1
|
Simakov O, Wagner GP. The application of irreversible genomic states to define and trace ancient cell type homologies. EvoDevo 2025; 16:5. [PMID: 40319312 PMCID: PMC12049793 DOI: 10.1186/s13227-025-00242-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Accepted: 04/21/2025] [Indexed: 05/07/2025] Open
Abstract
Homology, or relationship among characters by common descent, has been notoriously difficult to assess for many morphological features, and cell types in particular. The ontogenetic origin of morphological traits means that the only physically inherited information is encoded in the genomes. However, the complexity of the underlying gene regulatory network and often miniscule changes that can impact gene expression, make it practically impossible to postulate a clear demarcation line for what molecular signature should "define" a homologous cell type between two deeply branching animals. In this Hypothesis article, we propose the use of the recently characterized irreversible genomic states, that occur after chromosomal and sub-chromosomal mixing of genes and regulatory elements, to dissect regulatory signatures of each cell type into irreversible and reversible configurations. While many of such states will be non-functional, some may permanently impact gene expression in a given cell type. Our proposal is that such evolutionarily irreversible, and thus synapomorphic, functional genomic states can constitute a criterion for the timing of the origin of deep evolutionary cell type homologies. Our proposal thus aims to close the gap between the clearly defined homology of the individual genomic characters and their genomic states to the homology at the phenotypic level through the identification of the underlying evolutionarily irreversible and regulatory linked states.
Collapse
Affiliation(s)
- Oleg Simakov
- Department of Neurosciences and Developmental Biology, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria.
| | - Günter P Wagner
- Department of Evolutionary Biology, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
- Systems Biology Institute, Yale University, New Haven, CT, 06520, USA
- Hagler Institute for Advanced Studies, Texas A&M, College Station, TX, 77843, USA
| |
Collapse
|
2
|
Zeller U, Werneburg I. A life dedicated to research and ideal: Johannes Müller between empirical universality and idealistic vitalism mirrored in lecture notes from 1851. Theory Biosci 2024; 143:161-182. [PMID: 39158680 PMCID: PMC11347478 DOI: 10.1007/s12064-024-00422-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/23/2024] [Indexed: 08/20/2024]
Abstract
Until the mid-nineteenth century, "physiology" was a comprehensive theory of life, expounded and shaped by Johannes P. Müller (1801-1858). Biologists and medical doctors still refer to him today. In the summer term of 1851, Müller gave a lecture on the Comparative Anatomy of animals. This lecture was attended and recorded by Ernst Zeller (1830-1902), a future physician and zoologist, and has recently been published together with a German transcript. In this paper, we situate Johannes Müller within the intellectual history of his time. Through his "empirical idealism," we show how he opposed the speculative tendencies of the romantic understanding of nature, the emerging evolutionism, and the growing splits in the natural sciences. Müller focused on recognizing living nature as a whole and realizing ideal "phenomena" through his empirical research. He considered the notion of the soul of the world. Müller's lecture transcript serves as a poignant testament to German scientific culture in the mid-nineteenth century, a few years before the publication of Darwin's Origin of Species. It also provides valuable insights into the self-contained epistemological foundations of morphology.
Collapse
Affiliation(s)
- Ulrich Zeller
- Lebenswissenschaftliche Fakultät, Albrecht Daniel Thaer-Institut für Agrar- und Gartenbauwissenschaften, Humboldt-Universität zu Berlin, Luisenstraße 53, 10117, Berlin, Germany.
| | - Ingmar Werneburg
- Paläontologische Sammlung, Fachbereich Geowissenschaften, Eberhard Karls Universität, Hölderlinstraße 12, 72074, Tübingen, Germany.
- Senckenberg Center for Human Evolution and Palaeoenvironment, Eberhard Karls Universität, Sigwartstraße 10, 72076, Tübingen, Germany.
| |
Collapse
|
3
|
Sun C, Yao M, Xiong R, Su Y, Zhu B, Chen YC, Ao P. Evolution of Telencephalon Anterior-Posterior Patterning through Core Endogenous Network Bifurcation. ENTROPY (BASEL, SWITZERLAND) 2024; 26:631. [PMID: 39202101 PMCID: PMC11353805 DOI: 10.3390/e26080631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 09/03/2024]
Abstract
How did the complex structure of the telencephalon evolve? Existing explanations are based on phenomena and lack a first-principles account. The Darwinian dynamics and endogenous network theory-established decades ago-provides a mathematical and theoretical framework and a general constitutive structure for theory-experiment coupling for answering this question from a first-principles perspective. By revisiting a gene network that explains the anterior-posterior patterning of the vertebrate telencephalon, we found that upon increasing the cooperative effect within this network, fixed points gradually evolve, accompanied by the occurrence of two bifurcations. The dynamic behavior of this network is informed by the knowledge obtained from experiments on telencephalic evolution. Our work provides a quantitative explanation for how telencephalon anterior-posterior patterning evolved from the pre-vertebrate chordate to the vertebrate and provides a series of verifiable predictions from a first-principles perspective.
