1
|
Recknagel H, Premate E, Zakšek V, Aljančič G, Kostanjšek R, Trontelj P. Oviparity, viviparity or plasticity in reproductive mode of the olm Proteus anguinus: an epic misunderstanding caused by prey regurgitation? CONTRIBUTIONS TO ZOOLOGY 2022. [DOI: 10.1163/18759866-bja10029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract
Cave animals are biological models of fast evolutionary change induced by transition to extreme subterranean environments. But their concealed lifestyle makes it inherently difficult to study life-history changes. Therefore, currently very little is known on the reproduction of cave species, and even less is known on general patterns and potentially shared reproductive strategies. Theory predicts that the cave environment favours the production of a few well-developed offspring and live birth. For one of the most enigmatic cave animals, the olm (Proteus anguinus), it has been debated fiercely whether they reproduce by live birth (viviparity), egg-laying (oviparity) or facultatively. While successes in captive breeding after the 1950s report oviparity as the single parity mode, some historically older observations claimed viviparity. The controversial neo-Lamarckist Paul Kammerer even claimed to have induced changes in parity mode by altering environmental conditions. Here, we report on the feeding and regurgitation of fire salamander (Salamandra salamandra) larvae by olms. The salamander larvae showed clear teeth marks and other injuries on the head caused by the olm, yet one larva was still alive after regurgitation. We suggest that historical reports of olm viviparity could have been misled by regurgitated salamander larvae. Our data bring additional indications that at least some of Kammerer’s experiments were fraudulent.
Collapse
Affiliation(s)
- Hans Recknagel
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia,
| | - Ester Premate
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia,
| | - Valerija Zakšek
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia,
| | - Gregor Aljančič
- Society for Cave Biology, Tular Cave Laboratory, Oldhamska cesta 8a, 4000, Kranj, Slovenia,
| | - Rok Kostanjšek
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia,
| | - Peter Trontelj
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia,
| |
Collapse
|
2
|
Arntzen JW. The Midwife Toad Challenge After (Half) a Century. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.819542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The evolutionary biologist Paul Kammerer (1880–1926) purportedly demonstrated that environmentally induced character states are carried over to the next generation(s), therewith providing evidence for Lamarckian evolution. Kammerer’s work is generally seen as contentious but has also been valued as daring and insightful, and Kammerer has been heralded as an academic forebear of epigenetics. Most of the more pertinent of Kammerer’s experiments on amphibians and the sea squirt have either been invalidated by replications that failed, or have been dismissed as virtually impossible. An experiment on color pattern change in the fire salamander stands out because it has been confirmed, but only with data for within a generation, so that Kammerer’s claim concerning the inheritance of acquired character states still awaits confirmation. To facilitate and encourage replicate studies, I draw attention to species and populations that would be most practical and promising to work with, for those that are into the challenge.
Collapse
|
3
|
Fouilloux CA, Yovanovich CAM, Rojas B. Tadpole Responses to Environments With Limited Visibility: What We (Don’t) Know and Perspectives for a Sharper Future. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2021.766725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Amphibian larvae typically inhabit relatively shallow freshwater environments, and within these boundaries there is considerable diversity in the structure of the habitats exploited by different species. This diversity in habitat structure is usually taken into account in relation to aspects such as locomotion and feeding, and plays a fundamental role in the classification of tadpoles into ecomorphological guilds. However, its impact in shaping the sensory worlds of different species is rarely addressed, including the optical qualities of each of these types of water bodies and the challenges and limitations that they impose on the repertoire of visual abilities available for a typical vertebrate eye. In this Perspective article, we identify gaps in knowledge on (1) the role of turbidity and light-limited environments in shaping the larval visual system; and (2) the possible behavioral and phenotypic responses of larvae to such environments. We also identify relevant unaddressed study systems paying special attention to phytotelmata, whose small size allows for extensive quantification and manipulation providing a rich and relatively unexplored research model. Furthermore, we generate hypotheses ranging from proximate shifts (i.e., red-shifted spectral sensitivity peaks driven by deviations in chromophore ratios) to ultimate changes in tadpole behavior and phenotype, such as reduced foraging efficiency and the loss of antipredator signaling. Overall, amphibians provide an exciting opportunity to understand adaptations to visually limited environments, and this framework will provide novel experimental considerations and interpretations to kickstart future research based on understanding the evolution and diversity of strategies used to cope with limited visibility.
