental interventions that explore the role of biomechanics in the regulation of CV morphogenesis including the role of computational modeling, and identify several critical areas for future investigation as available experimental models and methods expand.
Collapse
Affiliation(s)
- William J Kowalski
- Cardiovascular Innovation Institute, University of Louisville Louisville, KY, USA ; Department of Pediatrics, University of Louisville Louisville, KY, USA
| | - Kerem Pekkan
- Department of Biomedical Engineering, Carnegie Mellon University Pittsburgh, PA, USA
| | - Joseph P Tinney
- Cardiovascular Innovation Institute, University of Louisville Louisville, KY, USA ; Department of Pediatrics, University of Louisville Louisville, KY, USA
| | - Bradley B Keller
- Cardiovascular Innovation Institute, University of Louisville Louisville, KY, USA ; Department of Pediatrics, University of Louisville Louisville, KY, USA ; Department of Biomedical Engineering, Carnegie Mellon University Pittsburgh, PA, USA
| |
Collapse
|
6
|
Spurlin J, Lwigale P. A technique to increase accessibility to late-stage chick embryos for in ovo manipulations. Dev Dyn 2013. [PMID: 23184557 DOI: 10.1002/dvdy.23907] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND During early development, avian embryos are easily accessible in ovo for transplantations and experimental perturbations. However, these qualities of the avian embryonic model rapidly wane shortly after embryonic day (E)4 when the embryo is obscured by extraembryonic membranes, making it difficult to study developmental events that occur at later stages in vivo. RESULTS In this study, we describe a multistep method that involves initially windowing eggs at E3, followed by dissecting away extraembryonic membranes at E5 to facilitate embryo accessibility in ovo until later stages of development. The majority of the embryos subjected to this technique remain exposed between E5 and E8, then become gradually displaced by the growing allantois from posterior to anterior regions. CONCLUSIONS Exposed embryos are viable and compatible with embryological and modern developmental biology techniques including tissue grafting and ablation, gene manipulation by electroporation, and protein expression. This technique opens up new avenues for studying complex cellular interactions during organogenesis and can be further extrapolated to regeneration and stem cell studies.
Collapse
Affiliation(s)
- James Spurlin
- Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77025, USA
| | | |
Collapse
|
7
|
Li XD, He RR, Qin Y, Tsoi B, Li YF, Ma ZL, Yang X, Kurihara H. Caffeine interferes embryonic development through over-stimulating serotonergic system in chicken embryo. Food Chem Toxicol 2012; 50:1848-53. [DOI: 10.1016/j.fct.2012.03.037] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 03/05/2012] [Accepted: 03/07/2012] [Indexed: 10/28/2022]
|