1
|
Lazaro-Alfaro A, Nicholas SLN, Sanabria H. FRET-FCS: Advancing comprehensive insights into complex biological systems. Biophys J 2025:S0006-3495(25)00242-5. [PMID: 40241306 DOI: 10.1016/j.bpj.2025.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 03/02/2025] [Accepted: 04/14/2025] [Indexed: 04/18/2025] Open
Abstract
Förster resonance energy transfer (FRET) is a short-range distance-dependent photophysical phenomenon that allows the measurement of intra- and intermolecular distances through fluorescence detection. FRET measurements are sensitive to the movements of fluorescently labeled molecules as they produce fluorescence fluctuations. Fluorescence correlation spectroscopy (FCS) analyzes these fluctuations at faster and broader timescales (from picoseconds to seconds) compared with other techniques, unraveling the thermodynamic and kinetic properties of the system under study. Therefore, the combination of FRET and FCS (FRET-FCS) facilitates the analysis of molecular dynamics. Since its introduction, FRET-FCS has evolved into studying more sophisticated systems, requiring improvements in data acquisition and analysis. In this review, we discuss applications in the field of FRET-FCS that propose novel alternatives to overcome the inherent limitations of experimental setups. This work aims to promote using and enhancing FRET-FCS techniques to develop a comprehensive understanding of biological systems.
Collapse
Affiliation(s)
- Anay Lazaro-Alfaro
- Department of Physics and Astronomy, Clemson University, Clemson, South Carolina
| | | | - Hugo Sanabria
- Department of Physics and Astronomy, Clemson University, Clemson, South Carolina.
| |
Collapse
|
2
|
Urquidi O, Brazard J, Adachi TBM. Binning method for artifact-free time-tag based correlation function calculations. OPTICS LETTERS 2024; 49:4569-4572. [PMID: 39146105 DOI: 10.1364/ol.532069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/16/2024] [Indexed: 08/17/2024]
Abstract
Correlation functions are nowadays routinely computed using time-tagged photon information instead of a hardware autocorrelator. The algorithm developed by Laurence et al. [Opt. Lett.31, 829 (2006)10.1364/OL.31.000829] is a powerful example. Despite its ease of implementation and fast computation process, it presents a prevalent noisy feature at the short time-lag range when computed on commonly used logarithmically spaced bins. We identified that arbitral logarithmic spacing produces the mismatch between the edges of generated bins and acquisition frequency, resulting in an aliasing artifact at the short time-lag range of the correlation function. We introduce a binning method that considers the acquisition frequency during the bin generation. It effectively eliminates the artifact and improves the accuracy of the autocorrelation. Applying the binning method herein can be particularly crucial when one extracts photophysical processes from fluorescence correlation spectroscopy or the diffusion coefficient of nanoparticles from dynamic light scattering at the time range below 10-5 s lag time.
Collapse
|
3
|
Pati AK, Kilic Z, Martin MI, Terry DS, Borgia A, Bar S, Jockusch S, Kiselev R, Altman RB, Blanchard SC. Recovering true FRET efficiencies from smFRET investigations requires triplet state mitigation. Nat Methods 2024; 21:1222-1230. [PMID: 38877317 PMCID: PMC11239528 DOI: 10.1038/s41592-024-02293-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 04/25/2024] [Indexed: 06/16/2024]
Abstract
Single-molecule fluorescence resonance energy transfer (smFRET) methods employed to quantify time-dependent compositional and conformational changes within biomolecules require elevated illumination intensities to recover robust photon emission streams from individual fluorophores. Here we show that outside the weak-excitation limit, and in regimes where fluorophores must undergo many rapid cycles of excitation and relaxation, non-fluorescing, excitation-induced triplet states with lifetimes orders of magnitude longer lived than photon-emitting singlet states degrade photon emission streams from both donor and acceptor fluorophores resulting in illumination-intensity-dependent changes in FRET efficiency. These changes are not commonly taken into consideration; therefore, robust strategies to suppress excited state accumulations are required to recover accurate and precise FRET efficiency, and thus distance, estimates. We propose both robust triplet state suppression and data correction strategies that enable the recovery of FRET efficiencies more closely approximating true values, thereby extending the spatial and temporal resolution of smFRET.
