1
|
Wiśniewska K, Siatkowska M, Komorowski P, Napieralska K, Kasperkiewicz K, Surmiak-Stalmach K, Wilczek G. Effects of chronic exposure to cadmium and copper on the proteome profile of hemolymph in false widow spider Steatoda grossa (Theridiidae). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114448. [PMID: 38321667 DOI: 10.1016/j.ecoenv.2022.114448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 11/28/2022] [Accepted: 12/16/2022] [Indexed: 02/08/2024]
Abstract
The aim of this study was to evaluate the quantitative and qualitative changes in the proteome of the hemolymph of female Steatoda grossa spiders (Theridiidae) that were chronically exposed to cadmium and copper in food and were additionally immunostimulated (phorbol 12-myristate 13-acetate (PMA); bacterial suspensions: Staphylococcus aureus (G+), Pseudomonas fluorescens (G-). It was found that the expression of nearly 90 proteins was altered in cadmium-intoxicated spiders and more than 60 in copper-exposed individuals. Regardless of the type of metal used, these proteins were mainly overexpressed in the hemolymph of the exposed spiders. On the other hand, immunostimulation did not significantly change the number of proteins with altered expression in metal-intoxicated individuals. Hemocyanin (Hc) was found to be the most abundant of the proteins identified with altered expression. In copper-intoxicated spiders, immunostimulation increased the expression of A-, E-, F-, and G-chain-containing proteins, while in the case of cadmium-intoxicates spiders, it decreased the expression of E- and A-chain-containing Hc and increased the expression of G-chain-containing Hc. Regardless of the type of metal and immunostimulant used, there was an increase in the expression of actin. In addition, cadmium increased the expression of cullin, vimentin, and ceruloplasmin. The changes observed in the expression of hemolymph proteins indicate their protective function in S. grossa (Theridiidae) spiders under conditions of metal exposure.
Collapse
Affiliation(s)
- Kamila Wiśniewska
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia, Bankowa 9, 40-007 Katowice, Poland
| | - Małgorzata Siatkowska
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia, Bankowa 9, 40-007 Katowice, Poland; Laboratory of Molecular and Nanostructural Biophysics, Bionanopark Ltd. Dubois 114/116, 93-465 Łódź, Poland
| | - Piotr Komorowski
- Laboratory of Molecular and Nanostructural Biophysics, Bionanopark Ltd. Dubois 114/116, 93-465 Łódź, Poland; Department of Biophysics, Institute of Materials Science, Lodz University of Technology, Żeromskiego 116, 90-924 Łódź, Poland
| | - Kinga Napieralska
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia, Bankowa 9, 40-007 Katowice, Poland; Laboratory of Molecular and Nanostructural Biophysics, Bionanopark Ltd. Dubois 114/116, 93-465 Łódź, Poland
| | - Katarzyna Kasperkiewicz
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia, Bankowa 9, 40-007 Katowice, Poland
| | - Kinga Surmiak-Stalmach
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia, Bankowa 9, 40-007 Katowice, Poland
| | - Grażyna Wilczek
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia, Bankowa 9, 40-007 Katowice, Poland.
| |
Collapse
|
2
|
HEMOLYMPH CHEMISTRY REFERENCE RANGES OF THE CHILEAN ROSE TARANTULA GRAMMOSTOLA ROSEA (WALKENAER, 1837) USING THE VETSCAN BIOCHEMISTRY ANALYZER BASED ON IFCC-CLSI C28-A 3. J Zoo Wildl Med 2019; 49:528-534. [PMID: 30212312 DOI: 10.1638/2015-0145.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The use of invertebrate hemolymph chemistry analysis has the potential to become a major diagnostic tool. The goal of this study was to generate statistically sound hemolymph reference ranges from healthy tarantulas. Hemolymph was drawn from wild caught, acclimatized, and apparently healthy female Chilean rose tarantulas Grammostola rosea (Walkenaer, 1837) ( n = 43) using a modified technique. Hemolymph samples were separately analyzed using the Avian-Reptilian Profile Plus reagent rotor for VetScan® for the following chemistries: aspartate aminotransferase, bile acids, creatine kinase, uric acid, glucose, total calcium, phosphorus, total protein, albumin, potassium, and sodium. With this method the authors were able to establish statistically sound reference ranges for aspartate aminotransferase, creatine kinase, glucose, phosphorus, and total protein. Further in situ studies will determine the practical usability of these values in the evaluation of tarantula health.
