1
|
Foster T, Lim P, Wagle SR, Ionescu CM, Kovacevic B, McLenachan S, Carvalho L, Brunet A, Mooranian A, Al-Salami H. Nanoparticle-Based gene therapy strategies in retinal delivery. J Drug Target 2025; 33:508-527. [PMID: 39749456 DOI: 10.1080/1061186x.2024.2433563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/31/2024] [Accepted: 11/17/2024] [Indexed: 01/04/2025]
Abstract
Vision loss and blindness are significant issues in both developed and developing countries. There are a wide variety of aetiologies that can cause vision loss, which are outlined in this review. Although treatment has significantly improved over time for some conditions, nearly half of all people with vision impairment are left untreated. Gene delivery is an emerging field that may assist with the treatment of some of these difficult to manage forms of vision loss. Here we review how a component of nanotechnology-based, non-viral gene delivery systems are being applied to help resolve vision impairment. This review focuses on the use of lipid and polymer nanoparticles, and quantum dots as gene delivery vectors to the eye. Finally, we also highlight some emerging technologies that may be useful in this discipline.
Collapse
Affiliation(s)
- Thomas Foster
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
- Department of Clinical Biochemistry, Pathwest Laboratory Medicine, Royal Perth Hospital, Perth, Western Australia, Australia
| | - Patrick Lim
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
| | - Susbin Raj Wagle
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
| | - Corina Mihaela Ionescu
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
| | - Bozica Kovacevic
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
| | - Samuel McLenachan
- Centre for Ophthalmology and Visual Science (incorporating the Lions Eye Institute), The University of Western Australia, Crawley, Western Australia, Australia
| | - Livia Carvalho
- Centre for Ophthalmology and Visual Science (incorporating the Lions Eye Institute), The University of Western Australia, Crawley, Western Australia, Australia
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Alicia Brunet
- Centre for Ophthalmology and Visual Science (incorporating the Lions Eye Institute), The University of Western Australia, Crawley, Western Australia, Australia
| | - Armin Mooranian
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
- School of Pharmacy, University of Otago, Dunedin, Otago, New Zealand
| | - Hani Al-Salami
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
- Medical School, The University of Western Australia, Crawley, Western Australia, Australia
| |
Collapse
|
2
|
Ren H, Xiang S, Liu A, Wang Q, Zhou N, Hu Z. A noval noninvasive targeted therapy for osteosarcoma: the combination of LIFU and ultrasound-magnetic-mediated SPIO/TP53/PLGA nanobubble. Front Bioeng Biotechnol 2024; 12:1418903. [PMID: 39007051 PMCID: PMC11239426 DOI: 10.3389/fbioe.2024.1418903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/10/2024] [Indexed: 07/16/2024] Open
Abstract
Purpose Osteosarcoma (OS) is the most common type of primary malignant bone tumor. Transducing a functional TP53 gene can effectively inhibit OS cell activity. Poly lactic acid-glycolic acid (PLGA) nanobubbles (NBs) mediated by focused ultrasound (US) can introduce exogenous genes into target cells in animal models, but this technique relies on the passive free diffusion of agents across the body. The inclusion of superparamagnetic iron oxide (SPIO) in microbubbles allows for magnetic-based tissue localization. A low-intensity-focused ultrasound (LIFU) instrument was developed at our institute, and different intensities of LIFU can either disrupt the NBs (RLI-LIFU) or exert cytocidal effects on the target tissues (RHI-LIFU). Based on these data, we performed US-magnetic-mediated TP53-NB destruction and investigated its ability to inhibit OS growth when combined with LIFU both in vitro and in vivo. Methods Several SPIO/TP53/PLGA (STP) NB variants were prepared and characterized. For the in vitro experiments, HOS and MG63 cells were randomly assigned into five treatment groups. Cell proliferation and the expression of TP53 were detected by CCK8, qRT-PCR and Western blotting, respectively. In vivo, tumor-bearing nude mice were randomly assigned into seven treatment groups. The iron distribution of Perls' Prussian blue-stained tissue sections was determined by optical microscopy. TUNEL-DAPI was performed to examine apoptosis. TP53 expression was detected by qRT-PCR and immunohistochemistry. Results SPIO/TP53/PLGA NBs with a particle size of approximately 200 nm were prepared successfully. For in vitro experiments, ultrasound-targeted transfection of TP53 overexpression in OS cells and efficient inhibition of OS proliferation have been demonstrated. Furthermore, in a tumor-bearing nude mouse model, RLI-LIFU-magnetic-mediated SPIO/TP53/PLGA NBs increased the transfection efficiency of the TP53 plasmid, resulting in apoptosis. Adding RHI-LIFU to the treatment regimen significantly increased the apoptosis of OS cells in vivo. Conclusion Combining LIFU and US-magnetic-mediated SPIO/TP53/PLGA NB destruction is potentially a novel noninvasive and targeted therapy for OS.