Collapse
Affiliation(s)
- Avik K Pati
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Rajasthan, India
| | - Zeliha Kilic
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Maxwell I Martin
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Daniel S Terry
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Alessandro Borgia
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Sukanta Bar
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Steffen Jockusch
- Center for Photochemical Sciences and Department of Chemistry, Bowling Green State University, Bowling Green, OH, USA
| | - Roman Kiselev
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Roger B Altman
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Scott C Blanchard
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
4
|
Taylor EL, Abounorinejad F, Jacobo EP, Dixon ADC, Lam KT, Brozik JA. Photophysical Rate Constants and Oxygen Dependence for Si and Ge Rhodamine Zwitterions. J Phys Chem A 2023; 127:851-860. [PMID: 36689273 DOI: 10.1021/acs.jpca.2c06244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The family of group XIV rhodamine zwitterions are fluorescence probes with carbon, silicon, germanium, or tin substituted in the 10-position of the xanthene ring. Because of their inherent near-infrared fluorescence, photostability and high quantum yields in aqueous solutions, the Si and Ge containing fluorophores in this class have become increasingly important for fluorescent labeling of proteins and biological molecules. This study fully characterizes photophysical rates derived from a model consisting of a singlet ground state, the lowest singlet excited state, and the lowest triplet excited state for two exemplar group XIV rhodamine zwitterions, one containing Si and the other Ge. Within a simple Jablonski diagram, all radiative and non-radiative rates, including intersystem crossing and triplet depopulation rates, were measured as a function of oxygen concentration. It was shown that the triplet depopulation rates are intrinsically fast in comparison with traditional xanthene containing fluorophores, probably due to the increased spin-obit coupling from the Si and Ge substitution in the xanthene ring. Dissolved oxygen increases both the intersystem crossing and triplet depopulation rates. Stern-Volmer analysis was conducted to estimate rates of quenching by oxygen. The experimental data was used to estimate the initial rates for reactive oxygen production by Si and Ge containing fluorophores in aqueous solutions containing different concentrations of dissolved O2. These estimates showed a significantly slower initial rate of reactive oxygen production in comparison with rhodamine 6G. This goes a long way to explaining their inherent photostability. Spectroscopic experiments were also conducted in 77 K viscous aqueous glasses where it was observed that the fluorescence spectra remained unchanged, and the quantum yields increased from 0.53 to 0.84 and from 0.52 to 0.89 for the Si and Ge containing fluorophores respectively; no phosphorescence was observed. All intersystem crossing and triplet depopulation rates were measured using fluorescence correlation spectroscopy (FCS) and analyzed using a new method that extrapolated the power dependence of the FCS curves to optical saturation. This method was verified using published data.
