1
|
Wang Y, Yue Y, Li C, Chen Z, Cai Y, Hu C, Qu Y, Li H, Zhou K, Yan J, Li P. Insights into the adaptive evolution of chromosome and essential traits through chromosome-level genome assembly of Gekko japonicus. iScience 2024; 27:108445. [PMID: 38205241 PMCID: PMC10776941 DOI: 10.1016/j.isci.2023.108445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/05/2023] [Accepted: 11/09/2023] [Indexed: 01/12/2024] Open
Abstract
Gekko japonicus possesses flexible climbing and detoxification abilities under insectivorous habits. Still, the evolutionary mechanisms behind these traits remain unclarified. This study presents a chromosome-level G. japonicus genome, revealing that its evolutionary breakpoint regions were enriched with specific repetitive elements and defense response genes. Gene families unique to G. japonicus and positively selected genes are mainly enriched in immune, sensory, and nervous pathways. Expansion of bitter taste receptor type 2 primarily in insectivorous species could be associated with toxin clearance. Detox cytochrome P450 in G. japonicus has undergone more birth and death processes than biosynthesis-type P450 genes. Proline, cysteine, glycine, and serine in corneous beta proteins of G. japonicus might influence flexibility and setae adhesiveness. Certain thermosensitive transient receptor potential channels under relaxed purifying selection or positive selection in G. japonicus might enhance adaptation to climate change. This genome assembly offers insights into the adaptive evolution of gekkotans.
Collapse
Affiliation(s)
- Yinwei Wang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, P.R. China
| | - Youxia Yue
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, P.R. China
| | - Chao Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, P.R. China
| | - Zhiyi Chen
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, P.R. China
| | - Yao Cai
- School of Food Science, Nanjing Xiaozhuang University, Nanjing, Jiangsu 211171, P.R. China
| | - Chaochao Hu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, P.R. China
- Analytical and Testing Center, Nanjing Normal University, Nanjing, Jiangsu 210023, P.R. China
| | - Yanfu Qu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, P.R. China
| | - Hong Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, P.R. China
| | - Kaiya Zhou
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, P.R. China
| | - Jie Yan
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, P.R. China
| | - Peng Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, P.R. China
| |
Collapse
|
2
|
Bonfitto A, Randi R, Alibardi L. Bristles formation in adhesive pads and sensilli of the gecko Tarentola mauritanica derive from a massive accumulation of corneous material in Oberhautchen cells of the epidermis. Micron 2023; 171:103483. [PMID: 37207547 DOI: 10.1016/j.micron.2023.103483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/02/2023] [Accepted: 05/11/2023] [Indexed: 05/21/2023]
Abstract
Among lizards, geckos possess special digital scales modified as hairy-like lamellae that allow attachment to vertical substrates for the movement using adhesive nanoscale filaments called setae. The present study shows new ultrastructural details on setae formation in the gecko Tarentula mauritanica. Setae derive from the special differentiation of an epidermal layer termed Oberhauchen and can reach 30-60 µm in length. Oberhautchen cells in the adhesive pad lamellae becomes hypertrophic and rest upon 2 layers of non-corneous and pale cells instead of beta-cells like in the other scales. Only 1-2 beta-layers are formed underneath the pale layer. Setae derive from the accumulation of numerous roundish and heterogenous beta-packets with variable electron-density in Oberhautchen cells, possibly indicating a mixed protein composition. Immunofluorescence and immunogold labeling for CBPs show that beta-packets merge at the base of the growing setae forming long corneous bundles. Pale cells formed underneath the Oberhautchen layer contain small vesicles or tubules with a likely lipid content, sparse keratin filaments and ribosomes. In mature lamellae these cells merge with Oberhautchen and beta-cells forming a thin electron-paler layer located between the Oberhautchen and the thin beta-layer, a variation of the typical sequence of epidermal layers present in other scales. The formation of a softer pale layer and of a thin beta-layer likely determines a flexible corneous support for the adhesive setae. The specific molecular mechanism that stimulates the cellular changes observed during Oberhautchen hypertrophy and the alteration of the typical epidermal stratification in the pad epidermis remains unknown.