Collapse
Affiliation(s)
- Honglei Ren
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Orthopedic Surgery, ChongQing Red Cross Hospital (People's Hospital of JiangBei District), Chongqing, China
| | - Shanlin Xiang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Aiguo Liu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
- Department of Orthopedic Surgery, The First Affiliated Hospital of Henan University, Kaifeng, China
| | - Qian Wang
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Nian Zhou
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhenming Hu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Orthopedic Surgery, The University-Town Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
3
|
Narasipura EA, Fenton OS. Advances in non-viral mRNA delivery to the spleen. Biomater Sci 2024; 12:3027-3044. [PMID: 38712531 PMCID: PMC11175841 DOI: 10.1039/d4bm00038b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Developing safe and effective delivery strategies for localizing messenger RNA (mRNA) payloads to the spleen is an important goal in the field of genetic medicine. Accomplishing this goal is challenging due to the instability, size, and charge of mRNA payloads. Here, we provide an analysis of non-viral delivery technologies that have been developed to deliver mRNA payloads to the spleen. Specifically, our review begins by outlining the unique anatomy and potential targets for mRNA delivery within the spleen. Next, we describe approaches in mRNA sequence engineering that can be used to improve mRNA delivery to the spleen. Then, we describe advances in non-viral carrier systems that can package and deliver mRNA payloads to the spleen, highlighting key advances in the literature in lipid nanoparticle (LNP) and polymer nanoparticle (PNP) technology platforms. Finally, we provide commentary and outlook on how splenic mRNA delivery may afford next-generation treatments for autoimmune disorders and cancers. In undertaking this approach, our goal with this review is to both establish a fundamental understanding of drug delivery challenges associated with localizing mRNA payloads to the spleen, while also broadly highlighting the potential to use these genetic medicines to treat disease.
Collapse
Affiliation(s)
- Eshan A Narasipura
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Owen S Fenton
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
4
|
Rousou C, Schuurmans CCL, Urtti A, Mastrobattista E, Storm G, Moonen C, Kaarniranta K, Deckers R. Ultrasound and Microbubbles for the Treatment of Ocular Diseases: From Preclinical Research towards Clinical Application. Pharmaceutics 2021; 13:pharmaceutics13111782. [PMID: 34834196 PMCID: PMC8624665 DOI: 10.3390/pharmaceutics13111782] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/08/2021] [Accepted: 10/09/2021] [Indexed: 12/26/2022] Open
Abstract
The unique anatomy of the eye and the presence of various biological barriers make efficacious ocular drug delivery challenging, particularly in the treatment of posterior eye diseases. This review focuses on the combination of ultrasound and microbubbles (USMB) as a minimally invasive method to improve the efficacy and targeting of ocular drug delivery. An extensive overview is given of the in vitro and in vivo studies investigating the mechanical effects of ultrasound-driven microbubbles aiming to: (i) temporarily disrupt the blood–retina barrier in order to enhance the delivery of systemically administered drugs into the eye, (ii) induce intracellular uptake of anticancer drugs and macromolecules and (iii) achieve targeted delivery of genes, for the treatment of ocular malignancies and degenerative diseases. Finally, the safety and tolerability aspects of USMB, essential for the translation of USMB to the clinic, are discussed.
Collapse
Affiliation(s)
- Charis Rousou
- Departments of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Heidelberglaan 8, 3584 CS Utrecht, The Netherlands; (C.C.L.S.); (E.M.); (G.S.)
- Division of Imaging and Oncology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands; (C.M.); (R.D.)
- Correspondence:
| | - Carl C. L. Schuurmans
- Departments of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Heidelberglaan 8, 3584 CS Utrecht, The Netherlands; (C.C.L.S.); (E.M.); (G.S.)
