1
|
Pelosse M, Cottet-Rousselle C, Grichine A, Berger I, Schlattner U. Genetically Encoded Fluorescent Biosensors to Explore AMPK Signaling and Energy Metabolism. ACTA ACUST UNITED AC 2017; 107:491-523. [PMID: 27812993 DOI: 10.1007/978-3-319-43589-3_20] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Maintenance of energy homeostasis is a basic requirement for cell survival. Different mechanisms have evolved to cope with spatial and temporal mismatch between energy-providing and -consuming processes. Among these, signaling by AMP-activated protein kinase (AMPK) is one of the key players, regulated by and itself regulating cellular adenylate levels. Further understanding its complex cellular function requires deeper insight into its activation patterns in space and time at a single cell level. This may become possible with an increasing number of genetically encoded fluorescent biosensors, mostly based on fluorescence resonance energy transfer, which have been engineered to monitor metabolic parameters and kinase activities. Here, we review basic principles of biosensor design and function and the advantages and limitations of their use and provide an overview on existing FRET biosensors to monitor AMPK activation, ATP concentration, and ATP/ADP ratios, together with other key metabolites and parameters of energy metabolism.
Collapse
Affiliation(s)
- Martin Pelosse
- Laboratory of Fundamental and Applied Bioenergetics (LBFA) and SFR Environmental and Systems Biology (BEeSy), University Grenoble Alpes, Grenoble, France.,Inserm, U1055 and U1209, Grenoble, France
| | - Cécile Cottet-Rousselle
- Laboratory of Fundamental and Applied Bioenergetics (LBFA) and SFR Environmental and Systems Biology (BEeSy), University Grenoble Alpes, Grenoble, France.,Inserm, U1055 and U1209, Grenoble, France
| | - Alexei Grichine
- Inserm, U1055 and U1209, Grenoble, France.,Institute for Advanced Biosciences, University Grenoble Alpes, Grenoble, France
| | | | - Uwe Schlattner
- Laboratory of Fundamental and Applied Bioenergetics (LBFA) and SFR Environmental and Systems Biology (BEeSy), University Grenoble Alpes, Grenoble, France. .,Inserm, U1055 and U1209, Grenoble, France.
| |
Collapse
|
2
|
Single-cell tracking reveals antibiotic-induced changes in mycobacterial energy metabolism. mBio 2015; 6:e02236-14. [PMID: 25691591 PMCID: PMC4338811 DOI: 10.1128/mbio.02236-14] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ATP is a key molecule of cell physiology, but despite its importance, there are currently no methods for monitoring single-cell ATP fluctuations in live bacteria. This is a major obstacle in studies of bacterial energy metabolism, because there is a growing awareness that bacteria respond to stressors such as antibiotics in a highly individualistic manner. Here, we present a method for long-term single-cell tracking of ATP levels in Mycobacterium smegmatis based on a combination of microfluidics, time-lapse microscopy, and Förster resonance energy transfer (FRET)-based ATP biosensors. Upon treating cells with antibiotics, we observed that individual cells undergo an abrupt and irreversible switch from high to low intracellular ATP levels. The kinetics and extent of ATP switching clearly discriminate between an inhibitor of ATP synthesis and other classes of antibiotics. Cells that resume growth after 24 h of antibiotic treatment maintain high ATP levels throughout the exposure period. In contrast, antibiotic-treated cells that switch from ATP-high to ATP-low states never resume growth after antibiotic washout. Surprisingly, only a subset of these nongrowing ATP-low cells stains with propidium iodide (PI), a widely used live/dead cell marker. These experiments also reveal a cryptic subset of cells that do not resume growth after antibiotic washout despite remaining ATP high and PI negative. We conclude that ATP tracking is a more dynamic, sensitive, reliable, and discriminating marker of cell viability than staining with PI. This method could be used in studies to evaluate antimicrobial effectiveness and mechanism of action, as well as for high-throughput screening. New antimicrobials are urgently needed to stem the rising tide of antibiotic-resistant bacteria. All antibiotics are expected to affect bacterial energy metabolism, directly or indirectly, yet tools to assess the impact of antibiotics on the ATP content of individual bacterial cells are lacking. The method described here for single-cell tracking of intracellular ATP in live bacteria has many advantages compared to conventional ensemble-averaged assays. It provides a continuous real-time readout of bacterial ATP content, cell vitality, and antimicrobial mechanism of action with high temporal resolution at the single-cell level. In combination with high-throughput microfluidic devices and automated microscopy, this method also has the potential to serve as a novel screening tool in antimicrobial drug discovery.