Collapse
|
3
|
Cubillos C, Cáceres JC, Villablanca C, Villarreal P, Baeza M, Cabrera R, Graether SP, Veloso C. Cold tolerance mechanisms of two arthropods from the Andean Range of Central Chile: Agathemera crassa (Insecta: Agathemeridae) and Euathlus condorito (Arachnida: Theraphosidae). J Therm Biol 2018; 74:133-139. [DOI: 10.1016/j.jtherbio.2018.03.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 03/03/2018] [Accepted: 03/18/2018] [Indexed: 12/29/2022]
|
4
|
Bednaski A, Trevisan-Silva D, Matsubara F, Boia-Ferreira M, Olivério M, Gremski L, Cavalheiro R, De Paula D, Paredes-Gamero E, Takahashi H, Toledo M, Nader H, Veiga S, Chaim O, Senff-Ribeiro A. Characterization of Brown spider (Loxosceles intermedia) hemolymph: Cellular and biochemical analyses. Toxicon 2015; 98:62-74. [DOI: 10.1016/j.toxicon.2015.02.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 02/11/2015] [Accepted: 02/17/2015] [Indexed: 10/23/2022]
|
5
|
Trabalon M, Blais C. Juvenile development, ecdysteroids and hemolymph level of metabolites in the spider Brachypelma albopilosum (Theraphosidae). JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL GENETICS AND PHYSIOLOGY 2012; 317:236-47. [PMID: 22311802 DOI: 10.1002/jez.1717] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 11/18/2011] [Accepted: 12/02/2011] [Indexed: 11/08/2022]
Abstract
In the present work, juvenile development and physiological state of mygalomorph Brachypelma albopilosum were investigated by means of individual rearing under controlled conditions. Males required 4-5 years for development from first juvenile instar to adulthood, passing through 8 to 12 juvenile molts. Females developed to adults in 5-6 years with a variable juvenile molt number from 9 to 13. The development and growth of males and females took place in a similar way until the last juvenile molt leading to subadults. Ecdysteroids, total lipid, cholesterol, and protein concentrations increased along with the different development instars in both males and females. After the last juvenile molt, spiders presented morphological and biochemical sex differences. Subadult and adulthood males were smaller in size and weight than females; hemolymph levels of ecdysteroids, total lipids, cholesterol, and glucose were higher in males. These physiological and biochemical differences can be correlated to the different sexual development between males and females.
Collapse
Affiliation(s)
- Marie Trabalon
- Department of Biology, Université Rennes 1, UMR-6552 CNRS Ethologie, Rennes, France.
| | | |
Collapse
|
6
|
Ma B, Johnson R. De novo sequencing and homology searching. Mol Cell Proteomics 2012; 11:O111.014902. [PMID: 22090170 PMCID: PMC3277775 DOI: 10.1074/mcp.o111.014902] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 11/08/2011] [Indexed: 11/06/2022] Open
Abstract
In proteomics, de novo sequencing is the process of deriving peptide sequences from tandem mass spectra without the assistance of a sequence database. Such analyses have traditionally been performed manually by human experts, and more recently by computer programs that have been developed because of the need for higher throughput. Although powerful, de novo sequencing often can only determine partially correct sequence tags because of imperfect tandem mass spectra. However, these sequence tags can then be searched in a sequence database to identify the exact or a homologous peptide. Homology searches are particularly useful for the study of organisms whose genomes have not been sequenced. This tutorial will present background important to understanding de novo sequencing, suggestions on how to do this manually, plus descriptions of computer algorithms used to automate this process and to subsequently carryout homology-based database searches. This Tutorial is part of the International Proteomics Tutorial Programme (IPTP 1).
Collapse
Affiliation(s)
- Bin Ma
- From the ‡School of Computer Science, University of Waterloo, 200 University Ave. W, Waterloo, ON, Canada N2L 3G1
| | | |
Collapse
|
7
|
Reichardt F, Chaumande B, Habold C, Robin JP, Ehret-Sabatier L, Le Maho Y, Liewig N, Angel F, Lignot JH. Kaolinite ingestion facilitates restoration of body energy reserves during refeeding after prolonged fasting. Fundam Clin Pharmacol 2011; 26:577-88. [PMID: 21913975 DOI: 10.1111/j.1472-8206.2011.00989.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Clay consumption is a spontaneous behavior currently observed in animals and humans, particularly during undernutrition. Often regarded as intestinal care products, ingested clays also enhance food efficiency, notably by increasing intestinal lipid uptake. Clay complementation could then optimize the reconstitution of energy reserves in animals with low lipid stocks consecutive to intensive fasting. The aim of this study was therefore to observe the effects of voluntarily kaolinite complementation during the refeeding of fasted rats to determine whether body mass, food uptake, lipid and mineral contents as intestinal morphology and protein profile were modified. This study examined two types of refeeding experiments after prolonged fasting. Firstly, rats with ad libitum access to food were compared to rats with ad libitum access to food and kaolinite pellets. Animals were randomly put into the different groups when the third phase of fasting (phase III) reached by each individual was detected. In a second set of experiments, rats starting phase III were refed with free access to food and kaolinite pellets. When animals had regained their body mass prior to fasting, they were euthanized for chemical, morphological, and proteomic analyses. Although kaolinite ingestion did not change the time needed for regaining prefasting body mass, daily food ingestion was seen to decrease by 6.8% compared with normally refed rats, without affecting lipid composition. Along the intestinal lining, enterocytes of complemented animals contained abundant lipid droplets and a structural modification of the brushborder was observed. Moreover, the expression of two apolipoproteins involved in lipid transport and satiety (ApoA-I and ApoA-IV) increased in complemented rats. These results suggest that kaolinite complementation favors intestinal nutrient absorption during refeeding despite reduced food uptake. Within the intestinal lumen, clay particles could increase the passive absorption capacity and/or nutrient availability that induce mucosal morphological changes. Therefore, clay ingestion appears to be beneficial for individuals undergoing extreme nutritional conditions such as refeeding and limited food supplies.
Collapse
Affiliation(s)
- François Reichardt
- Lehrstuhl für Humanbiologie, Technische Universität München, Freising-Weihenstephan, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Voinot F, Fischer C, Bœuf A, Schmidt C, Delval-Dubois V, Reichardt F, Liewig N, Chaumande B, Ehret-Sabatier L, Lignot JH, Angel F. Effects of controlled ingestion of kaolinite (5%) on food intake, gut morphology and in vitro motility in rats. Fundam Clin Pharmacol 2011; 26:565-76. [DOI: 10.1111/j.1472-8206.2011.00978.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|