- Department of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Heidelberglaan 8, 3584 CS Utrecht, The Netherlands
| | - Arto Urtti
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70210 Kuopio, Finland;
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
- Institute of Chemistry, St. Petersburg State University, Universitetskii Pr. 26, Petrodvorets, 198504 St. Petersburg, Russia
| | - Enrico Mastrobattista
- Departments of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Heidelberglaan 8, 3584 CS Utrecht, The Netherlands; (C.C.L.S.); (E.M.); (G.S.)
| | - Gert Storm
- Departments of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Heidelberglaan 8, 3584 CS Utrecht, The Netherlands; (C.C.L.S.); (E.M.); (G.S.)
- Department of Biomaterials Science and Technology, University of Twente, 7500 AE Enschede, The Netherlands
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Chrit Moonen
- Division of Imaging and Oncology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands; (C.M.); (R.D.)
| | - Kai Kaarniranta
- Department of Ophthalmology, Kuopio University Hospital, P.O. Box 100, 70029 Kuopio, Finland;
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Roel Deckers
- Division of Imaging and Oncology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands; (C.M.); (R.D.)
| |
Collapse
|
5
|
Zhang M, Zhu NW, Ma WC, Chen MJ, Zheng L. Combined treatment with ultrasound-targeted microbubble destruction technique and NM-aFGF-loaded PEG-nanoliposomes protects against diabetic cardiomyopathy-induced oxidative stress by activating the AKT/GSK-3β1/Nrf-2 pathway. Drug Deliv 2021; 27:938-952. [PMID: 32611270 PMCID: PMC8216439 DOI: 10.1080/10717544.2020.1785052] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The present study sought to investigate the effect of non-mitogenic acidic fibroblast growth factor (NM-aFGF) loaded PEGylated nanoliposomes (NM-aFGF-PEG-lips) combined with the ultrasound-targeted microbubble destruction (UTMD) technique on modulating diabetic cardiomyopathy (DCM)and the mechanism involved. Animal studies showed that the diabetes mellitus (DM) group exhibited typical myocardial structural and functional changes of DCM. The indexes from the transthoracic echocardiography showed that the left ventricular function in the NM-aFGF-PEG-lips + UTMD group was significantly improved compared with the DM group. Histopathological observation further confirmed that the cardiomyocyte structural abnormalities and mitochondria ultrastructural changes were also significantly improved in the NM-aFGF-PEG-lips + UTMD group compared with DM group. The cardiac volume fraction (CVF) and apoptosis index in the NM-aFGF-PEG-lips + UTMD group decreased to 10.31 ± 0.76% and 2.16 ± 0.34, respectively, compared with those in the DM group (CVF = 21.4 ± 2.32, apoptosis index = 11.51 ± 1.24%). Moreover, we also found significantly increased superoxide dismutase (SOD) activity and glutathione peroxidase (GSH-Px) activity as well as clearly decreased lipid hydroperoxide levels and malondialdehyde (MDA) activity in the NM-aFGF-PEG-lips + UTMD group compared with those in the DM group (p < .05). Western blot analysis further revealed the highest level of NM-aFGF, p-AKT, p-GSK-3β1, Nrf-2, SOD2 and NQO1 in the NM-aFGF-PEG-lips + UTMD group. This study confirmed using PEGylated nanoliposomes combined with the UTMD technique can effectively deliver NM-aFGF to the cardiac tissue of diabetic rats. The NM-aFGF can then inhibit myocardial oxidative stress damage due to DM by activating the AKT/GSK/Nrf-2 signaling pathway, which ultimately improved the myocardial structural and functional lesions in diabetic rats.