Collapse
Affiliation(s)
- A Bonfitto
- Department of BIGEA, University of Bologna, via Selmi 3, Bologna, Italy
| | - R Randi
- Department of BIGEA, University of Bologna, via Selmi 3, Bologna, Italy
| | - L Alibardi
- Department of BIGEA, University of Bologna, via Selmi 3, Bologna, Italy; Comparative Histolab Padova, Italy.
| |
Collapse
|
3
|
The Periodic Replacement of Adhesive Setae in Pad Lamellae of Climbing Lizards Is Driven by Patterns of Corneous Layer Growth. J Dev Biol 2022; 11:jdb11010003. [PMID: 36648905 PMCID: PMC9844433 DOI: 10.3390/jdb11010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/31/2022] Open
Abstract
The adhesive digital pads in some gecko and anoline lizards are continuously utilized for movements on vertical surfaces that may determine wear and a decrease of adhesion efficiency. The pads are formed by lamellae bearing adhesive setae that are worn out following frequent usage and are replaced by new inner setae that maintain an efficient adhesion. Whether the extensive usage of adhesive setae determines a higher shedding frequency in the digital pads with respect to other body regions remains unknown. Setae replacement has been analyzed in embryos and adult lizards using autoradiography and 5BrdU-immunohistochemistry. The observation strongly suggests that during development and epidermal renewal in adult lamellae, there is a shifting of the outer setae toward the apex of the lamella. This movement is likely derived from the continuous addition of proteins in the beta- and alpha-layers sustaining the outer setae while the inner setae are forming. Ultrastructural and in situ hybridization studies indicate that the thin outer beta- and alpha-layers still contain mRNAs and ribosomes that may contribute to the continuous production of corneous beta proteins (CBPs) and keratins for the growth of the free margin at the apex of the lamella. This process determines the apical shifting and release of the old setae, while the new inner setae formed underneath becomes the new outer setae.
Collapse
|
4
|
Rasmussen MH, Holler KR, Baio JE, Jaye C, Fischer DA, Gorb SN, Weidner T. Evidence that gecko setae are coated with an ordered nanometre-thin lipid film. Biol Lett 2022; 18:20220093. [PMID: 35857888 PMCID: PMC9256082 DOI: 10.1098/rsbl.2022.0093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 06/09/2022] [Indexed: 11/12/2022] Open
Abstract
The fascinating adhesion of gecko to virtually any material has been related to surface interactions of myriads of spatula at the tips of gecko feet. Surprisingly, the molecular details of the surface chemistry of gecko adhesion are still largely unknown. Lipids have been identified within gecko adhesive pads. However, the location of the lipids, the extent to which spatula are coated with lipids, and how the lipids are structured are still open questions. Lipids can modulate adhesion properties and surface hydrophobicity and may play an important role in adhesion. We have therefore studied the molecular structure of lipids at spatula surfaces using near-edge X-ray absorption fine structure imaging. We provide evidence that a nanometre-thin layer of lipids is present at the spatula surfaces of the tokay gecko (Gekko gecko) and that the lipids form ordered, densely packed layers. Such dense, thin lipid layers can effectively protect the spatula proteins from dehydration by forming a barrier against water evaporation. Lipids can also render surfaces hydrophobic and thereby support the gecko adhesive system by enhancement of hydrophobic-hydrophobic interactions with surfaces.
Collapse
Affiliation(s)
| | | | - Joe E. Baio
- The School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis, OR, USA
| | - Cherno Jaye
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - Daniel A. Fischer
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - Stanislav N. Gorb
- Department of Functional Morphology and Biomechanics, Institute of Zoology, Kiel University, Kiel, Germany
| | - Tobias Weidner
- Department of Chemistry, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
5
|
Holler KR, Rasmussen MA, Baio JE, Jaye C, Fischer DA, Gorb SN, Weidner T. Structure of Keratins in Adhesive Gecko Setae Determined by Near-Edge X-ray Absorption Fine Structure Spectromicroscopy. J Phys Chem Lett 2022; 13:2193-2196. [PMID: 35230827 DOI: 10.1021/acs.jpclett.2c00004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Geckos have the astonishing ability to climb on vertical surfaces due to the adhesive properties of fibrous setae at the tips of their toe pads. While the adhesion mechanism principle, based on van der Waals interactions of myriads of spatula located at the outermost end of the setal arrays, has been studied extensively, there are still open questions about the chemistry of gecko setae. The gecko adhesive system is based on keratin fibrils assembled to support the entire setal structure. At the same time, the structure and alignment of keratin molecules within the ultrafine spatula tissue, which can support the enormous mechanical strain, still remain unknown. We have studied the molecular structure of gecko spatula using near-edge X-ray absorption fine structure (NEXAFS) imaging. We indeed found that the setae consist of a β-sheet structure aligned with the adhesion direction of the setae. Such alignment may provide mechanical stability to the setae and resistance to wear across different length scales.