Collapse
Affiliation(s)
- Chen Sun
- Center for Quantitative Life Sciences & Physics Department, Shanghai University, Shanghai 200444, China; (C.S.); (M.Y.); (R.X.); (Y.S.); (B.Z.)
| | - Mengchao Yao
- Center for Quantitative Life Sciences & Physics Department, Shanghai University, Shanghai 200444, China; (C.S.); (M.Y.); (R.X.); (Y.S.); (B.Z.)
| | - Ruiqi Xiong
- Center for Quantitative Life Sciences & Physics Department, Shanghai University, Shanghai 200444, China; (C.S.); (M.Y.); (R.X.); (Y.S.); (B.Z.)
| | - Yang Su
- Center for Quantitative Life Sciences & Physics Department, Shanghai University, Shanghai 200444, China; (C.S.); (M.Y.); (R.X.); (Y.S.); (B.Z.)
| | - Binglin Zhu
- Center for Quantitative Life Sciences & Physics Department, Shanghai University, Shanghai 200444, China; (C.S.); (M.Y.); (R.X.); (Y.S.); (B.Z.)
| | - Yong-Cong Chen
- Center for Quantitative Life Sciences & Physics Department, Shanghai University, Shanghai 200444, China; (C.S.); (M.Y.); (R.X.); (Y.S.); (B.Z.)
| | - Ping Ao
- School of Biomedical Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
4
|
Zhao K, Zhao P, Wang S, Xia Y, Zhang G. FoldPAthreader: predicting protein folding pathway using a novel folding force field model derived from known protein universe. Genome Biol 2024; 25:152. [PMID: 38862984 PMCID: PMC11167914 DOI: 10.1186/s13059-024-03291-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/29/2024] [Indexed: 06/13/2024] Open
Abstract
Protein folding has become a tractable problem with the significant advances in deep learning-driven protein structure prediction. Here we propose FoldPAthreader, a protein folding pathway prediction method that uses a novel folding force field model by exploring the intrinsic relationship between protein evolution and folding from the known protein universe. Further, the folding force field is used to guide Monte Carlo conformational sampling, driving the protein chain fold into its native state by exploring potential intermediates. On 30 example targets, FoldPAthreader successfully predicts 70% of the proteins whose folding pathway is consistent with biological experimental data.
Collapse
Affiliation(s)
- Kailong Zhao
- College of Information Engineering, Zhejiang University of Technology, HangZhou, 310023, China
| | - Pengxin Zhao
- College of Information Engineering, Zhejiang University of Technology, HangZhou, 310023, China
| | - Suhui Wang
- College of Information Engineering, Zhejiang University of Technology, HangZhou, 310023, China
| | - Yuhao Xia
- College of Information Engineering, Zhejiang University of Technology, HangZhou, 310023, China
| | - Guijun Zhang
- College of Information Engineering, Zhejiang University of Technology, HangZhou, 310023, China.
| |
Collapse
|
5
|
Nagahata Y, Kawamoto H. Evolutionary reversion in tumorigenesis. Front Oncol 2023; 13:1282417. [PMID: 38023242 PMCID: PMC10662060 DOI: 10.3389/fonc.2023.1282417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
Cells forming malignant tumors are distinguished from those forming normal tissues based on several features: accelerated/dysregulated cell division, disruption of physiologic apoptosis, maturation/differentiation arrest, loss of polarity, and invasive potential. Among them, accelerated cell division and differentiation arrest make tumor cells similar to stem/progenitor cells, and this is why tumorigenesis is often regarded as developmental reversion. Here, in addition to developmental reversion, we propose another insight into tumorigenesis from a phylogeny viewpoint. Based on the finding that tumor cells also share some features with unicellular organisms, we propose that tumorigenesis can be regarded as "evolutionary reversion". Recent advances in sequencing technologies and the ability to identify gene homologous have made it possible to perform comprehensive cross-species transcriptome comparisons and, in our recent study, we found that leukemic cells resulting from a polycomb dysfunction transcriptionally resemble unicellular organisms. Analyzing tumorigenesis from the viewpoint of phylogeny should reveal new aspects of tumorigenesis in the near future, and contribute to overcoming malignant tumors by developing new therapies.
Collapse
Affiliation(s)
- Yosuke Nagahata
- Laboratory of Immunology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Hiroshi Kawamoto
- Laboratory of Immunology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
6
|
Stracke K, Hejnol A. Marine animal evolutionary developmental biology-Advances through technology development. Evol Appl 2023; 16:580-588. [PMID: 36793684 PMCID: PMC9923486 DOI: 10.1111/eva.13456] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 12/01/2022] Open
Abstract
Evolutionary developmental biology, the interdisciplinary effort of illuminating the conserved similarities and differences during animal development across all phylogenetic clades, has gained renewed interest in the past decades. As technology (immunohistochemistry, next-generation sequencing, advanced imaging, and computational resources) has advanced, so has our ability of resolving fundamental hypotheses and overcoming the genotype-phenotype gap. This rapid progress, however, has also exposed gaps in the collective knowledge around the choice and representation of model organisms. It has become clear that evo-devo requires a comparative, large-scale approach including marine invertebrates to resolve some of the most urgent questions about the phylogenetic positioning and character traits of the last common ancestors. Many invertebrates at the base of the tree of life inhabit marine environments and have been used for some years due to their accessibility, husbandry, and morphology. Here, we briefly review the major concepts of evolutionary developmental biology and discuss the suitability of established model organisms to address current research questions, before focussing on the importance, application, and state-of-the-art of marine evo-devo. We highlight novel technical advances that progress evo-devo as a whole.
