1
|
Li L, Zhang L, Luo L, Shen F, Zhao Y, Wu H, Huang Y, Hou R, Yue B, Zhang X. Adaptive Expression and ncRNA Regulation of Genes Related to Digestion and Metabolism in Stomach of Red Pandas during Suckling and Adult Periods. Animals (Basel) 2024; 14:1795. [PMID: 38929414 PMCID: PMC11200446 DOI: 10.3390/ani14121795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/09/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Red pandas evolved from carnivores to herbivores and are unique within Carnivora. Red pandas and carnivorous mammals consume milk during the suckling period, while they consume bamboo and meat during the adult period, respectively. Red pandas and carnivorous mammal ferrets have a close phylogenetic relationship. To further investigate the molecular mechanisms of dietary changes and nutrient utilization in red pandas from suckling to adult, comparative analysis of the whole transcriptome was performed on stomach tissues from red pandas and ferrets during the suckling and adult periods. The main results are as follows: (1) we identified ncRNAs for the first time in stomach tissues of both species, and found significant expression changes of 109 lncRNAs and 106 miRNAs in red pandas and 756 lncRNAs and 109 miRNAs in ferrets between the two periods; (2) up-regulated genes related to amino acid transport regulated by lncRNA-miRNA-mRNA networks may efficiently utilize limited bamboo amino acids in adult red pandas, while up-regulated genes related to amino acid degradation regulated by lncRNAs may maintain the balance of amino acid metabolism due to larger daily intakes in adult ferrets; and (3) some up-regulated genes related to lipid digestion may contribute to the utilization of rich nutrients in milk for the rapid growth and development of suckling red pandas, while up-regulated genes associated with linoleic acid metabolism regulated by lncRNA-miRNA-mRNA networks may promote cholesterol decomposition to reduce health risks for carnivorous adult ferrets. Collectively, our study offers evidence of gene expression adaptation and ncRNA regulation in response to specific dietary changes and nutrient utilization in red pandas during suckling and adult periods.
Collapse
Affiliation(s)
- Lu Li
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China; (L.L.); (L.L.); (Y.Z.); (B.Y.)
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Liang Zhang
- The Sichuan Key Laboratory for Conservation Biology of Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China; (L.Z.); (F.S.); (R.H.)
| | - Lijun Luo
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China; (L.L.); (L.L.); (Y.Z.); (B.Y.)
| | - Fujun Shen
- The Sichuan Key Laboratory for Conservation Biology of Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China; (L.Z.); (F.S.); (R.H.)
| | - Yanni Zhao
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China; (L.L.); (L.L.); (Y.Z.); (B.Y.)
| | - Honglin Wu
- China Conservation and Research Center for the Giant Panda, Dujiangyan 611800, China; (H.W.); (Y.H.)
| | - Yan Huang
- China Conservation and Research Center for the Giant Panda, Dujiangyan 611800, China; (H.W.); (Y.H.)
| | - Rong Hou
- The Sichuan Key Laboratory for Conservation Biology of Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China; (L.Z.); (F.S.); (R.H.)
| | - Bisong Yue
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China; (L.L.); (L.L.); (Y.Z.); (B.Y.)
| | - Xiuyue Zhang
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China; (L.L.); (L.L.); (Y.Z.); (B.Y.)
| |
Collapse
|
2
|
Davis JS, Montuelle SJ, Williams SH. Symphyseal morphology and jaw muscle recruitment levels during mastication in musteloid carnivorans. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2024; 341:163-171. [PMID: 38149465 DOI: 10.1002/jez.2771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/21/2023] [Accepted: 11/27/2023] [Indexed: 12/28/2023]
Abstract
In studies of mammalian mastication, a possible relationship has been proposed between bilateral recruitment of jaw adductor muscle force during unilateral chewing and the degree of fusion of the mandibular symphysis. Specifically, species that have unfused, mobile mandibular symphyses tend to utilize lower levels of jaw adductor force on the balancing (nonchewing) than the working (chewing) side of the head, when compared to related species with fused symphyses. Here, we compare jaw adductor recruitment levels in two species of musteloid carnivoran: the carnivorous ferret (unfused symphysis), and the frugivorous kinkajou (fused symphysis). During forceful chewing, we observe that ferrets recruit far more working-side muscle force than kinkajous, regardless of food toughness and that high working-to-balancing side ratios are the result of increased working-side force, often coupled with reduced balancing-side force. We propose that in carnivorans, high working-to-balancing side force ratios coupled with an unfused mandibular symphysis are necessary to rotate the hemimandible for precise unilateral occlusion of the carnassial teeth and to sustain laterally oriented force on the jaw to engage the carnassial teeth during shearing of tough foods. In contrast, the kinkajou's flattened cheekteeth permit less precise occlusion and require medially-oriented forces for grinding, thus, a fused symphysis is mechanically beneficial.