Collapse
|
4
|
Preißler K, Rodríguez A, Pröhl H. Evidence for coloration plasticity in the yellow-bellied toad, Bombina variegata. Ecol Evol 2021; 11:17557-17567. [PMID: 34938529 PMCID: PMC8668782 DOI: 10.1002/ece3.8391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 11/09/2022] Open
Abstract
Phenotypic adaptation in terms of background color matching to the local habitat is an important mechanism for survival in prey species. Thus, intraspecific variation in cryptic coloration is expected among localities with dissimilar habitat features (e.g., soil, vegetation). Yellow-bellied toads (Bombina variegata) display a dark dorsal coloration that varies between populations, assumed to convey crypsis. In this study, we explored I) geographic variation in dorsal coloration and II) coloration plasticity in B. variegata from three localities differing in substrate coloration. Using avian visual modeling, we found that the brightness contrasts of the cryptic dorsa were significantly lower on the local substrates than substrates of other localities. In experiments, individuals from one population were able to quickly change the dorsal coloration to match a lighter substrate. We conclude that the environment mediates an adaptation in cryptic dorsal coloration. We suggest further studies to test the mechanisms by which the color change occurs and explore the adaptive potential of coloration plasticity on substrates of varying brightness in B. variegata and other species.
Collapse
Affiliation(s)
- Kathleen Preißler
- Molecular Evolution and Systematics of AnimalsInstitute of BiologyUniversity LeipzigLeipzigGermany
| | - Ariel Rodríguez
- Institute of ZoologyUniversity of Veterinary Medicine of HannoverHannoverGermany
| | - Heike Pröhl
- Institute of ZoologyUniversity of Veterinary Medicine of HannoverHannoverGermany
| |
Collapse
|
5
|
White TE, Umbers KDL. Meta-analytic evidence for quantitative honesty in aposematic signals. Proc Biol Sci 2021; 288:20210679. [PMID: 33906408 PMCID: PMC8080005 DOI: 10.1098/rspb.2021.0679] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 04/08/2021] [Indexed: 12/30/2022] Open
Abstract
The combined use of noxious chemical defences and conspicuous warning colours is a ubiquitous anti-predator strategy. That such signals advertise the presence of defences is inherent to their function, but their predicted potential for quantitative honesty-the positive scaling of signal salience with the strength of protection-is the subject of enduring debate. Here, we systematically synthesized the available evidence to test this prediction using meta-analysis. We found evidence for a positive correlation between warning colour expression and the extent of chemical defences across taxa. Notably, this relationship held at all scales; among individuals, populations and species, though substantial between-study heterogeneity remains unexplained. Consideration of the design of signals revealed that all visual features, from colour to contrast, were equally informative of the extent of prey defence. Our results affirm a central prediction of honesty-based models of signal function and narrow the scope of possible mechanisms shaping the evolution of aposematism. They suggest diverse pathways to the encoding and exchange of information, while highlighting the need for deeper knowledge of the ecology of chemical defences to enrich our understanding of this widespread anti-predator adaptation.
Collapse
Affiliation(s)
- Thomas E. White
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales 2106, Australia
| | - Kate D. L. Umbers
- School of Science, Western Sydney University, Penrith, New South Wales 2751, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales 2751, Australia
| |
Collapse
|
6
|
DE Meester G, Šunje E, Prinsen E, Verbruggen E, VAN Damme R. Toxin variation among salamander populations: discussing potential causes and future directions. Integr Zool 2020; 16:336-353. [PMID: 32965720 DOI: 10.1111/1749-4877.12492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Amphibians produce defensive chemicals which provide protection against both predators and infections. Within species, populations can differ considerably in the composition and amount of these chemical defenses. Studying intraspecific variation in toxins and linking it to environmental variables may help us to identify the selective drivers of toxin evolution, such as predation pressure and infection risk. Recently, there has been a renewed interest in the unique toxins produced by salamanders from the genus Salamandra: the samandarines. Despite this attention, intraspecific variation has largely been ignored within Salamandra-species. The aim of this study was to investigate whether geographic variation in profiles of samandarines exists, by sampling 4 populations of Salamandra atra over its range in the Dinaric Alps. In addition, we preliminary explored whether potential variation could be explained by predation (counting the number of snake species) and infection risk (cultivation and genomic analyses of collected soil samples). Salamanders from the 4 populations differed in toxin composition and in the size of their poison glands, although not in overall toxin quantity. Nor predation nor infection risk could explain this variation, as populations barely differed in these variables. Sampling over a much broader geographic range, using better estimators for predation and infection risk, will contribute to an improved understanding of how environment may shape variation in chemical defenses. Nevertheless, as the 4 populations of S. atra did differ in their toxin profiles, we propose that this species provides an interesting opportunity for further ecological and evolutionary studies on amphibian toxins.