Collapse
Affiliation(s)
- Katharina Stracke
- Department of Biological Sciences, Faculty of Mathematics and Natural SciencesUniversity of BergenBergenNorway
| | - Andreas Hejnol
- Department of Biological Sciences, Faculty of Mathematics and Natural SciencesUniversity of BergenBergenNorway
- Institute of Systematic Zoology and Evolutionary BiologyFriedrich‐Schiller‐University JenaJenaGermany
| |
Collapse
|
7
|
Martynov A, Lundin K, Korshunova T. Ontogeny, Phylotypic Periods, Paedomorphosis, and Ontogenetic Systematics. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.806414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The key terms linking ontogeny and evolution are briefly reviewed. It is shown that their application and usage in the modern biology are often inconsistent and incorrectly understood even within the “evo-devo” field. For instance, the core modern reformulation that ontogeny not merely recapitulates, but produces phylogeny implies that ontogeny and phylogeny are closely interconnected. However, the vast modern phylogenetic and taxonomic fields largely omit ontogeny as a central concept. Instead, the common “clade-” and “tree-thinking” prevail, despite on the all achievements of the evo-devo. This is because the main conceptual basis of the modern biology is fundamentally ontogeny-free. In another words, in the Haeckel’s pair of “ontogeny and phylogeny,” ontogeny is still just a subsidiary for the evolutionary process (and hence, phylogeny), instead as in reality, its main driving force. The phylotypic periods is another important term of the evo-devo and represent a modern reformulation of Haeckel’s recapitulations and biogenetic law. However, surprisingly, this one of the most important biological evidence, based on the natural ontogenetic grounds, in the phylogenetic field that can be alleged as a “non-evolutionary concept.” All these observations clearly imply that a major revision of the main terms which are associated with the “ontogeny and phylogeny/evolution” field is urgently necessarily. Thus, “ontogenetic” is not just an endless addition to the term “systematics,” but instead a crucial term, without it neither systematics, nor biology have sense. To consistently employ the modern ontogenetic and epigenetic achievements, the concept of ontogenetic systematics is hereby refined. Ontogenetic systematics is not merely a “research program” but a key biological discipline which consistently links the enormous biological diversity with underlying fundamental process of ontogeny at both molecular and morphological levels. The paedomorphosis is another widespread ontogenetic-and-evolutionary process that is significantly underestimated or misinterpreted by the current phylogenetics and taxonomy. The term paedomorphosis is refined, as initially proposed to link ontogeny with evolution, whereas “neoteny” and “progenesis” are originally specific, narrow terms without evolutionary context, and should not be used as synonyms of paedomorphosis. Examples of application of the principles of ontogenetic systematics represented by such disparate animal groups as nudibranch molluscs and ophiuroid echinoderms clearly demonstrate that perseverance of the phylotypic periods is based not only on the classic examples in vertebrates, but it is a universal phenomenon in all organisms, including disparate animal phyla.
Collapse
|
8
|
|
9
|
Richardson MK. Theories, laws, and models in evo-devo. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2022; 338:36-61. [PMID: 34570438 PMCID: PMC9292786 DOI: 10.1002/jez.b.23096] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/01/2021] [Accepted: 07/16/2021] [Indexed: 12/17/2022]
Abstract
Evolutionary developmental biology (evo-devo) is the study of the evolution of developmental mechanisms. Here, I review some of the theories, models, and laws in evo-devo, past and present. Nineteenth-century evo-devo was dominated by recapitulation theory and archetypes. It also gave us germ layer theory, the vertebral theory of the skull, floral organs as modified leaves, and the "inverted invertebrate" theory, among others. Newer theories and models include the frameshift theory, the genetic toolkit for development, the ABC model of flower development, the developmental hourglass, the zootype, Urbilateria, and the hox code. Some of these new theories show the influence of archetypes and recapitulation. Interestingly, recent studies support the old "primordial leaf," "inverted invertebrate," and "segmented head" theories. Furthermore, von Baer's first three laws may now need to be rehabilitated, and the hourglass model modified, in view of what Abzhanov has pointed out about the maternal-zygotic transition. There are many supposed "laws" of evo-devo but I argue that these are merely generalizations about trends in particular lineages. I argue that the "body plan" is an archetype, and is often used in such a way that it lacks any scientific meaning. Looking to the future, one challenge for evo-devo will be to develop new theories and models to accommodate the wealth of new data from high-throughput sequencing, including single-cell sequencing. One step in this direction is the use of sophisticated in silico analyses, as in the "transcriptomic hourglass" models.
Collapse
|