Collapse
Affiliation(s)
| | | | - Joe E Baio
- The School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis, Oregon 97331, United States
| | - Cherno Jaye
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Daniel A Fischer
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Stanislav N Gorb
- Department of Functional Morphology and Biomechanics, Institute of Zoology, Kiel University, 24118 Kiel, Germany
| | - Tobias Weidner
- Department of Chemistry, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
6
|
Singla S, Jain D, Zoltowski CM, Voleti S, Stark AY, Niewiarowski PH, Dhinojwala A. Direct evidence of acid-base interactions in gecko adhesion. SCIENCE ADVANCES 2021; 7:7/21/eabd9410. [PMID: 34138740 PMCID: PMC8133704 DOI: 10.1126/sciadv.abd9410] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 03/29/2021] [Indexed: 05/06/2023]
Abstract
While it is generally accepted that van der Waals (vdW) forces govern gecko adhesion, several studies indicate contributions from non-vdW forces and highlight the importance of understanding the adhesive contact interface. Previous work hypothesized that the surface of gecko setae is hydrophobic, with nonpolar lipid tails exposed on the surface. However, direct experimental evidence supporting this hypothesis and its implications on the adhesion mechanism is lacking. Here, we investigate the sapphire-setae contact interface using interface-sensitive spectroscopy and provide direct evidence of the involvement of acid-base interactions between polar lipid headgroups exposed on the setal surface and sapphire. During detachment, a layer of unbound lipids is left as a footprint due to cohesive failure within the lipid layer, which, in turn, reduces wear to setae during high stress sliding. The absence of this lipid layer enhances adhesion, despite a small setal-substrate contact area. Our results show that gecko adhesion is not exclusively a vdW-based, residue-free system.
Collapse
Affiliation(s)
- Saranshu Singla
- School of Polymer Science and Polymer Engineering, University of Akron, Akron, OH 44325-3909, USA
| | - Dharamdeep Jain
- School of Polymer Science and Polymer Engineering, University of Akron, Akron, OH 44325-3909, USA
| | - Chelsea M Zoltowski
- School of Polymer Science and Polymer Engineering, University of Akron, Akron, OH 44325-3909, USA
| | - Sriharsha Voleti
- School of Polymer Science and Polymer Engineering, University of Akron, Akron, OH 44325-3909, USA
| | - Alyssa Y Stark
- Integrated Bioscience Program, University of Akron, Akron, OH 44325-3908, USA
- Department of Biology, Villanova University, Villanova, PA 19085, USA
| | | | - Ali Dhinojwala
- School of Polymer Science and Polymer Engineering, University of Akron, Akron, OH 44325-3909, USA.
| |
Collapse
|
7
|
Mitchell CT, Dayan CB, Drotlef DM, Sitti M, Stark AY. The effect of substrate wettability and modulus on gecko and gecko-inspired synthetic adhesion in variable temperature and humidity. Sci Rep 2020; 10:19748. [PMID: 33184356 PMCID: PMC7665207 DOI: 10.1038/s41598-020-76484-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/28/2020] [Indexed: 01/23/2023] Open
Abstract
Gecko adhesive performance increases as relative humidity increases. Two primary mechanisms can explain this result: capillary adhesion and increased contact area via material softening. Both hypotheses consider variable relative humidity, but neither fully explains the interactive effects of temperature and relative humidity on live gecko adhesion. In this study, we used live tokay geckos (Gekko gecko) and a gecko-inspired synthetic adhesive to investigate the roles of capillary adhesion and material softening on gecko adhesive performance. The results of our study suggest that both capillary adhesion and material softening contribute to overall gecko adhesion, but the relative contribution of each depends on the environmental context. Specifically, capillary adhesion dominates on hydrophilic substrates, and material softening dominates on hydrophobic substrates. At low temperature (12 °C), both capillary adhesion and material softening likely produce high adhesion across a range of relative humidity values. At high temperature (32 °C), material softening plays a dominant role in adhesive performance at an intermediate relative humidity (i.e., 70% RH).
Collapse
Affiliation(s)
- Christopher T Mitchell
- Department of Biology, Villanova University, 800 E. Lancaster Ave., Villanova, PA, 19085, USA
| | - Cem Balda Dayan
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
| | - Dirk-M Drotlef
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
| | - Metin Sitti
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
| | - Alyssa Y Stark
- Department of Biology, Villanova University, 800 E. Lancaster Ave., Villanova, PA, 19085, USA.