Collapse
|
3
|
San Martín A, Sotelo-Hitschfeld T, Lerchundi R, Fernández-Moncada I, Ceballo S, Valdebenito R, Baeza-Lehnert F, Alegría K, Contreras-Baeza Y, Garrido-Gerter P, Romero-Gómez I, Barros LF. Single-cell imaging tools for brain energy metabolism: a review. NEUROPHOTONICS 2014; 1:011004. [PMID: 26157964 PMCID: PMC4478754 DOI: 10.1117/1.nph.1.1.011004] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Revised: 04/09/2014] [Accepted: 04/10/2014] [Indexed: 05/03/2023]
Abstract
Neurophotonics comes to light at a time in which advances in microscopy and improved calcium reporters are paving the way toward high-resolution functional mapping of the brain. This review relates to a parallel revolution in metabolism. We argue that metabolism needs to be approached both in vitro and in vivo, and that it does not just exist as a low-level platform but is also a relevant player in information processing. In recent years, genetically encoded fluorescent nanosensors have been introduced to measure glucose, glutamate, ATP, NADH, lactate, and pyruvate in mammalian cells. Reporting relative metabolite levels, absolute concentrations, and metabolic fluxes, these sensors are instrumental for the discovery of new molecular mechanisms. Sensors continue to be developed, which together with a continued improvement in protein expression strategies and new imaging technologies, herald an exciting era of high-resolution characterization of metabolism in the brain and other organs.
Collapse
Affiliation(s)
- Alejandro San Martín
- Centro de Estudios Científicos, Arturo Prat 514, Valdivia, 5110466, Chile
- Universidad Austral de Chile, Valdivia, Chile
| | - Tamara Sotelo-Hitschfeld
- Centro de Estudios Científicos, Arturo Prat 514, Valdivia, 5110466, Chile
- Universidad Austral de Chile, Valdivia, Chile
| | - Rodrigo Lerchundi
- Centro de Estudios Científicos, Arturo Prat 514, Valdivia, 5110466, Chile
- Universidad Austral de Chile, Valdivia, Chile
| | - Ignacio Fernández-Moncada
- Centro de Estudios Científicos, Arturo Prat 514, Valdivia, 5110466, Chile
- Universidad Austral de Chile, Valdivia, Chile
| | - Sebastian Ceballo
- Centro de Estudios Científicos, Arturo Prat 514, Valdivia, 5110466, Chile
| | - Rocío Valdebenito
- Centro de Estudios Científicos, Arturo Prat 514, Valdivia, 5110466, Chile
| | | | - Karin Alegría
- Centro de Estudios Científicos, Arturo Prat 514, Valdivia, 5110466, Chile
| | - Yasna Contreras-Baeza
- Centro de Estudios Científicos, Arturo Prat 514, Valdivia, 5110466, Chile
- Universidad Austral de Chile, Valdivia, Chile
| | - Pamela Garrido-Gerter
- Centro de Estudios Científicos, Arturo Prat 514, Valdivia, 5110466, Chile
- Universidad Austral de Chile, Valdivia, Chile
| | - Ignacio Romero-Gómez
- Centro de Estudios Científicos, Arturo Prat 514, Valdivia, 5110466, Chile
- Universidad Austral de Chile, Valdivia, Chile
| | - L. Felipe Barros
- Centro de Estudios Científicos, Arturo Prat 514, Valdivia, 5110466, Chile
- Address all correspondence to: L. Felipe Barros, E-mail:
| |
Collapse
|
4
|
Dalton CM, Szabadkai G, Carroll J. Measurement of ATP in single oocytes: impact of maturation and cumulus cells on levels and consumption. J Cell Physiol 2014; 229:353-61. [PMID: 24002908 DOI: 10.1002/jcp.24457] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 08/16/2013] [Indexed: 11/07/2022]
Abstract
Mitochondria provide the primary source of ATP in the oocyte and early embryo and mitochondrial dysfunction and deficit of mitochondria-derived ATP has been linked to suboptimal developmental competence. We have undertaken a study of ATP in the maturing mouse oocyte using a novel recombinant FRET based probe, AT1.03. We show that AT1.03 can be successfully used to monitor cytosolic ATP levels in single live oocytes over extended time periods. We find that ATP levels undergo dynamic changes associated with specific maturational events and that oocytes display altered rates of ATP consumption at different stages of maturation. Cumulus enclosed oocytes have a higher ATP level during maturation than denuded oocytes and this can be abolished by inhibition of gap junctional communication between the oocyte and cumulus cells. Our work uses a new approach to shed light on regulation of ATP levels and ATP consumption during oocyte maturation.