Collapse
Affiliation(s)
- Evan L Taylor
- Materials Science & Engineering Program, Washington State University, Pullman, Washington99163-2711, United States
| | - Faraz Abounorinejad
- Department of Chemistry, Washington State University, Pullman, Washington99163-4630, United States
| | - Eric P Jacobo
- Department of Chemistry, Washington State University, Pullman, Washington99163-4630, United States
| | - Alexandre D C Dixon
- Department of Chemistry, Washington State University, Pullman, Washington99163-4630, United States
| | - Kui Ting Lam
- Department of Chemistry, Washington State University, Pullman, Washington99163-4630, United States
| | - James A Brozik
- Department of Chemistry, Washington State University, Pullman, Washington99163-4630, United States.,Materials Science & Engineering Program, Washington State University, Pullman, Washington99163-2711, United States
| |
Collapse
|
5
|
Sakhapov D, Gregor I, Karedla N, Enderlein J. Measuring Photophysical Transition Rates with Fluorescence Correlation Spectroscopy and Antibunching. J Phys Chem Lett 2022; 13:4823-4830. [PMID: 35616286 DOI: 10.1021/acs.jpclett.2c00896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We present a new method that combines fluorescence correlation spectroscopy (FCS) on the microsecond time scale with fluorescence antibunching measurements on the nanosecond time scale for measuring photophysical rate constants of fluorescent molecules. The antibunching measurements allow us to quantify the average excitation rate of fluorescent molecules within the confocal detection volume of the FCS measurement setup. Knowledge of this value allows us then to quantify, in an absolute manner, the intersystem crossing rate and triplet state lifetime from the microsecond temporal decay of the FCS curves. We present a theoretical analysis of the method and estimate the maximum bias caused by the averaging of all quantities (excitation rate and photophysical rates) over the confocal detection volume, and we show that this bias is smaller than 5% in most cases. We apply the method for measuring the photophysical rate constants of the widely used dyes Rhodamine 110 and ATTO 655.
Collapse
Affiliation(s)
- Damir Sakhapov
- III. Institute of Physics - Biophysics, Georg-August-University, 37077 Göttingen, Germany
| | - Ingo Gregor
- III. Institute of Physics - Biophysics, Georg-August-University, 37077 Göttingen, Germany
| | - Narain Karedla
- The Rosalind Franklin Institute, Harwell Campus, Didcot OX11 0FA, U.K
| | - Jörg Enderlein
- III. Institute of Physics - Biophysics, Georg-August-University, 37077 Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), Georg August University, 37077 Göttingen, Germany
| |
Collapse
|
6
|
Pace NA, Hennelly SP, Goodwin PM. Immobilization of Cyanines in DNA Produces Systematic Increases in Fluorescence Intensity. J Phys Chem Lett 2021; 12:8963-8971. [PMID: 34506152 DOI: 10.1021/acs.jpclett.1c02022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Cyanines are useful fluorophores for a myriad of biological labeling applications, but their interactions with biomolecules are unpredictable. Cyanine fluorescence intensity can be highly variable due to complex photoisomerization kinetics, which are exceedingly sensitive to the surrounding environment. This introduces large errors in Förster resonance energy transfer (FRET)-based experiments where fluorescence intensity is the output parameter. However, this environmental sensitivity is a strength from a biological sensing point of view if specific relationships between biomolecular structure and cyanine photophysics can be identified. We describe a set of DNA structures that modulate cyanine fluorescence intensity through the insertion of adenine or thymine bases. These structures simultaneously provide photophysical predictability and tunability. We characterize these structures using steady-state fluorescence measurements, fluorescence correlation spectroscopy (FCS), and time-resolved photoluminescence (TRPL). We find that the photoisomerization rate decreases over an order of magnitude across the adenine series, which is consistent with increasing immobilization of the cyanine moiety by the surrounding DNA structure.
