1
|
Khan Q, Yousafzai AM, Khan P, Kakakhel MA, Ishaq M. Bio-Engineered Silver Nanoparticles, Characterization, and Time-Dependent Toxicity against Common Carp (Cyprinus carpio). Microsc Res Tech 2025. [PMID: 40083291 DOI: 10.1002/jemt.24828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/16/2025] [Accepted: 02/11/2025] [Indexed: 03/16/2025]
Abstract
Bio-engineered silver nanoparticles (BE-AgNPs) are receiving discernible attention due to their diverse application history; however, the interaction of silver nanoparticles (Ag-NPs) with the environment and their toxicity in aquatic organisms is a matter of concern debate. Therefore, the current study aims to evaluate the bio-fabrication of Ag-NPs using Bellis perennis (B. perennis) plant flower extract and to assess their toxicity against Cyprinus carpio as an aquatic model organism. For this purpose, BE-AgNPs were synthesized and characterized using advanced analytical techniques (SEM, TEM, FTIR, and UV-visible absorption spectra), which showed that well-dispersed and cubical Ag-NPs with an average size of 15.4 nm were obtained. In addition, C. carpio after 96-h LC50 test period were exposed to three determined concentrations, including 5, 10, and 15 mg/L of BE-AgNPs for 1, 2, 3, 4, 7, 14, and 21 days, respectively, for tissue histopathology and genotoxicity. Histopathological results revealed that BE-AgNPs caused degeneration, necrosis, inflammation, and fibrosis in the muscles, liver, intestine, and gills of exposed C. carpio tissues using H and E staining slides. Moreover, BE-AgNPs caused DNA damage to C. carpio erythrocytes using the comet assay (single-cell gel electrophoresis) technique. The study confirmed that BE-AgNPs induce significant myotoxicity, hepatotoxicity, branchial toxicity, intestinal toxicity, and genotoxicity in C. carpio. These findings highlight the environmental and ecological risks associated with the use of bio-engineered silver nanoparticles, particularly in aquatic ecosystems.
Collapse
Affiliation(s)
- Qaisar Khan
- Department of Zoology, Islamia College University, Peshawar, Pakistan
| | | | - Pordil Khan
- Department of Pathology, Khyber Medical College, Peshawar, Pakistan
| | - Mian Adnan Kakakhel
- College of Hydraulic & Environmental Engineering, China Three Gorges University, Yichang, Hubei, China
| | - Muhammad Ishaq
- Electrical Engineering Department, COMSATS University Islamabad, Islamabad, Pakistan
| |
Collapse
|
2
|
Helczman M, Tomka M, Arvay J, Tvrda E, Andreji J, Fik M, Snirc M, Jambor T, Massanyi P, Kovacik A. Selected micro- and macro-element associations with oxidative status markers in common carp ( Cyprinus carpio) blood serum and ejaculate: a correlation study. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2024; 87:999-1014. [PMID: 39344187 DOI: 10.1080/15287394.2024.2406429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
The aim of this study was to (1) determine complex interactions between macro- and micro-elements present in blood serum and ejaculate of common carp (Cyprinus carpio), and (2) examine the association between alterations in these macro- and micro-elements with markers of oxidative stress. Blood and ejaculate from 10 male carp were collected in the summer period on the experimental pond in Kolíňany (West Slovak Lowland). Reactive oxygen species (ROS), total antioxidant capacity (TAC), protein carbonyls (PC), and malondialdehyde (MDA) levels were measured in blood serum and ejaculate using spectrophotometric methods. The amounts of elements (Ag, Al, Ba, Co, Li, Mo, Ca, K, Na, and Mg) in all samples were quantified using inductively coupled plasma optical emission spectrophotometry. Data demonstrated significant differences in elemental concentrations between blood and ejaculate, specifically significantly higher ejaculate levels were detected for Ag, Al, Ba, Co, Li, Mo, K, and Mg. Potassium was the most abundant macro-element in the ejaculate, while sodium was the most abundant in blood serum. Among the micro-elements, Al was predominant in both types of samples. It is noteworthy that oxidative status markers including ROS, TAC, and MDA were significantly higher in ejaculate indicating the presence of oxidative stress in C. carpio reproductive tissue. The positive correlations between Mg and Ca in blood serum and ejaculate suggest these elements play a functional role in metabolic and physiological processes. In contrast, the positive correlations of Ba and Al with markers of oxidative stress indicated the association of these metals with induction of oxidative stress. Our findings provide insights into the association of metals with biomarkers of physiological function as well as adverse effects in C. carpio.