Collapse
Affiliation(s)
- Caroline M Dalton
- Division of Biosciences, Department of Cell and Developmental Biology, UCL, London, UK
| | | | | |
Collapse
|
5
|
Cram EJ. Mechanotransduction in C. elegans morphogenesis and tissue function. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 126:281-316. [PMID: 25081623 DOI: 10.1016/b978-0-12-394624-9.00012-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Mechanobiology is an emerging field that investigates how living cells sense and respond to their physical surroundings. Recent interest in the field has been sparked by the finding that stem cells differentiate along different lineages based on the stiffness of the cell surroundings (Engler et al., 2006), and that metastatic behavior of cancer cells is strongly influenced by the mechanical properties of the surrounding tissue (Kumar and Weaver, 2009). Many questions remain about how cells convert mechanical information, such as viscosity, stiffness of the substrate, or stretch state of the cells, into the biochemical signals that control tissue function. Caenorhabditis elegans researchers are making significant contributions to the understanding of mechanotransduction in vivo. This review summarizes recent insights into the role of mechanical forces in morphogenesis and tissue function. Examples of mechanical regulation across length scales, from the single-celled zygote, to the intercellular coordination that enables cohesive tissue function, to the mechanical influences between tissues, are considered. The power of the C. elegans system as a gene discovery and in vivo quantitative bioimaging platform is enabling an important discoveries in this exciting field.
Collapse
Affiliation(s)
- Erin J Cram
- Department of Biology, Northeastern University, Boston, Massachusetts, USA
| |
Collapse
|
6
|
Tsuyama T, Kishikawa JI, Han YW, Harada Y, Tsubouchi A, Noji H, Kakizuka A, Yokoyama K, Uemura T, Imamura H. In vivo fluorescent adenosine 5'-triphosphate (ATP) imaging of Drosophila melanogaster and Caenorhabditis elegans by using a genetically encoded fluorescent ATP biosensor optimized for low temperatures. Anal Chem 2013; 85:7889-96. [PMID: 23875533 DOI: 10.1021/ac4015325] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Adenosine 5'-triphosphate (ATP) is the major energy currency of all living organisms. Despite its important functions, the spatiotemporal dynamics of ATP levels inside living multicellular organisms is unclear. In this study, we modified the genetically encoded Förster resonance energy transfer (FRET)-based ATP biosensor ATeam to optimize its affinity at low temperatures. This new biosensor, AT1.03NL, detected ATP changes inside Drosophila S2 cells more sensitively than the original biosensor did, at 25 °C. By expressing AT1.03NL in Drosophila melanogaster and Caenorhabditis elegans, we succeeded in imaging the in vivo ATP dynamics of these model animals at single-cell resolution.
Collapse
Affiliation(s)
- Taiichi Tsuyama
- Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
From FRET Imaging to Practical Methodology for Kinase Activity Sensing in Living Cells. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 113:145-216. [DOI: 10.1016/b978-0-12-386932-6.00005-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
8
|
ROS in aging Caenorhabditis elegans: damage or signaling? OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2012; 2012:608478. [PMID: 22966416 PMCID: PMC3431105 DOI: 10.1155/2012/608478] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 07/03/2012] [Indexed: 12/21/2022]
Abstract
Many insights into the mechanisms and signaling pathways underlying aging have resulted from research on the nematode Caenorhabditis elegans. In this paper, we discuss the recent findings that emerged using this model organism concerning the role of reactive oxygen species (ROS) in the aging process. The accrual of oxidative stress and damage has been the predominant mechanistic explanation for the process of aging for many years, but reviewing the recent studies in C. elegans calls this theory into question. Thus, it becomes more and more evident that ROS are not merely toxic byproducts of the oxidative metabolism. Rather it seems more likely that tightly controlled concentrations of ROS and fluctuations in redox potential are important mediators of signaling processes. We therefore discuss some theories that explain how redox signaling may be involved in aging and provide some examples of ROS functions and signaling in C. elegans metabolism. To understand the role of ROS and the redox status in physiology, stress response, development, and aging, there is a rising need for accurate and reversible in vivo detection. Therefore, we comment on some methods of ROS and redox detection with emphasis on the implementation of genetically encoded biosensors in C. elegans.
Collapse
|