Collapse
Affiliation(s)
- Natalie A Pace
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Scott P Hennelly
- Bioenergy and Biome Sciences Group, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Peter M Goodwin
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
7
|
Kawai K, Fujitsuka M, Maruyama A. Single-Molecule Study of Redox Reaction Kinetics by Observing Fluorescence Blinking. Acc Chem Res 2021; 54:1001-1010. [PMID: 33539066 DOI: 10.1021/acs.accounts.0c00754] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Recent advances in fluorescence microscopy allow us to track chemical reactions at the single-molecule level. Single-molecule measurements make it possible to minimize the amount of sample needed for analysis and diagnosis. Signal amplification is often applied to ultralow-level biomarker detection. Polymerase chain reaction (PCR) is used to detect DNA/RNA, and enzyme-linked immunosorbent assay (ELISA) can sensitively probe antigen-antibody interactions. While these techniques are brilliant and will continue to be used in the future, single-molecule-level measurements would allow us to reduce the time and cost needed to amplify signals.The kinetics of chemical reactions have been studied mainly using ensemble-averaged methods. However, they can hardly distinguish time-dependent fluctuations and static heterogeneity of the kinetics. The information hidden in ensemble-averaged measurements would be extractable from a single-molecule experiment. Thus, single-molecule measurement would provide unique opportunities to investigate unrevealed phenomena and to elucidate the questions in chemistry, physics, and life sciences. Redox reaction, which is triggered by electron transfer, is among the most fundamental and ubiquitous chemical reactions. The redox reaction of a fluorescent molecule results in the formation of radical ions, which are normally nonemissive. In single-molecule-level measurements, the redox reaction causes the fluctuation of fluorescence signals between the bright ON-state and the dark OFF-state, in a phenomenon called blinking. The duration of the OFF-state (τOFF) corresponds to the lifetime of the radical ion state, and its reaction kinetics can be measured as 1/τOFF. Thus, the kinetics of redox reactions of fluorescent molecules can be accessed at the single-molecule level by monitoring fluorescence blinking. One of the key aspects of single-molecule analysis based on blinking is its robustness. A blinking signal with a certain regular pattern enables single fluorescent molecules to be distinguished and resolved from the random background signal.In this Account, we summarize the recent studies on the single-molecule measurement of redox reaction kinetics, with a focus on our group's recent progress. We first introduce the control of redox blinking to increase the photostability of fluorescent molecules. We then demonstrate the control of redox blinking, which allows us to detect target DNA by monitoring the function of a molecular beacon-type probe, and we investigate antigen-antibody interactions at the single-molecule level. By tracing the time-dependent changes in blinking patterns, redox blinking is shown to be adaptable to tracking the structural switching dynamics of RNA, the preQ1 riboswitch. This Account ends with a discussion of our ongoing work on the control of fluorescent blinking. We also discuss the development of devices that allow single-molecule-level analysis in a high-throughput fashion.
Collapse
Affiliation(s)
- Kiyohiko Kawai
- The Institute of Scientific and Industrial Research (SANKEN), Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan
| | - Mamoru Fujitsuka
- The Institute of Scientific and Industrial Research (SANKEN), Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan
| | - Atsushi Maruyama
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259 B-57 Nagatsuta, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| |
Collapse
|
8
|
Aydogan MG, Steinacker TL, Mofatteh M, Wilmott ZM, Zhou FY, Gartenmann L, Wainman A, Saurya S, Novak ZA, Wong SS, Goriely A, Boemo MA, Raff JW. An Autonomous Oscillation Times and Executes Centriole Biogenesis. Cell 2020; 181:1566-1581.e27. [PMID: 32531200 PMCID: PMC7327525 DOI: 10.1016/j.cell.2020.05.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 12/19/2019] [Accepted: 05/08/2020] [Indexed: 01/18/2023]
Abstract
The accurate timing and execution of organelle biogenesis is crucial for cell physiology. Centriole biogenesis is regulated by Polo-like kinase 4 (Plk4) and initiates in S-phase when a daughter centriole grows from the side of a pre-existing mother. Here, we show that a Plk4 oscillation at the base of the growing centriole initiates and times centriole biogenesis to ensure that centrioles grow at the right time and to the right size. The Plk4 oscillation is normally entrained to the cell-cycle oscillator but can run autonomously of it-potentially explaining why centrioles can duplicate independently of cell-cycle progression. Mathematical modeling indicates that the Plk4 oscillation can be generated by a time-delayed negative feedback loop in which Plk4 inactivates the interaction with its centriolar receptor through multiple rounds of phosphorylation. We hypothesize that similar organelle-specific oscillations could regulate the timing and execution of organelle biogenesis more generally.
