1
|
Kaya M, Post CCB, Tops CM, Nielsen M, Crosbie EJ, Leary A, Mileshkin LR, Han K, Bessette P, de Boer SM, Jürgenliemk-Schulz IM, Lutgens L, Jobsen JJ, Haverkort MAD, Nout RA, Kroep J, Creutzberg CL, Smit VTHBM, Horeweg N, van Wezel T, Bosse T. Molecular and Clinicopathologic Characterization of Mismatch Repair-Deficient Endometrial Carcinoma Not Related to MLH1 Promoter Hypermethylation. Mod Pathol 2024; 37:100423. [PMID: 38191122 DOI: 10.1016/j.modpat.2024.100423] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/08/2023] [Accepted: 01/03/2024] [Indexed: 01/10/2024]
Abstract
Universal tumor screening in endometrial carcinoma (EC) is increasingly adopted to identify individuals at risk of Lynch syndrome (LS). These cases involve mismatch repair-deficient (MMRd) EC without MLH1 promoter hypermethylation (PHM). LS is confirmed through the identification of germline MMR pathogenic variants (PV). In cases where these are not detected, emerging evidence highlights the significance of double-somatic MMR gene alterations as a sporadic cause of MMRd, alongside POLE/POLD1 exonuclease domain (EDM) PV leading to secondary MMR PV. Our understanding of the incidence of different MMRd EC origins not related to MLH1-PHM, their associations with clinicopathologic characteristics, and the prognostic implications remains limited. In a combined analysis of the PORTEC-1, -2, and -3 trials (n = 1254), 84 MMRd EC not related to MLH1-PHM were identified that successfully underwent paired tumor-normal tissue next-generation sequencing of the MMR and POLE/POLD1 genes. Among these, 37% were LS associated (LS-MMRd EC), 38% were due to double-somatic hits (DS-MMRd EC), and 25% remained unexplained. LS-MMRd EC exhibited higher rates of MSH6 (52% vs 19%) or PMS2 loss (29% vs 3%) than DS-MMRd EC, and exclusively showed MMR-deficient gland foci. DS-MMRd EC had higher rates of combined MSH2/MSH6 loss (47% vs 16%), loss of >2 MMR proteins (16% vs 3%), and somatic POLE-EDM PV (25% vs 3%) than LS-MMRd EC. Clinicopathologic characteristics, including age at tumor onset and prognosis, did not differ among the various groups. Our study validates the use of paired tumor-normal next-generation sequencing to identify definitive sporadic causes in MMRd EC unrelated to MLH1-PHM. MMR immunohistochemistry and POLE-EDM mutation status can aid in the differentiation between LS-MMRd EC and DS-MMRd EC. These findings emphasize the need for integrating tumor sequencing into LS diagnostics, along with clear interpretation guidelines, to improve clinical management. Although not impacting prognosis, confirmation of DS-MMRd EC may release patients and relatives from burdensome LS surveillance.
Collapse
Affiliation(s)
- Merve Kaya
- Department of Medical Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Cathalijne C B Post
- Department of Radiation Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Carli M Tops
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Maartje Nielsen
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Emma J Crosbie
- Department of Gynaecology, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, United Kingdom; Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Alexandra Leary
- Department of Medical Oncology, Gustave Roussy, Villejuif, France
| | - Linda R Mileshkin
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Kathy Han
- Department of Radiation Oncology, Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario, Canada
| | - Paul Bessette
- Department of Obstetrics and Gynaecology, University of Sherbrooke, Sherbrooke, Quebec, Canada
| | - Stephanie M de Boer
- Department of Radiation Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Ludy Lutgens
- Department of Radiation Oncology, MAASTRO Clinic, Maastricht, The Netherlands
| | - Jan J Jobsen
- Department of Radiation Oncology, Medisch Spectrum Twente, Enschede, The Netherlands
| | - Marie A D Haverkort
- Department of Radiation Oncology, Radiotherapiegroep, Arnhem, The Netherlands
| | - Remi A Nout
- Department of Radiation Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Judith Kroep
- Department of Medical Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Carien L Creutzberg
- Department of Radiation Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Vincent T H B M Smit
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Nanda Horeweg
- Department of Radiation Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Tom van Wezel
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Tjalling Bosse
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
2
|
Rodgers-Fouche L, Arora S, Ricker C, Li D, Farooqi M, Balaguer F, Dominguez-Valentin M, Guillem JG, Kanth P, Liska D, Melson J, Mraz KA, Shirts BH, Vilar E, Katona BW, Hodan R. Exploring Stakeholders' Perspectives on Implementing Universal Germline Testing for Colorectal Cancer: Findings From a Clinical Practice Survey. JCO Precis Oncol 2023; 7:e2300440. [PMID: 37897815 PMCID: PMC10860957 DOI: 10.1200/po.23.00440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 08/24/2023] [Accepted: 09/13/2023] [Indexed: 10/30/2023] Open
Abstract
PURPOSE New guidelines recommend considering germline genetic testing for all patients with colorectal cancer (CRC). However, there is a lack of data on stakeholders' perspectives on the advantages and barriers of implementing universal germline testing (UGT). This study assessed the perspectives of members of the Collaborative Group of the Americas on Inherited Gastrointestinal Cancer (CGA-IGC) regarding the implementation of UGT for patients with CRC, including readiness, logistics, and barriers. METHODS A cross-sectional survey was sent to 317 active members of CGA-IGC. The survey included sections on demographics, clinical practice specialty, established institutional practices for testing, and questions pertaining to support of and barriers to implementing UGT for patients with CRC. RESULTS Eighty CGA-IGC members (25%) participated, including 42 genetic counselors (53%) and 14 gastroenterologists (18%). Forty-seven (59%) reported an academic medical center as their primary work setting, and most participants (56%) had more than 10 years of clinical practice. Although most participants (73%) supported UGT, 54% indicated that changes in practice would be required before adopting UGT, and 39% indicated that these changes would be challenging to implement. There was support for both genetics and nongenetics providers to order genetic testing, and a majority (57%) supported a standardized multigene panel rather than a customized gene panel. Key barriers to UGT implementation included limited genetics knowledge among nongenetics providers, time-consuming processes for obtaining consent, ordering tests, disclosing results, and lack of insurance coverage. CONCLUSION This study demonstrates wide support among hereditary GI cancer experts for implementation of UGT for patients with CRC. However, alternative service delivery models using nongenetics providers should be considered to address the logistical barriers to UGT implementation, particularly the growing demand for genetic testing.