Collapse
Affiliation(s)
- Ming Zhang
- Department of Pharmacy, Ningbo Yinzhou NO.2 Hospital, Ningbo, China
| | - Ning-Wei Zhu
- Department of Pharmacy, Zhejiang Pharmaceutical College, Ningbo, China
| | - Wei-Cheng Ma
- Department of Pharmacy, Ningbo Yinzhou NO.2 Hospital, Ningbo, China
| | - Meng-Jia Chen
- Department of Pharmacy, Ningbo Yinzhou NO.2 Hospital, Ningbo, China
| | - Lei Zheng
- Department of Ultrasonography, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, China.,Department of Ultrasonography, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
6
|
Naik S, Shreya AB, Raychaudhuri R, Pandey A, Lewis SA, Hazarika M, Bhandary SV, Rao BSS, Mutalik S. Small interfering RNAs (siRNAs) based gene silencing strategies for the treatment of glaucoma: Recent advancements and future perspectives. Life Sci 2020; 264:118712. [PMID: 33159955 DOI: 10.1016/j.lfs.2020.118712] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/28/2020] [Accepted: 10/31/2020] [Indexed: 01/22/2023]
Abstract
RNA-interference-based mechanisms, especially the use of small interfering RNAs (siRNAs), have been under investigation for the treatment of several ailments and have shown promising results for ocular diseases including glaucoma. The eye, being a confined compartment, serves as a good target for the delivery of siRNAs. This review focuses on siRNA-based strategies for gene silencing to treat glaucoma. We have discussed the ocular structures and barriers to gene therapy (tear film, corneal, conjunctival, vitreous, and blood ocular barriers), methods of administration for ocular gene delivery (topical instillation, periocular, intracameral, intravitreal, subretinal, and suprachoroidal routes) and various viral and non-viral vectors in siRNA-based therapy for glaucoma. The components and mechanism of siRNA-based gene silencing have been mentioned briefly followed by the basic strategies and challenges faced during siRNA therapeutics development. We have emphasized different therapeutic targets for glaucoma which have been under research by scientists and the current siRNA-based drugs used in glaucoma treatment. We also mention briefly strategies for siRNA-based treatment after glaucoma surgery.
Collapse
Affiliation(s)
- Santoshi Naik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Ajjappla Basavaraj Shreya
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Ruchira Raychaudhuri
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Abhijeet Pandey
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Shaila A Lewis
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Manali Hazarika
- Department of Ophthalmology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Sulatha V Bhandary
- Department of Ophthalmology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Bola Sadashiva Satish Rao
- Director - Research, Directorte of Research, Manipal Academy of Higher Education, Manipal and School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India.
| |
Collapse
|
7
|
Lin WV, Stout JT, Weng CY. CRISPR-Cas9 and Its Therapeutic Applications for Retinal Diseases. Int Ophthalmol Clin 2019; 59:3-13. [PMID: 30585915 DOI: 10.1097/iio.0000000000000252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
8
|
Xiang X, Leng Q, Tang Y, Wang L, Huang J, Zhang Y, Qiu L. Ultrasound-Targeted Microbubble Destruction Delivery of Insulin-Like Growth Factor 1 cDNA and Transforming Growth Factor Beta Short Hairpin RNA Enhances Tendon Regeneration and Inhibits Scar Formation In Vivo. HUM GENE THER CL DEV 2018; 29:198-213. [PMID: 30359117 DOI: 10.1089/humc.2018.121] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Ultrasound-targeted microbubble destruction (UTMD), which has been successfully used for the treatment of many diseases, offers a promising noninvasive approach for target-specific gene delivery. This study investigated the UTMD delivery of insulin-like growth factor 1 (IGF-1) cDNA and transforming growth factor beta (TGF-β) short hairpin RNA for Achilles tendon injury in rats. Briefly, 168 rats with an injured Achilles tendon were randomly divided into seven groups: (1) IGF-1 + UTMD, (2) TGF-β + UTMD, (3) IGF-1 + TGF-β + UTMD, (4) control, (5) IGF-1, (6) TGF-β, and (7) IGF-1 + TGF-β. At 2, 4, 8, and 12 weeks post treatment, six rats from each group were euthanized. IGF-1 expression and TGF-β expression were evaluated using an adhesion index score, pathological examination, quantitative real-time reverse transcription polymerase chain reaction, Western blotting, and biomechanical measurement. The lowest adhesion index score, the lightest inflammation, the highest 4,6-diamidino-2-phenylindole nuclear counter signals, the highest IGF-1 expression, and the lowest TGF-β expression were observed in group 3 (p < 0.05). Furthermore, higher expression of IGF-1 mRNA was observed in groups 1 and 3, while lower expression of TGF-β mRNA was observed in groups 2 and 3 (p < 0.05). The UTMD groups showed a higher transfection efficiency than the groups without UTMD. Downregulation of type III collagen and upregulation of type I collagen were observed in groups 1-3. Moreover, during weeks 4, 8, and 12, greater maximum load and tensile stress were observed in group 3 compared to the other groups (p < 0.05), while the highest tendon stiffness was observed in week 12 (p < 0.05). To conclude, the results suggest that UTMD delivery of IGF-1 and TGF-β offers a promising treatment approach for tendon injury in vivo.