Collapse
Affiliation(s)
- Mustafa G Aydogan
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK.
| | - Thomas L Steinacker
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Mohammad Mofatteh
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Zachary M Wilmott
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK; Mathematical Institute, University of Oxford, Oxford OX2 6GG, UK
| | - Felix Y Zhou
- Ludwig Institute for Cancer Research, University of Oxford, Oxford OX3 7DQ, UK
| | - Lisa Gartenmann
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Alan Wainman
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Saroj Saurya
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Zsofia A Novak
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Siu-Shing Wong
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Alain Goriely
- Mathematical Institute, University of Oxford, Oxford OX2 6GG, UK
| | - Michael A Boemo
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK.
| | - Jordan W Raff
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK.
| |
Collapse
|
9
|
Schneider F, Hernandez-Varas P, Christoffer Lagerholm B, Shrestha D, Sezgin E, Julia Roberti M, Ossato G, Hecht F, Eggeling C, Urbančič I. High photon count rates improve the quality of super-resolution fluorescence fluctuation spectroscopy. JOURNAL OF PHYSICS D: APPLIED PHYSICS 2020; 53:164003. [PMID: 33191951 PMCID: PMC7655148 DOI: 10.1088/1361-6463/ab6cca] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/19/2019] [Accepted: 01/16/2020] [Indexed: 05/15/2023]
Abstract
Probing the diffusion of molecules has become a routine measurement across the life sciences, chemistry and physics. It provides valuable insights into reaction dynamics, oligomerisation, molecular (re-)organisation or cellular heterogeneities. Fluorescence correlation spectroscopy (FCS) is one of the widely applied techniques to determine diffusion dynamics in two and three dimensions. This technique relies on the temporal autocorrelation of intensity fluctuations but recording these fluctuations has thus far been limited by the detection electronics, which could not efficiently and accurately time-tag photons at high count rates. This has until now restricted the range of measurable dye concentrations, as well as the data quality of the FCS recordings, especially in combination with super-resolution stimulated emission depletion (STED) nanoscopy. Here, we investigate the applicability and reliability of (STED-)FCS at high photon count rates (average intensities of more than 1 MHz) using novel detection equipment, namely hybrid detectors and real-time gigahertz sampling of the photon streams implemented on a commercial microscope. By measuring the diffusion of fluorophores in solution and cytoplasm of live cells, as well as in model and cellular membranes, we show that accurate diffusion and concentration measurements are possible in these previously inaccessible high photon count regimes. Specifically, it offers much greater flexibility of experiments with biological samples with highly variable intensity, e.g. due to a wide range of expression levels of fluorescent proteins. In this context, we highlight the independence of diffusion properties of cytosolic GFP in a concentration range of approx. 0.01-1 µm. We further show that higher photon count rates also allow for much shorter acquisition times, and improved data quality. Finally, this approach also pronouncedly increases the robustness of challenging live cell STED-FCS measurements of nanoscale diffusion dynamics, which we testify by confirming a free diffusion pattern for a fluorescent lipid analogue on the apical membrane of adherent cells.
Collapse
Affiliation(s)
- Falk Schneider
- MRC Human Immunology Unit and MRC Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford, OX3 9DS, United Kingdom
| | - Pablo Hernandez-Varas
- Wolfson Imaging Centre Oxford, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford, OX3 9DS, United Kingdom
- Core Facility for Integrated Microscopy, Panum Institute, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - B Christoffer Lagerholm
- Wolfson Imaging Centre Oxford, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford, OX3 9DS, United Kingdom
| | - Dilip Shrestha
- MRC Human Immunology Unit and MRC Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford, OX3 9DS, United Kingdom
| | - Erdinc Sezgin
- MRC Human Immunology Unit and MRC Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford, OX3 9DS, United Kingdom
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - M Julia Roberti
- Leica Microsystems CMS GmbH, Am Friedensplatz 3, 68163 Mannheim, Germany