Collapse
Affiliation(s)
- Marek Helczman
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Nitra, Slovak Republic
| | - Marian Tomka
- Institute of Biotechnology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Nitra, Slovak Republic
| | - Julius Arvay
- Institute of Food Sciences, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Nitra, Slovak Republic
| | - Eva Tvrda
- Institute of Biotechnology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Nitra, Slovak Republic
| | - Jaroslav Andreji
- Institute of Animal Husbandry, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Nitra, Slovak Republic
| | - Martin Fik
- Institute of Animal Husbandry, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Nitra, Slovak Republic
| | - Marek Snirc
- Institute of Food Sciences, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Nitra, Slovak Republic
| | - Tomas Jambor
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Nitra, Slovak Republic
| | - Peter Massanyi
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Nitra, Slovak Republic
- Institute of Biology, Faculty of Exact and Natural Sciences, University of the National Education Commission, Krakow, Poland
| | - Anton Kovacik
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Nitra, Slovak Republic
| |
Collapse
|
3
|
Kakakhel MA, Narwal N, Khan A, Ayub H, Jiang Z, Xiaotao S. Bio-reductive synthesis of silver nanoparticles, its antibacterial efficiency, and possible toxicity in common carp fish (Cyprinus carpio). Microsc Res Tech 2024; 87:349-359. [PMID: 37846045 DOI: 10.1002/jemt.24427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 08/17/2023] [Accepted: 09/13/2023] [Indexed: 10/18/2023]
Abstract
The biological synthesis of nanoparticles is an emerging field of study that seeks to synthesize nanoparticles using non-chemical mechanisms such as microorganisms, plants, and animal blood serum. Among these, plants have gained particular attention due to their ease of handling, availability, and ability to synthesize a wide range of nanoparticles. Therefore, the current study aimed to fabricate the silver nanoparticles (AgNPs) using Chinese medicinal plants (CMP) for their possible toxicity in common carp fish (Cyprinus carpio). For this purpose, CMP was dried, ground, and used as a bio-reductive agent. The fabricated AgNPs were characterized and a well dispersed AgNPs were obtained. Moreover, the C. carpio was exposed to the AgNPs for bioaccumulation and histological alterations. The obtained findings revealed that the AgNPs were mostly accumulated in the intestines followed by the gills, muscles, liver, and brain. The accumulated AgNPs caused histological alterations in gills and intestines at the highest concentration (0.08 mg/L). However, very less alterations were caused by the lowest concentration, especially in the intestine. In conclusion, further in-depth research is needed to determine the risks associated with the usage of nanoparticles to reveal their harmful impacts on fish and the aquatic environment. HIGHLIGHTS: The biological fabrication of AgNPs is considered eco-friendly. Chinese medicinal plants play a significant role in AgNPs synthesis. AgNPs have excellent antibacterial activity. AgNPs are bioaccumulated in various organs of fish.