Collapse
Affiliation(s)
- Xi Xiang
- 1 Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, China
| | - Qianying Leng
- 2 Department of Ultrasound, West China School of Public Health No.4 West China Teaching Hospital of Sichuan University, Chengdu, China
| | - Yuanjiao Tang
- 1 Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, China
| | - Liyun Wang
- 1 Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, China
| | - Jianbo Huang
- 3 Ultrasonic Clinical Imaging Drug Laboratory, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Zhang
- 4 Core Facility, West China Hospital of Sichuan University, Chengdu, China
| | - Li Qiu
- 1 Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
9
|
DU J, Sun Y, Li FH, DU LF, Duan YR. Enhanced delivery of biodegradable mPEG-PLGA-PLL nanoparticles loading Cy3-labelled PDGF-BB siRNA by UTMD to rat retina. J Biosci 2018; 42:299-309. [PMID: 28569253 DOI: 10.1007/s12038-017-9677-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
We investigated the efficacy and safety of ultrasound (US)-targeted microbubble (MB) destruction (UTMD)-enhanced delivery of monomethoxypoly(ethylene glycol)-poly(lactic-co-glycolic acid)-poly-L-lysine (mPEG-PLGA-PLL) nanoparticles (NPs) loading Cy3-labelled platelet-derived growth factor BB (PDGF-BB) siRNA to rat retina in vivo. Eighty Wistar rats were divided into five groups (G). The right eyes, respectively, received an intravitreal injection as follows: normal saline (NS) (G1), NPs and NS (G2), NPs and MBs (G3), NPs and NS (G4) and NPs and MBs (G5). In G4 and G5, the eyes were exposed to US for 5 mins. Twenty-four hours after transfection, the uptake and distribution of Cy3-labelled siRNA in rat retina were observed by fluorescent microscope. The percentage of Cy3- labelled siRNA-positive cells was evaluated by flow cytometer. The levels of PDGF-BB mRNA in retinal pigment epithelium (RPE) cells and secreted PDGF-BB proteins were also measured. Hematoxylin and eosin staining and frozen sections were used to observe tissue damage. Our results showed that the number of Cy3-labelled siRNApositive cells in G5 was significantly higher than those of the other groups (P less than 0.05 for all comparisons). The maximum efficiency of siRNA uptake in neural retina was 18.22 +/_ 1.67%. In G4 and G5, a small number of Cy3- labelled siRNA-positive cells were also detected in the pigmented cell layer of the retina. NPs loading siRNA delivered with UTMD could more effectively down-regulate the mRNA and protein expression of PDGF-BB than NPs plus US (P=0.014 and P=0.007, respectively). Histology showed no evident tissue damage after UTMDmediated NPs loading siRNA transfection. UTMD could be used safely to enhance the delivery of mPEG-PLGAPLL NPs loading siRNA into rat retina.
Collapse
Affiliation(s)
- Jing DU
- Department of Ultrasound, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 160 Pu Jian Road, Shanghai 200127, China
| | | | | | | | | |
Collapse
|
10
|
Chen PP, Xu HL, Ting-Yue, ZhuGe DL, Jin BH, Zhu QY, Shen BX, Wang LF, Lu CT, Zhao YZ, Li XK. CoQ10-loaded liposomes combined with UTMD prevented early nephropathy of diabetic rats. Oncotarget 2018; 9:11767-11782. [PMID: 29589596 PMCID: PMC5837748 DOI: 10.18632/oncotarget.24363] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 09/04/2017] [Indexed: 12/27/2022] Open
Abstract
Nephropathy is one of the most severe complications of diabetic patients. The therapeutic strategies for diabetic patients should not only focus on the control of blood glucose but also pay attention to the occurrence of diabetic nephropathy (DN). Coenzyme Q10 (CoQ10) has great therapeutic potential for DN. However, the clinical application of CoQ10 has been limited because of its low water-solubility and non-specific distribution. Liposomes were supposed to be an effective way for delivering CoQ10 to kidney. CoQ10 was effectively encapsulated into the liposome (CoQ10-LIP) with a high entrapment efficiency of 86.15 %. The CoQ10-LIP exhibited a small hydrodynamic diameter (180 ± 2.1 nm) and negative zeta potential (-18.20 mV). Moreover, CoQ10-LIP was combined with ultrasound-mediated microbubble destruction (UTMD) to enhance specific distribution of CoQ10 in kidney. In early stage of diabetic mellitus (DM), rats were administrated with CoQ10-LIP followed by UTMD (CoQ10-LIP+UTMD) to prevent occurrence of DN. Results revealed that CoQ10-LIP+UTMD effectively prevented the renal morphology and function of diabetics rats from damage. The protective mechanism of CoQ10-LIP was highly associated with protecting podocyte, promoting vascular repair and inhibiting cell apoptosis. Conclusively, CoQ10-LIP in combination with UTMD might be a potential strategy to prevent occurrence of DN.