Collapse
Affiliation(s)
| | - Sanjeevani Arora
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, PA
| | - Charité Ricker
- Division of Medical Oncology, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Dan Li
- Department of Gastroenterology, Kaiser Permanente Medical Center, Santa Clara, CA
| | - Maheen Farooqi
- Division of Medical Oncology, University of Southern California, Norris Comprehensive Cancer Center, Los Angeles, CA
| | - Francesc Balaguer
- Department of Gastroenterology, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), University of Barcelona, Barcelona, Spain
| | - Mev Dominguez-Valentin
- Department of Tumor Biology, Institute of Cancer Research, The Norwegian Radium Hospital, Oslo, Norway
| | - Jose G. Guillem
- Department of Surgery, University of North Carolina, Chapel Hill, NC
| | - Priyanka Kanth
- Department of Gastroenterology, MedStar Georgetown University Hospital, Washington, DC
| | - David Liska
- Department of Colorectal Surgery, Digestive Disease Institute, Cleveland Clinic, Cleveland, OH
| | - Joshua Melson
- Division of Gastroenterology, University of Arizona Cancer Center, Tucson, AZ
| | | | - Brian H. Shirts
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA
| | - Eduardo Vilar
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Bryson W. Katona
- Division of Gastroenterology and Hepatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Rachel Hodan
- Cancer Genetics, Stanford Health Care, Palo Alto, CA
| |
Collapse
|
3
|
Schwartz A, Manning DK, Koeller DR, Chittenden A, Isidro RA, Hayes CP, Abraamyan F, Manam MD, Dwan M, Barletta JA, Sholl LM, Yurgelun MB, Rana HQ, Garber JE, Ghazani AA. An integrated somatic and germline approach to aid interpretation of germline variants of uncertain significance in cancer susceptibility genes. Front Oncol 2022; 12:942741. [PMID: 36091175 PMCID: PMC9453486 DOI: 10.3389/fonc.2022.942741] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/12/2022] [Indexed: 11/13/2022] Open
Abstract
Genomic profiles of tumors are often unique and represent characteristic mutational signatures defined by DNA damage or DNA repair response processes. The tumor-derived somatic information has been widely used in therapeutic applications, but it is grossly underutilized in the assessment of germline genetic variants. Here, we present a comprehensive approach for evaluating the pathogenicity of germline variants in cancer using an integrated interpretation of somatic and germline genomic data. We have previously demonstrated the utility of this integrated approach in the reassessment of pathogenic germline variants in selected cancer patients with unexpected or non-syndromic phenotypes. The application of this approach is presented in the assessment of rare variants of uncertain significance (VUS) in Lynch-related colon cancer, hereditary paraganglioma-pheochromocytoma syndrome, and Li-Fraumeni syndrome. Using this integrated method, germline VUS in PMS2, MSH6, SDHC, SHDA, and TP53 were assessed in 16 cancer patients after genetic evaluation. Comprehensive clinical criteria, somatic signature profiles, and tumor immunohistochemistry were used to re-classify VUS by upgrading or downgrading the variants to likely or unlikely actionable categories, respectively. Going forward, collation of such germline variants and creation of cross-institutional knowledgebase datasets that include integrated somatic and germline data will be crucial for the assessment of these variants in a larger cancer cohort.
Collapse
Affiliation(s)
- Alison Schwartz
- Division of Cancer Genetics and Prevention, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Danielle K. Manning
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, United States
| | - Diane R. Koeller
- Division of Cancer Genetics and Prevention, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Anu Chittenden
- Division of Cancer Genetics and Prevention, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Raymond A. Isidro
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Connor P. Hayes
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, United States
| | - Feruza Abraamyan
- Harvard Medical School, Boston, MA, United States
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, United States
| | - Monica Devi Manam
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, United States
| | - Meaghan Dwan
- Division of Cancer Genetics and Prevention, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Justine A. Barletta
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Lynette M. Sholl
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Matthew B. Yurgelun
- Division of Cancer Genetics and Prevention, Dana-Farber Cancer Institute, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Division of Population Sciences, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Huma Q. Rana
- Division of Cancer Genetics and Prevention, Dana-Farber Cancer Institute, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Division of Population Sciences, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Judy E. Garber
- Division of Cancer Genetics and Prevention, Dana-Farber Cancer Institute, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Division of Population Sciences, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Arezou A. Ghazani
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, United States
- *Correspondence: Arezou A. Ghazani,
| |
Collapse
|