| |
Collapse
|
8
|
Alibardi L. Immunolocalization of corneous proteins including a serine-tyrosine-rich beta-protein in the adhesive pads in the tokay gecko. Microsc Res Tech 2020; 83:889-900. [PMID: 32274891 DOI: 10.1002/jemt.23483] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/12/2020] [Accepted: 03/16/2020] [Indexed: 12/30/2022]
Abstract
Adhesive pads of geckos contain many thousands of nanoscale spatulae for the adhesion and movement along vertical or inverted surfaces. Setae are composed of interlaced corneous bundles made of small cysteine-glycine-rich corneous beta proteins (CBPs, formerly indicated as beta-keratins), embedded in a matrix material composed of cytoskeletal proteins and lipids. Negatively charged intermediate filament keratins (IFKs) and positively charged CBPs likely interact within setae, aside disulphide bonds, giving rise to a flexible and resistant corneous material. Using differernt antibodies against CBPs and IFKs an updated model of the composition of setae and spatulae is presented. Immunofluorescence and ultrastructural immunogold labeling reveal that one type of neutral serine-tyrosine-rich CBP is weakly localized in the setae while it is absent from the spatula. This uncharged protein is mainly present in the thin Oberhautchen layer sustaining the setae, although with a much lower intensity with respect to the cysteine-rich CBPs. These proteins in the spatula likely originate a positively charged or neutral contact surface with the substrate but the influence of lipids and cytoskeletal proteins present in setae on the mechanism of adhesion is not known. In the spatula, protein-lipid complexes may impart the pliability for the attachment and adapt to irregular surfaces. The presence of cysteine-glycine medium rich CBPs and softer IFKs in alpha-layers sustaining the setae forms a flexible base for compliance of the setae to substrate and improved adhesion.
Collapse
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab Padova and University of Bologna, Bologna, Italy
| |
Collapse
|
9
|
Stark AY, Mitchell CT. Stick or Slip: Adhesive Performance of Geckos and Gecko-Inspired Synthetics in Wet Environments. Integr Comp Biol 2019; 59:214-226. [PMID: 30873552 DOI: 10.1093/icb/icz008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The gecko adhesive system has inspired hundreds of synthetic mimics principally focused on replicating the strong, reversible, and versatile properties of the natural system. For geckos native to the tropics, versatility includes the need to remain attached to substrates that become wet from high humidity and frequent rain. Paradoxically, van der Waals forces, the principal mechanism responsible for gecko adhesion, reduce to zero when two contacting surfaces separate even slightly by entrapped water layers. A series of laboratory studies show that instead of slipping, geckos maintain and even improve their adhesive performance in many wet conditions (i.e., on wet hydrophobic substrates, on humid substrates held at low temperatures). The mechanism for this is not fully clarified, and likely ranges in scale from the chemical and material properties of the gecko's contact structures called setae (e.g., setae soften and change surface confirmation when exposed to water), to their locomotor biomechanics and decision-making behavior when encountering water on a substrate in their natural environment (e.g., some geckos tend to run faster and stop more frequently on misted substrates than dry). Current work has also focused on applying results from the natural system to gecko-inspired synthetic adhesives, improving their performance in wet conditions. Gecko-inspired synthetic adhesives have also provided a unique opportunity to test hypotheses about the natural system in semi-natural conditions replicated in the laboratory. Despite many detailed studies focused on the role of water and humidity on gecko and gecko-inspired synthetic adhesion, there remains several outstanding questions: (1) what, if any, role does capillary or capillary-like adhesion play on overall adhesive performance of geckos and gecko-inspired synthetics, (2) how do chemical and material changes at the surface and in the bulk of gecko setae and synthetic fibrils change when exposed to water, and what does this mean for adhesive performance, and (3) how much water do geckos encounter in their native environment, and what is their corresponding behavioral response? This review will detail what we know about gecko adhesion in wet environments, and outline the necessary next steps in biological and synthetic system investigations.