Collapse
Affiliation(s)
- Jillian Summer Davis
- Department of Biological Sciences, Ohio University, Athens, Ohio, USA
- Pathology, Anatomy, and Laboratory Medicine Department, West Virginia University School of Medicine, Morgantown, West Virginia, USA
| | - Stephane J Montuelle
- Department of Biomedical Sciences, Ohio University Heritage College of Osteopathic Medicine, Warrensville Heights, Ohio, USA
| | - Susan H Williams
- Department of Biomedical Sciences, Ohio University Heritage College of Osteopathic Medicine, Athens, Ohio, USA
| |
Collapse
|
3
|
Yizhen Z, Chen L, Jie X, Shen F, Zhang L, Hou Y, Li L, Yan G, Zhang X, Yang Z. Comparative study of the digestion and metabolism related genes' expression changes during the postnatal food change in different dietary mammals. Front Genet 2023; 14:1198977. [PMID: 37470038 PMCID: PMC10352678 DOI: 10.3389/fgene.2023.1198977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 06/26/2023] [Indexed: 07/21/2023] Open
Abstract
The changes in the expression of genes related to digestion and metabolism may be various in different dietary mammals from juvenile to adult, especially, the giant panda (Ailuropoda melanoleuca) and red panda (Ailurus fulgens), which were once carnivores but have shifted to being specialized bamboo eaters, are unique features of their changes are more unclear. To elucidate the changing patterns of gene expression related to digestion and metabolism from juvenile to adult in different dietary mammals, we performed transcriptome analysis of the liver or pancreas in giant and red pandas, herbivorous rabbits (Oryctolagus cuniculus) and macaques (Macaca mulatta), carnivorous ferrets (Mustela putorius furo), and omnivorous mice (Mus musculus) from juvenile to adult. During the transition from juvenile to adulthood, giant and red pandas, as well as rabbits and macaques, show significant upregulation of key genes for carbohydrate metabolism, such as starch hydrolysis and sucrose metabolism, and unsaturated fatty acid metabolism, such as linoleic acid, while there is no significant difference in the expression of key genes for fatty acid β-oxidation. A large number of amino acid metabolism related genes were upregulated in adult rabbits and macaques compared to juveniles. While adult giant and red pandas mainly showed upregulation of key genes for arginine synthesis and downregulation of key genes for arginine and lysine degradation. In adult stages, mouse had significantly higher expression patterns in key genes for starch hydrolysis and sucrose metabolism, as well as lipid and protein metabolism. In contrast to general expectations, genes related to lipid, amino acid and protein metabolism were significantly higher expressed in adult group of ferrets, which may be related to their high metabolic levels. Our study elucidates the pattern of changes in the expression of genes related to digestion and metabolism from juvenile to adult in different dietary mammals, with giant and red pandas showing adaptations associated with specific nutritional limitations of bamboo.
Collapse
Affiliation(s)
| | - Lei Chen
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xiaodie Jie
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, China
| | - Fujun Shen
- Sichuan Key Laboratory for Conservation Biology of Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, China
| | - Liang Zhang
- Sichuan Key Laboratory for Conservation Biology of Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, China
| | - Yusen Hou
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Lu Li
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, China
| | - Guoqiang Yan
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xiuyue Zhang
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, China
| | | |
Collapse
|
4
|
Antonelli T, Leischner CL, Hartstone-Rose A. The Cranial Morphology of the Black-Footed Ferret: A Comparison of Wild and Captive Specimens. Animals (Basel) 2022; 12:ani12192708. [PMID: 36230449 PMCID: PMC9558532 DOI: 10.3390/ani12192708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/27/2022] [Accepted: 09/30/2022] [Indexed: 11/16/2022] Open
Abstract
The black-footed ferret (Mustela nigripes), a North American mustelid species, was once found abundantly throughout the Midwest until the extreme decline in prairie dogs (Cynomys spp.), the black-footed ferret's primary food source, brought the species to near-extinction. Subsequently, the Black-Footed Ferret Recovery Program was created in the 1980s with a goal of bringing all remaining individuals of the species into captivity in order to breed the species back to a sustainable population level for successful reintroduction into the wild. While many components of the ferrets' health were accounted for while in captivity-especially those affecting fecundity-this study aims to assess the effects that captivity may have had on their cranial morphology, something that has not been widely studied in the species. In a previous study, we showed that the captive ferrets had significant oral health problems, and here we aim to document how the captive diet also affected their skull shape. For this study, 23 cranial measurements were taken on the skulls of 271 adult black-footed ferrets and 53 specimens of two closely related species. Skulls were divided based on sex, species, captivity status and phase of captivity and compared for all measurements using stepwise discriminant analysis as well as principal component analysis derived from the combined variables. We found that there are significant differences between captive and wild specimens, some of which are larger than interspecific variation, and that a diet change in the captive specimens likely helped decrease some of these differences. The results suggest that captivity can cause unnatural cranial development and that diet likely has a major impact on cranial morphology.
Collapse
Affiliation(s)
- Tyler Antonelli
- Dental Education, University of North Carolina School of Dentistry, Chapel Hill, NC 27599, USA
| | - Carissa L. Leischner
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29209, USA
| | - Adam Hartstone-Rose
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
- Correspondence: ; Tel.: +1-(919)-515-1761
| |
Collapse
|