| | - Giulia Ossato
- Leica Microsystems CMS GmbH, Am Friedensplatz 3, 68163 Mannheim, Germany
| | - Frank Hecht
- Leica Microsystems CMS GmbH, Am Friedensplatz 3, 68163 Mannheim, Germany
| | - Christian Eggeling
- MRC Human Immunology Unit and MRC Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford, OX3 9DS, United Kingdom
- Wolfson Imaging Centre Oxford, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford, OX3 9DS, United Kingdom
- Institute of Applied Optics and Biophysics, Friedrich-Schiller-University Jena, Max-Wien Platz 4, 07743 Jena, Germany
- Leibniz Institute of Photonic Technology e.V., Albert-Einstein-Straße 9, 07745 Jena, Germany
| | - Iztok Urbančič
- MRC Human Immunology Unit and MRC Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford, OX3 9DS, United Kingdom
- Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
10
|
Westberg M, Etzerodt M, Ogilby PR. Rational design of genetically encoded singlet oxygen photosensitizing proteins. Curr Opin Struct Biol 2019; 57:56-62. [DOI: 10.1016/j.sbi.2019.01.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/14/2019] [Accepted: 01/29/2019] [Indexed: 01/29/2023]
|
11
|
Building, Characterization, and Applications of Cuvette-FCS in Denaturant-Induced Expansion of Globular and Disordered Proteins. Methods Enzymol 2018. [PMID: 30471694 DOI: 10.1016/bs.mie.2018.08.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
Fluorescence correlation spectroscopy (FCS) is a single-molecule sensitive technique with widespread applications in biophysics. However, conventional microscope-based FCS setups have limitations in performing certain experiments such as those requiring agitations such as stirring or heating, and those involving measurements in solvents with the mismatch of refractive indices. We have recently developed an FCS setup that is suitable for performing measurements inside regular cuvettes. The cuvette-FCS is suitable for performing single-molecule measurements in experiments that are regularly performed in spectrofluorometers but are generally avoided in microscope-based FCS. Here we describe building and characterization of the performance of the cuvette-FCS setup in detail. Finally, we have used a natively folded protein and an intrinsically disordered protein to demonstrate and describe how cuvette-FCS can be applied conveniently to measure urea-dependent expansion of hydrodynamic size of proteins.
Collapse
|
12
|
Biswas S, Kundu J, Mukherjee SK, Chowdhury PK. Mixed Macromolecular Crowding: A Protein and Solvent Perspective. ACS OMEGA 2018; 3:4316-4330. [PMID: 30023892 PMCID: PMC6044960 DOI: 10.1021/acsomega.7b01864] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 03/16/2018] [Indexed: 06/08/2023]
Abstract
In the living cell, biomolecules perform their respective functions in the presence of not only one type of macromolecules but rather in the presence of various macromolecules with different shapes and sizes. In this study, we have investigated the effects of five single macromolecular crowding agents, Dextran 6, Dextran 40, Dextran 70, Ficoll 70, and PEG 8000 and their binary mixtures on the modulation in the domain separation of human serum albumin using a Förster resonance energy transfer-based approach and the translational mobility of a small fluorescent probe fluorescein isothiocyanate (FITC) using fluorescence correlation spectroscopy (FCS). Our observations suggest that mixed crowding induces greater cooperativity in the domain movement as compared to the components of the mixtures. Thermodynamic analyses of the same provide evidence of crossovers from enthalpy-based interactions to effects dominated by hard-sphere potential. When compared with those obtained for individual crowders, both domain movements and FITC diffusion studies show significant deviations from ideality, with an ideal solution being considered to be that arising from the sum of the contributions of those obtained in the presence of individual crowding agents. Considering the fact that domain movements are local (on the order of a few angstroms) in nature while translational movements span much larger lengthscales, our results imply that the observed deviation from simple additivity exists at several possible levels or lengthscales in such mixtures. Moreover, the nature and the type of deviation not only depend on the identities of the components of the crowder mixtures but are also influenced by the particular face of the serum protein (either the domain I-II or the domain II-III face) that the crowders interact with, thus providing further insights into the possible existence of microheterogeneities in such solutions.