Collapse
Affiliation(s)
- Mian Adnan Kakakhel
- Hubei International Science and Technology Cooperation Base of Fish Passage, China Three Gorges University, Yichang, Hubei, China
- College of Hydraulic & Environmental Engineering, China Three Gorges University, Yichang, Hubei, China
| | - Nishita Narwal
- University School of Environment Management, Guru Gobind Singh Indraprastha University, New Delhi, India
| | - Alam Khan
- Sustainable Bioenergy and Biorefinery Laboratory, Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
- Department of Life Sciences, Abasyn University Islamabad Campus, Islamabad, Pakistan
| | - Huma Ayub
- Department of Zoology, Mirpur University of Science and Technology, Mirpur, Pakistan
| | - Zewen Jiang
- Hubei International Science and Technology Cooperation Base of Fish Passage, China Three Gorges University, Yichang, Hubei, China
- College of Hydraulic & Environmental Engineering, China Three Gorges University, Yichang, Hubei, China
| | - Shi Xiaotao
- Hubei International Science and Technology Cooperation Base of Fish Passage, China Three Gorges University, Yichang, Hubei, China
- College of Hydraulic & Environmental Engineering, China Three Gorges University, Yichang, Hubei, China
| |
Collapse
|
4
|
Khan Q, Yousafzai AM. Plant based synthesis of silver nanoparticles, antimicrobial efficiency, and toxicological assessment using freshwater fish (Cyprinus carpio). Microsc Res Tech 2024; 87:53-64. [PMID: 37728059 DOI: 10.1002/jemt.24411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/26/2023] [Accepted: 08/20/2023] [Indexed: 09/21/2023]
Abstract
Silver nanoparticles (AgNPs) are widely used and have various applications, including medicine, electronics, and textiles. However, their increasing use raises concern about their potential environmental impact, particularly on aquatic organisms, such as fish, which are the primary consumers of aquatic environments and can be exposed to AgNPs through various routes. For this purpose, the leaves of the plant species Bellis perennis were used as a reductive agent to convert silver nitrate into AgNPs, to assess its toxicity against fish. Well-dispersed and undersized AgNPs were obtained and confirmed using analytical techniques, including Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). Moreover, the AgNPs have shown significant antibacterial activity against Aeromonas hydrophila (25.71 ± 0.63) and Vibrio harveyi (22.39 ± 0.29). In addition, the toxicity of the obtained AgNPs was assessed by exposing Cyprinus carpio to various concentrations, including 0.06, 0.1, and 0.2 mg/L. The findings revealed that the AgNPs were significantly accumulated in the intestine, followed by the gills, liver, muscles, kidney, and brain. This bioaccumulation led to histological alterations and destruction in the villi of the intestine, regeneration of liver cells, and degeneration of the gill lamella. RESEARCH HIGHLIGHTS: Plants based synthesis of AgNPs is mostly considered as eco-friendly A significant antibacterial activity was obtained The plant mediated AgNPs were found less toxic The AgNPs was profoundly accumulated and causes histological alterations.
Collapse
Affiliation(s)
- Qaisar Khan
- Department of Zoology, Islamia College University, Peshawar, Pakistan
| | | |
Collapse
|
5
|
Krishnasamy Sekar R, Arunachalam R, Anbazhagan M, Palaniyappan S, Veeran S, Sridhar A, Ramasamy T. Accumulation, Chronicity, and Induction of Oxidative Stress Regulating Genes Through Allium cepa L. Functionalized Silver Nanoparticles in Freshwater Common Carp (Cyprinus carpio). Biol Trace Elem Res 2023; 201:904-925. [PMID: 35199287 DOI: 10.1007/s12011-022-03164-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/14/2022] [Indexed: 01/21/2023]
Abstract
Green evolutionary products such as biologically fabricated nanoparticles (NPs) pose a hazard to aquatic creatures. Herein, biogenic silver nanoparticles (AgNPs) were synthesized by the reaction between ionic silver (AgNO3) and aqueous onion peel extract (Allium cepa L). The synthesized biogenic AgNPs were characterized with UV-Visible spectrophotometer, XRD, FT-IR, and TEM with EDS analysis; then, their toxicity was assessed on common carp fish (Cyprinus carpio) using biomarkers of haematological alterations, oxidative stress, histological changes, differential gene expression patterns, and bioaccumulation. The 96 h lethal toxicity was analysed with various concentrations (2, 4, 6, 8, and 10 mg/l) of biogenic AgNPs. Based on 96 h LC50, sublethal concentrations (1/15th, 1/10th, and 1/5th) were given to C. carpio for 28 days. At the end of experiment, the bioaccumulations of Ag content were accumulated mainly in the gills, followed by the liver and muscle. At an interval of 7 days, the haematological alterations showed significance (p < 0.05) and elevation of antioxidant defence mechanism reveals the toxicity of biogenic synthesized AgNPs. Adverse effects on oxidative stress were probably related to the histopathological damage of its vital organs like gill, liver, and muscle. Finally, the fish treated with biogenic synthesized AgNPs were significantly (p < 0.05) downregulates the oxidative stress genes such as Cu-Zn SOD, CAT, GPx1a, GST-α, CYP1A, and Nrf-2 expression patterns. The present study provides evidence of biogenic synthesized AgNPs influence on the aquatic life through induction of oxidative stress.