Collapse
Affiliation(s)
- Gilles DE Meester
- Department of Biology, Functional Morphology Group, University of Antwerp, Wilrijk, Belgium
| | - Emina Šunje
- Department of Biology, Functional Morphology Group, University of Antwerp, Wilrijk, Belgium.,Department of Biology, Faculty of Natural Sciences, University of Sarajevo, Sarajevo, Bosnia-Hercegovina.,Herpetological Association in Bosnia and Herzegovina: BHHU: ATRA, Sarajevo, Bosnia-Hercegovina
| | - Els Prinsen
- Department of Biology, Impress, University of Antwerp, Wilrijk, Belgium
| | - Erik Verbruggen
- Department of Biology, Plant and Ecosystems, University of Antwerp, Wilrijk, Belgium
| | - Raoul VAN Damme
- Department of Biology, Functional Morphology Group, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
7
|
Burgon JD, Vieites DR, Jacobs A, Weidt SK, Gunter HM, Steinfartz S, Burgess K, Mable BK, Elmer KR. Functional colour genes and signals of selection in colour-polymorphic salamanders. Mol Ecol 2020; 29:1284-1299. [PMID: 32159878 DOI: 10.1111/mec.15411] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 12/11/2022]
Abstract
Coloration has been associated with multiple biologically relevant traits that drive adaptation and diversification in many taxa. However, despite the great diversity of colour patterns present in amphibians the underlying molecular basis is largely unknown. Here, we use insight from a highly colour-variable lineage of the European fire salamander (Salamandra salamandra bernardezi) to identify functional associations with striking variation in colour morph and pattern. The three focal colour morphs-ancestral black-yellow striped, fully yellow and fully brown-differed in pattern, visible coloration and cellular composition. From population genomic analyses of up to 4,702 loci, we found no correlations of neutral population genetic structure with colour morph. However, we identified 21 loci with genotype-phenotype associations, several of which relate to known colour genes. Furthermore, we inferred response to selection at up to 142 loci between the colour morphs, again including several that relate to coloration genes. By transcriptomic analysis across all different combinations, we found 196 differentially expressed genes between yellow, brown and black skin, 63 of which are candidate genes involved in animal coloration. The concordance across different statistical approaches and 'omic data sets provide several lines of evidence for loci linked to functional differences between colour morphs, including TYR, CAMK1 and PMEL. We found little association between colour morph and the metabolomic profile of its toxic compounds from the skin secretions. Our research suggests that current ecological and evolutionary hypotheses for the origins and maintenance of these striking colour morphs may need to be revisited.
Collapse
Affiliation(s)
- James D Burgon
- Institute of Biodiversity, Animal Health & Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - David R Vieites
- Museo Nacional de Ciencias Naturales (MNCN), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Arne Jacobs
- Institute of Biodiversity, Animal Health & Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Stefan K Weidt
- Glasgow Polyomics, Wolfson Wohl Cancer Research Centre, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Helen M Gunter
- Edinburgh Genomics, King's Buildings, University of Edinburgh, Edinburgh, UK
| | - Sebastian Steinfartz
- Department of Evolutionary Biology, Unit Molecular Ecology, Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
| | - Karl Burgess
- Glasgow Polyomics, Wolfson Wohl Cancer Research Centre, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Barbara K Mable
- Institute of Biodiversity, Animal Health & Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Kathryn R Elmer
- Institute of Biodiversity, Animal Health & Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
8
|
Preißler K, Gippner S, Lüddecke T, Krause ET, Schulz S, Vences M, Steinfartz S. More yellow more toxic? Sex rather than alkaloid content is correlated with yellow coloration in the fire salamander. J Zool (1987) 2019. [DOI: 10.1111/jzo.12676] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- K. Preißler
- Zoological Institute Technische Universität Braunschweig Braunschweig Germany
- Institute of Biology, Molecular Evolution and Systematics of Animals University of Leipzig Leipzig Germany
| | - S. Gippner
- Zoological Institute Technische Universität Braunschweig Braunschweig Germany
| | - T. Lüddecke
- Zoological Institute Technische Universität Braunschweig Braunschweig Germany
- Animal Venomics Research Group Fraunhofer Institute for Molecular Biology and Applied Ecology Gießen Germany
| | - E. T. Krause
- Institute of Animal Welfare and Animal Husbandry Friedrich‐Loeffler‐Institut Celle Germany
| | - S. Schulz
- Institute of Organic Chemistry Technische Universität Braunschweig Braunschweig Germany
| | - M. Vences
- Zoological Institute Technische Universität Braunschweig Braunschweig Germany
| | - S. Steinfartz
- Zoological Institute Technische Universität Braunschweig Braunschweig Germany
- Institute of Biology, Molecular Evolution and Systematics of Animals University of Leipzig Leipzig Germany
| |
Collapse
|