Collapse
Affiliation(s)
- Alyssa Y Stark
- Department of Biology, Villanova University, 800 East Lancaster Avenue, Villanova, PA 19085, USA
| | - Christopher T Mitchell
- Department of Biology, Villanova University, 800 East Lancaster Avenue, Villanova, PA 19085, USA
| |
Collapse
|
10
|
Alibardi L. Review: mapping proteins localized in adhesive setae of the tokay gecko and their possible influence on the mechanism of adhesion. PROTOPLASMA 2018; 255:1785-1797. [PMID: 29881974 DOI: 10.1007/s00709-018-1270-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 05/25/2018] [Indexed: 05/13/2023]
Abstract
The digital adhesive pads that allow gecko lizards to climb vertical surfaces result from the modification of the oberhautchen layer of the epidermis in normal scales. This produces sticky filaments of 10-100 μm in length, called setae that are composed of various proteins. The prevalent types, termed corneous beta proteins (CBPs), have a low molecular weight (12-20 kDa) and contain a conserved central region of 34 amino acids with a beta-conformation. This determines their polymerization into long beta-filaments that aggregate into corneous beta-bundles that form the framework of setae. Previous studies showed that the prevalent CBPs in the setae of Gekko gecko are cysteine-rich and are distributed from the base to the tip of adhesive setae, called spatulae. The molecular analysis of these proteins, although the three-dimensional structure remains undetermined, indicates that most of them are charged positively and some contain aromatic amino acids. These characteristics may impede adhesion by causing the setae to stick together but may also potentiate the van der Waals interactions responsible for most of the adhesion process on hydrophobic or hydrophilic substrates. The review stresses that not only the nanostructural shape and the high number of setae present in adhesive pads but also the protein composition of setae influence the strength of adhesion to almost any type of substrate. Therefore, formulation of dry materials mimicking gecko adhesiveness should also consider the chemical nature of the polymers utilized to fabricate the future dry adhesives in order to obtain the highest performance.
Collapse
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab Padua, Bologna, Italy.
- Dipartimento di Biologia, Universita' di Bologna, via Selmi 3, 40126, Universita' di Bologna, Bologna, Italy.
| |
Collapse
|
11
|
Alibardi L. The Process of Cornification Evolved From the Initial Keratinization in the Epidermis and Epidermal Derivatives of Vertebrates: A New Synthesis and the Case of Sauropsids. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 327:263-319. [DOI: 10.1016/bs.ircmb.2016.06.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
12
|
Gekko japonicus genome reveals evolution of adhesive toe pads and tail regeneration. Nat Commun 2015; 6:10033. [PMID: 26598231 PMCID: PMC4673495 DOI: 10.1038/ncomms10033] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 10/26/2015] [Indexed: 01/20/2023] Open
Abstract
Reptiles are the most morphologically and physiologically diverse tetrapods, and have undergone 300 million years of adaptive evolution. Within the reptilian tetrapods, geckos possess several interesting features, including the ability to regenerate autotomized tails and to climb on smooth surfaces. Here we sequence the genome of Gekko japonicus (Schlegel's Japanese Gecko) and investigate genetic elements related to its physiology. We obtain a draft G. japonicus genome sequence of 2.55 Gb and annotated 22,487 genes. Comparative genomic analysis reveals specific gene family expansions or reductions that are associated with the formation of adhesive setae, nocturnal vision and tail regeneration, as well as the diversification of olfactory sensation. The obtained genomic data provide robust genetic evidence of adaptive evolution in reptiles. Geckos are small, agile reptiles with nocturnal habits. Here, the authors sequence the genome of the Schlegel's Japanese Gecko and reveal gene family expansions and reductions associated with formation of adhesive setae, nocturnal vision, tail regeneration, and diversification of olfactory sensation.
Collapse
|
13
|
NMR spectroscopy reveals the presence and association of lipids and keratin in adhesive gecko setae. Sci Rep 2015; 5:9594. [PMID: 25902194 PMCID: PMC5386106 DOI: 10.1038/srep09594] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 02/23/2015] [Indexed: 12/03/2022] Open
Abstract
Lipid and protein aggregates are one of the fundamental materials of biological systems. Examples include cell membranes, insect cuticle, vertebrate epidermis, feathers, hair and adhesive structures known as ‘setae’ on gecko toes. Until recently gecko setae were assumed to be composed entirely of keratin, but analysis of footprints left behind by geckos walking on surfaces revealed that setae include various kinds of lipids. However, the arrangement and molecular-level behavior of lipids and keratin in the setae is still not known. In the present study we demonstrate, for the first time, the use of Nuclear Magnetic Resonance (NMR) spectroscopy techniques to confirm the presence of lipids and investigate their association with keratin in ‘pristine' sheds, or natural molts of the adhesive toe pad and non-adhesive regions of the skin. Analysis was also carried on the sheds after they were ‘delipidized’ to remove surface lipids. Our results show a distribution of similar lipids in both the skin and toe shed but with different dynamics at a molecular level. The present study can help us understand the gecko system both biologically and for design of synthetic adhesives, but the findings may be relevant to the characteristics of lipid-protein interactions in other biological systems.
Collapse
|
14
|
Alibardi L. Immunolocalization of specific beta-proteins in pad lamellae of the digits in the lizardAnolis carolinensissuggests that cysteine-rich beta-proteins provides flexibility. J Morphol 2013. [DOI: 10.1002/jmor.20233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab and Dipartimento di Biologia; University of Bologna; Bologna Italy
| |
Collapse
|