Collapse
Affiliation(s)
- Rajkumar Krishnasamy Sekar
- Laboratory of Aquabiotics & Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tamil Nadu, Tiruchirappalli, 620 024, India
| | - Ramkumar Arunachalam
- UGC-National Centre for Alternatives to Animal Experiments, Bharathidasan University, Tamil Nadu, 620 024, Tiruchirappalli, India
| | - Murugadas Anbazhagan
- UGC-National Centre for Alternatives to Animal Experiments, Bharathidasan University, Tamil Nadu, 620 024, Tiruchirappalli, India
- Department of Pediatrics, School of Medicine, Emory University, GA, 30322, Atlanta, USA
| | - Sivagaami Palaniyappan
- Laboratory of Aquabiotics & Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tamil Nadu, Tiruchirappalli, 620 024, India
| | - Srinivasan Veeran
- Laboratory of Aquabiotics & Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tamil Nadu, Tiruchirappalli, 620 024, India
| | - Arun Sridhar
- Laboratory of Aquabiotics & Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tamil Nadu, Tiruchirappalli, 620 024, India
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Thirumurugan Ramasamy
- Laboratory of Aquabiotics & Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tamil Nadu, Tiruchirappalli, 620 024, India.
- UGC-National Centre for Alternatives to Animal Experiments, Bharathidasan University, Tamil Nadu, 620 024, Tiruchirappalli, India.
| |
Collapse
|
6
|
Buitrago SAM, Colombo GM, Buitrago JR, Gomes RMM, de Sousa AC, Pedrosa VF, Romano LA, de Carvalho LM, Adolfo FR, Junior WW, Josende ME, Monserrat JM. Silver nano/microparticle toxicity in the shrimp Litopenaeus vannamei (Boone, 1931). Comp Biochem Physiol C Toxicol Pharmacol 2023; 264:109493. [PMID: 36302473 DOI: 10.1016/j.cbpc.2022.109493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/12/2022] [Accepted: 10/19/2022] [Indexed: 12/27/2022]
Abstract
The effects of silver nano/microparticles (AgP) on juvenile Litopenaeus vannamei shrimp were evaluated through several responses, aiming to use it as a prophylactic and therapeutic method. Shrimps (3.19 ± 0.13 g) were exposed to clear water for 3 h with increasing concentrations of nanosilver (0; 25; 100; and 400 μg/l). After 3 h of exposure, they were transferred to water without nanosilver for 30 days (recovery). The weight gain and weekly growth were not affected by AgNP. Total antioxidant capacity (ACAP) increased in the hepatopancreas (exposure period) and gills (recovery) in shrimp exposed to AgNP. In muscle, ACAP was induced in shrimp exposed to 100 μg/l AgNP (exposure). In the gills, there was an increase in TBARS in shrimp exposed to 100 μg/l AgNP (recovery). In the concentration of protein-associated sulfhydryl groups (P-SH), a decrease was observed in the hepatopancreas (recovery) in the 100 μg/l AgNP treatment. In chromaticity parameters, an increase in reddish tones was observed in shrimp exposed to 100 μg/l AgNP (recovery). An increase in granular hemocytes was verified in shrimp exposed to 25 and 400 μg/l AgNP during exposure. Tissues analyzed histologically showed normal patterns without apoptosis or necrosis processes, and after 30 d of recovery, only in one muscle sample of shrimp exposed to μg/l of AgNP was silver detected. It is concluded that a prophylactic action of short duration (3 h) mostly did not affected the welfare of shrimp L. vannamei and can be considered its use as a therapeutic strategy.