Collapse
|
13
|
Kondo T, Chen WJ, Schlau-Cohen GS. Single-Molecule Fluorescence Spectroscopy of Photosynthetic Systems. Chem Rev 2017; 117:860-898. [DOI: 10.1021/acs.chemrev.6b00195] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Toru Kondo
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge Massachusetts 02139, United States
| | - Wei Jia Chen
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge Massachusetts 02139, United States
| | - Gabriela S. Schlau-Cohen
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge Massachusetts 02139, United States
| |
Collapse
|
14
|
Vester M, Grueter A, Finkler B, Becker R, Jung G. Biexponential photon antibunching: recombination kinetics within the Förster-cycle in DMSO. Phys Chem Chem Phys 2016; 18:10281-8. [PMID: 27020473 DOI: 10.1039/c6cp00718j] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Time-resolved experiments with pulsed-laser excitation are the standard approach to map the dynamic evolution of excited states, but ground-state kinetics remain hidden or require pump-dump-probe schemes. Here, we exploit the so-called photon antibunching, a purely quantum-optical effect related to single molecule detection to assess the rate constants for a chemical reaction in the electronic ground state. The measurement of the second-order correlation function g((2)), i.e. the evaluation of inter-photon arrival times, is applied to the reprotonation in a Förster-cycle. We find that the antibunching of three different photoacids in the aprotic solvent DMSO significantly differs from the behavior in water. The longer decay constant of the biexponential antibunching tl is linked to the bimolecular reprotonation kinetics of the fully separated ion-pair, independent of the acidic additives. The value of the corresponding bimolecular rate constant, kp = 4 × 10(9) M(-1) s(-1), indicates diffusion-controlled reprotonation. The analysis of tl also allows for the extraction of the separation yield of proton and the conjugated base after excitation and amounts to approximately 15%. The shorter time component ts is connected to the decay of the solvent-separated ion pair. The associated time constant for geminate reprotonation is approximately 3 ± 1 ns in agreement with independent tcspc experiments. These experiments verify that the transfer of quantum-optical experiments to problems in chemistry enables mechanistic conclusions which are hardly accessible by other methods.
Collapse
Affiliation(s)
- Michael Vester
- Biophysical Chemistry, Saarland University, 66123 Saarbrücken, Germany.
| | | | | | | | | |
Collapse
|
15
|
Zanacchi FC, Bianchini P, Vicidomini G. Fluorescence microscopy in the spotlight. Microsc Res Tech 2015; 77:479-82. [PMID: 24958538 DOI: 10.1002/jemt.22393] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
16
|
Nettels D, Haenni D, Maillot S, Gueye M, Barth A, Hirschfeld V, Hübner CG, Léonard J, Schuler B. Excited-state annihilation reduces power dependence of single-molecule FRET experiments. Phys Chem Chem Phys 2015; 17:32304-15. [DOI: 10.1039/c5cp05321h] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Singlet–singlet annihilation between FRET dyes is evident in nanosecond fluorescence cross-correlation measurements.
Collapse
Affiliation(s)
- Daniel Nettels
- Department of Biochemistry
- University of Zurich
- 8057 Zurich
- Switzerland
| | - Dominik Haenni
- Department of Biochemistry
- University of Zurich
- 8057 Zurich
- Switzerland
| | - Sacha Maillot
- Institut de Physique et Chimie des Matériaux de Strasbourg & Labex NIE
- Université de Strasbourg
- 67034 Strasbourg Cedex 2
- France
| | - Moussa Gueye
- Institut de Physique et Chimie des Matériaux de Strasbourg & Labex NIE
- Université de Strasbourg
- 67034 Strasbourg Cedex 2
- France
| | - Anders Barth
- Institute of Physics
- University of Lübeck
- 23562 Lübeck
- Germany
| | | | | | - Jérémie Léonard
- Institut de Physique et Chimie des Matériaux de Strasbourg & Labex NIE
- Université de Strasbourg
- 67034 Strasbourg Cedex 2
- France
| | - Benjamin Schuler
- Department of Biochemistry
- University of Zurich
- 8057 Zurich
- Switzerland
| |
Collapse
|