1
|
Beccari V, Villa A, Jones MEH, Ferreira GS, Glaw F, Rauhut OWM. A juvenile pleurosaurid (Lepidosauria: Rhynchocephalia) from the Tithonian of the Mörnsheim Formation, Germany. Anat Rec (Hoboken) 2025; 308:844-867. [PMID: 39039747 PMCID: PMC11791384 DOI: 10.1002/ar.25545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 07/24/2024]
Abstract
Late Jurassic rhynchocephalians from the Solnhofen Archipelago have been known for almost two centuries. The number of specimens and taxa is constantly increasing, but little is known about the ontogeny of these animals. The well-documented marine taxon Pleurosaurus is one of such cases. With over 15 described (and many more undescribed) specimens, there were no unambiguous juveniles so far. Some authors have argued that Acrosaurus, another common component of the Solnhofen Archipelago herpetofauna, might represent an early ontogenetic stage of Pleurosaurus, but the lack of proper descriptions for this taxon makes this assignment tentative, at best. Here, we describe the first unambiguous post-hatchling juvenile of Pleurosaurus and tentatively attribute it to Pleurosaurus cf. P. ginsburgi. The new specimen comes from the Lower Tithonian of the Mörnsheim Formation, Germany. This specimen is small, disarticulated, and incomplete, but preserves several of its craniomandibular bones and presacral vertebrae. It shares with Pleurosaurus a set of diagnostic features, such as an elongated and triangular skull, a low anterior flange in its dentition, and an elongated axial skeleton. It can be identified as a juvenile due to the presence of an unworn dentition, well-spaced posteriormost dentary teeth, a large gap between the last teeth and the coronoid process of the dentary, and poorly ossified vertebrae with unfused neural arches. Acrosaurus shares many anatomical features with both this specimen and Pleurosaurus, which could indicate that the two genera are indeed synonyms. The early ontogenetic stage inferred for the new Pleurosaurus specimen argues for an even earlier ontogenetic placement for specimens referred to Acrosaurus, the latter possibly pertaining to hatchlings.
Collapse
Affiliation(s)
- Victor Beccari
- SNSB‐Bayerische Staatssammlung für Paläontologie und GeologieMunichGermany
- Department of Earth and Environmental SciencesLudwig‐Maximilians‐UniversitätMunichGermany
| | - Andrea Villa
- Institut Català de Paleontologia Miquel Crusafont (ICP‐CERCA), Edifici ICTA‐ICPBarcelonaSpain
| | - Marc E. H. Jones
- Fossil Reptiles, Amphibians and Birds Section, Science Group, Natural History MuseumLondonUK
- Research Department of Cell and Developmental Biology, Anatomy Building, UCLUniversity College LondonLondonUK
| | - Gabriel S. Ferreira
- Senckenberg Centre for Human Evolution and Palaeoenvironment at the University of TübingenTübingenGermany
- Fachbereich GeowissenschaftenEberhard Karls Universität TübingenTübingenGermany
| | - Frank Glaw
- SNSB‐Zoologische StaatssammlungMunichGermany
- GeoBioCenter, Ludwig‐Maximilians‐UniversitätMunichGermany
| | - Oliver W. M. Rauhut
- SNSB‐Bayerische Staatssammlung für Paläontologie und GeologieMunichGermany
- Department of Earth and Environmental SciencesLudwig‐Maximilians‐UniversitätMunichGermany
- GeoBioCenter, Ludwig‐Maximilians‐UniversitätMunichGermany
| |
Collapse
|
2
|
Title PO, Singhal S, Grundler MC, Costa GC, Pyron RA, Colston TJ, Grundler MR, Prates I, Stepanova N, Jones MEH, Cavalcanti LBQ, Colli GR, Di-Poï N, Donnellan SC, Moritz C, Mesquita DO, Pianka ER, Smith SA, Vitt LJ, Rabosky DL. The macroevolutionary singularity of snakes. Science 2024; 383:918-923. [PMID: 38386744 DOI: 10.1126/science.adh2449] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 01/02/2024] [Indexed: 02/24/2024]
Abstract
Snakes and lizards (Squamata) represent a third of terrestrial vertebrates and exhibit spectacular innovations in locomotion, feeding, and sensory processing. However, the evolutionary drivers of this radiation remain poorly known. We infer potential causes and ultimate consequences of squamate macroevolution by combining individual-based natural history observations (>60,000 animals) with a comprehensive time-calibrated phylogeny that we anchored with genomic data (5400 loci) from 1018 species. Due to shifts in the dynamics of speciation and phenotypic evolution, snakes have transformed the trophic structure of animal communities through the recurrent origin and diversification of specialized predatory strategies. Squamate biodiversity reflects a legacy of singular events that occurred during the early history of snakes and reveals the impact of historical contingency on vertebrate biodiversity.