Collapse
Affiliation(s)
- Sonia Astrid Muñoz Buitrago
- Programa de Pós-graduação em Aquicultura, Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil; Laboratório de Bioquímica Funcional de Organismos Aquáticos (BIFOA), Universidade Federal do Rio Grande - FURG, Instituto de Oceanografia (IO), Rio Grande, RS, Brazil
| | - Grecica Mariana Colombo
- Programa de Pós-graduação em Aquicultura, Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil; Laboratório de Bioquímica Funcional de Organismos Aquáticos (BIFOA), Universidade Federal do Rio Grande - FURG, Instituto de Oceanografia (IO), Rio Grande, RS, Brazil
| | - Juan Rafael Buitrago
- Programa de Pós-graduação em Aquicultura, Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil; Laboratório de Bioquímica Funcional de Organismos Aquáticos (BIFOA), Universidade Federal do Rio Grande - FURG, Instituto de Oceanografia (IO), Rio Grande, RS, Brazil
| | - Robson Matheus Marreiro Gomes
- Programa de Pós-graduação em Aquicultura, Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil; Laboratório de Bioquímica Funcional de Organismos Aquáticos (BIFOA), Universidade Federal do Rio Grande - FURG, Instituto de Oceanografia (IO), Rio Grande, RS, Brazil
| | - Alan Carvalho de Sousa
- Programa de Pós-graduação em Aquicultura, Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil; Laboratório de Bioquímica Funcional de Organismos Aquáticos (BIFOA), Universidade Federal do Rio Grande - FURG, Instituto de Oceanografia (IO), Rio Grande, RS, Brazil
| | - Virgínia Fonseca Pedrosa
- Programa de Pós-graduação em Aquicultura, Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil; Laboratório de Imunologia e Patologia de Organismos Aquáticos (LIPOA), Instituto de Oceanografia (IO), Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil
| | - Luís Alberto Romano
- Programa de Pós-graduação em Aquicultura, Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil; Laboratório de Imunologia e Patologia de Organismos Aquáticos (LIPOA), Instituto de Oceanografia (IO), Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil
| | | | - Franciele Rovasi Adolfo
- Universidade Federal de Santa Maria (UFSM), Instituto de Química Analítica, Rio Grande, RS, Brazil
| | - Wilson Wasielesky Junior
- Programa de Pós-graduação em Aquicultura, Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil; Laboratório de Carcinocultura, Universidade Federal do Rio Grande - FURG, Instituto de Oceanografia (IO), Rio Grande, RS, Brazil
| | - Marcelo Estrella Josende
- Instituto de Ciências Biológicas (ICB), Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil
| | - José Maria Monserrat
- Programa de Pós-graduação em Aquicultura, Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil; Laboratório de Bioquímica Funcional de Organismos Aquáticos (BIFOA), Universidade Federal do Rio Grande - FURG, Instituto de Oceanografia (IO), Rio Grande, RS, Brazil; Instituto de Ciências Biológicas (ICB), Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil.
| |
Collapse
|
7
|
McCourt KM, Cochran J, Abdelbasir SM, Carraway ER, Tzeng TRJ, Tsyusko OV, Vanegas DC. Potential Environmental and Health Implications from the Scaled-Up Production and Disposal of Nanomaterials Used in Biosensors. BIOSENSORS 2022; 12:1082. [PMID: 36551049 PMCID: PMC9775545 DOI: 10.3390/bios12121082] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Biosensors often combine biological recognition elements with nanomaterials of varying compositions and dimensions to facilitate or enhance the operating mechanism of the device. While incorporating nanomaterials is beneficial to developing high-performance biosensors, at the stages of scale-up and disposal, it may lead to the unmanaged release of toxic nanomaterials. Here we attempt to foster connections between the domains of biosensors development and human and environmental toxicology to encourage a holistic approach to the development and scale-up of biosensors. We begin by exploring the toxicity of nanomaterials commonly used in biosensor design. From our analysis, we introduce five factors with a role in nanotoxicity that should be considered at the biosensor development stages to better manage toxicity. Finally, we contextualize the discussion by presenting the relevant stages and routes of exposure in the biosensor life cycle. Our review found little consensus on how the factors presented govern nanomaterial toxicity, especially in composite and alloyed nanomaterials. To bridge the current gap in understanding and mitigate the risks of uncontrolled nanomaterial release, we advocate for greater collaboration through a precautionary One Health approach to future development and a movement towards a circular approach to biosensor use and disposal.
Collapse
Affiliation(s)
- Kelli M McCourt
- Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC 29634, USA
- Global Alliance for Rapid Diagnostics (GARD), Michigan State University, East Lancing, MI 48824, USA
| | - Jarad Cochran
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546, USA
| | - Sabah M Abdelbasir
- Central Metallurgical Research and Development Institute, P.O. Box 87, Helwan 11421, Egypt
| | - Elizabeth R Carraway
- Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC 29634, USA
| | - Tzuen-Rong J Tzeng
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| | - Olga V Tsyusko
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546, USA
| | - Diana C Vanegas
- Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC 29634, USA
- Global Alliance for Rapid Diagnostics (GARD), Michigan State University, East Lancing, MI 48824, USA
- Interdisciplinary Group for Biotechnology Innovation and Ecosocial Change (BioNovo), Universidad del Valle, Cali 76001, Colombia
| |
Collapse
|
8
|
Kakakhel MA, Zaheer Ud Din S, Wang W. Evaluation of the antibacterial influence of silver nanoparticles against fish pathogenic bacterial isolates and their toxicity against common carp fish. Microsc Res Tech 2021; 85:1282-1288. [PMID: 34799956 DOI: 10.1002/jemt.23994] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/11/2021] [Accepted: 10/31/2021] [Indexed: 11/06/2022]
Abstract
At present, nanotechnology and nanomaterials are being emerged very quickly and gained the attention of researchers due to their frequent application history, especially their antibacterial effects against certain bacterial isolates. Therefore, the present study was aimed to check the antibacterial influence and toxic effects of the market available (Chemical Fabricated) silver nanoparticles (AgNPs). For this purpose, the AgNPs were obtained from the local market and used against fish pathogenic bacterial species. The highest zone of inhibition was observed against Aeromonas hydrophila (27.53 ± 0.69). Moreover, the AgNPs were exposed to the common carp fish for toxicity and toxic effects. The highest mortality was seen at the highest concentration (0.09 mg/L) of AgNPs. Finally, the AgNPs mainly were accumulated in the liver, followed by the intestine, gills, and muscles. The intestine absorbed the nanomaterials; therefore, it is critical to check the influence of these AgNPs on the fish intestinal bacterial community via MiSeq Illumina Sequencing.
Collapse
Affiliation(s)
- Mian Adnan Kakakhel
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Syed Zaheer Ud Din
- International School for Optoelectronic Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.,Laser Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Wentao Wang
- Laser Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| |
Collapse
|