Collapse
Affiliation(s)
- Pascal O Title
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY 11794, USA
- Environmental Resilience Institute, Indiana University, Bloomington, IN 47408, USA
- Museum of Zoology and Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sonal Singhal
- Museum of Zoology and Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biology, California State University, Dominguez Hills, Carson, CA 90747, USA
| | - Michael C Grundler
- Museum of Zoology and Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Gabriel C Costa
- Museum of Zoology and Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biology and Environmental Sciences, Auburn University at Montgomery, Montgomery, AL 36117, USA
| | - R Alexander Pyron
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, 20560, USA
| | - Timothy J Colston
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, 20560, USA
- Biology Department, University of Puerto Rico at Mayagüez, Mayagüez 00680, Puerto Rico
| | - Maggie R Grundler
- Museum of Zoology and Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, CA 94720, USA
- Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Ivan Prates
- Museum of Zoology and Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Natasha Stepanova
- Museum of Zoology and Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Marc E H Jones
- Science Group: Fossil Reptiles, Amphibians and Birds Section, Natural History Museum, London SW7 5BD, UK
- Research Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
- Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Lucas B Q Cavalcanti
- Departamento de Sistemática e Ecologia, Universidade Federal da Paraíba, João Pessoa, Paraíba 58051-900, Brazil
| | - Guarino R Colli
- Departamento de Zoologia, Universidade de Brasília, Brasília, Distrito Federal 70910-900, Brazil
| | - Nicolas Di-Poï
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
| | | | - Craig Moritz
- Research School of Biology, The Australian National University, Canberra, ACT 2600, Australia
| | - Daniel O Mesquita
- Departamento de Sistemática e Ecologia, Universidade Federal da Paraíba, João Pessoa, Paraíba 58051-900, Brazil
| | - Eric R Pianka
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Stephen A Smith
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Laurie J Vitt
- Sam Noble Museum and Department of Biology, University of Oklahoma, Norman, OK, USA
| | - Daniel L Rabosky
- Museum of Zoology and Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
3
|
Wu H, Gao S, Xia L, Li P. Evolutionary rates of body-size-related genes and ecological factors involved in driving body size evolution of squamates. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.1007409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Body size is one of the most important traits of an organism. Among reptiles, both lizards and snakes show body size differences that span a similar six orders of magnitude variation. However, the molecular mechanisms underlying body size variation in squamates remain obscure. Here, we performed comparative genomic analyses of 101 body-size-related genes from 28 reptilian genomes. Phylogenetic analysis by maximum likelihood (PAML) revealed that snakes showed higher evolutionary rates in body-size-related genes, and had an almost two-fold increase in the number of positively selected genes (∼20.3%) compared with lizards (∼8.9%). The high similarities in dN/dS values were obtained between the branches of large-bodied lizards and large-bodied snakes by Spearman correlation analysis. Combining the results from site model, branch-site model and clade model analyses, we found some key genes regulating the evolution of body size in squamates, such as COL10A1, GHR, NPC1, GALNS, CDKN2C, FBN1, and LCORL. Phylogenetic generalized least squares (PGLS) indicated that AKT1, BMP1, IGF1, SOX5, SOX7 in lizards and BMP5, BMP7, GPC6, SH2B3, SOX17 in snakes were significantly correlated with body length and body mass. Furthermore, ecological factors had varying degrees of impact on body size and the evolutionary rate of body-size-related genes in squamates. Intriguingly, climate had little effect on body size of lizards and snakes, but the contribution of climate-related factors to the variation in evolutionary rate of body-size-related genes were relatively higher. Our study lays a foundation for a comprehensive understanding of genetic mechanisms of body size evolution in squamates during the process of adapting to terrestrial life.
Collapse
|
4
|
Kverková K, Polonyiová A, Kubička L, Němec P. Individual and age-related variation of cellular brain composition in a squamate reptile. Biol Lett 2020; 16:20200280. [PMID: 32961085 DOI: 10.1098/rsbl.2020.0280] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Within-species variation in the number of neurons, other brain cells and their allocation to different brain parts is poorly studied. Here, we assess these numbers in a squamate reptile, the Madagascar ground gecko (Paroedura picta). We examined adults from two captive populations and three age groups within one population. Even though reptiles exhibit extensive adult neurogenesis, intrapopulation variation in the number of neurons is similar to that in mice. However, the two populations differed significantly in most measures, highlighting the fact that using only one population can underestimate within-species variation. There is a substantial increase in the number of neurons and decrease in neuronal density in adult geckos relative to hatchlings and an increase in the number of neurons in the telencephalon in fully grown adults relative to sexually mature young adults. This finding implies that adult neurogenesis does not only replace worn out but also adds new telencephalic neurons in reptiles during adulthood. This markedly contrasts with the situation in mammals, where the number of cortical neurons declines with age.
Collapse
Affiliation(s)
- Kristina Kverková
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, CZ-128 44 Praha 2, Czech Republic
| | - Alexandra Polonyiová
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, CZ-128 44 Praha 2, Czech Republic
| | - Lukáš Kubička
- Department of Ecology, Faculty of Science, Charles University, Viničná 7, CZ-128 44 Praha 2, Czech Republic
| | - Pavel Němec
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, CZ-128 44 Praha 2, Czech Republic
| |
Collapse
|
6
|
Warner DA, Du WG, Georges A. Introduction to the special issue-Developmental plasticity in reptiles: Physiological mechanisms and ecological consequences. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2018; 329:153-161. [PMID: 29956505 DOI: 10.1002/jez.2199] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 06/30/2018] [Accepted: 06/04/2018] [Indexed: 12/13/2022]
Abstract
Scientific interest in developmental plasticity spans many disciplines, and research on reptiles has provided many insights into this field. We highlight these contributions, review the field's history, and introduce the special issue on this topic .
Collapse
Affiliation(s)
- Daniel A Warner
- Department of Biological Sciences, Auburn University, Auburn, Alabama, USA
| | - Wei-Guo Du
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Arthur Georges
- Institute for Applied Ecology, University of Canberra, Canberra, Australia
| |
Collapse
|