Collapse
Affiliation(s)
- Pian-Pian Chen
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| | - He-Lin Xu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| | - Ting-Yue
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| | - De-Li ZhuGe
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| | - Bing-Hui Jin
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| | - Qun-Yan Zhu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| | - Bi-Xin Shen
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| | - Li-Fen Wang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| | - Cui-Tao Lu
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| | - Ying-Zheng Zhao
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province, China.,The First Affiliated Hospital, Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| | - Xiao-Kun Li
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| |
Collapse
|
11
|
Wu B, Liang X, Jing H, Han X, Sun Y, Guo C, Liu Y, Cheng W. Effect of NET-1 siRNA conjugated sub-micron bubble complex combined with low-frequency ultrasound exposure in gene transfection. Oncotarget 2018; 9:4150-4160. [PMID: 29423111 PMCID: PMC5790528 DOI: 10.18632/oncotarget.23646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 12/14/2017] [Indexed: 11/25/2022] Open
Abstract
The present study evaluated the effect of NET-1 siRNA-conjugated sub-micron bubble (SMB) complexes combined with low-frequency ultrasound exposure in gene transfection. The NET-1 gene was highly expressed level in SMMC-7721 human hepatocellular carcinoma cell line. The cells were divided into seven groups and treated with different conditions. The groups with or without low-frequency ultrasound exposure, groups of adherent cells, and suspension cells were separated. The NET-1 siRNA-conjugated SMB complexes were made in the laboratory and tested by Zetasizer Nano ZS90 analyzer. Flow cytometry was used to estimate the transfection efficiency and cellular apoptosis. Western blot and quantitative real-time polymerase chain reaction (qPCR) were used for the estimation of the protein and mRNA expressions, respectively. Transwell analysis determined the migration and invasion capacities of the tumor cells. The results did not show any difference in the transfection efficiency between adherent and suspension cells. However, the NET-1 siRNA-SMB complexes combined with low-frequency ultrasound exposure could enhance the gene transfection effectively. In summary, the NET-1 siRNA-SMB complexes appeared to be promising gene vehicle.
Collapse
Affiliation(s)
- Bolin Wu
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Nangang, Harbin, 150081, Heilongjiang Province, China
| | - Xitian Liang
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Nangang, Harbin, 150081, Heilongjiang Province, China
| | - Hui Jing
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Nangang, Harbin, 150081, Heilongjiang Province, China
| | - Xue Han
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Nangang, Harbin, 150081, Heilongjiang Province, China
| | - Yixin Sun
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Nangang, Harbin, 150081, Heilongjiang Province, China
| | - Cunli Guo
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Nangang, Harbin, 150081, Heilongjiang Province, China
| | - Ying Liu
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Nangang, Harbin, 150081, Heilongjiang Province, China
| | - Wen Cheng
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Nangang, Harbin, 150081, Heilongjiang Province, China
| |
Collapse
|
12
|
Application of CRISPR-Cas9 in eye disease. Exp Eye Res 2017; 161:116-123. [PMID: 28619505 DOI: 10.1016/j.exer.2017.06.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 06/08/2017] [Accepted: 06/09/2017] [Indexed: 02/06/2023]
Abstract
The system of clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated nuclease (Cas)9 is an effective instrument for revising the genome with great accuracy. This system has been widely employed to generate mutants in genomes from plants to human cells. Rapid improvements in Cas9 specificity in eukaryotic cells have opened great potential for the use of this technology as a therapeutic. Herein, we summarize the recent advancements of CRISPR-Cas9 use in research on human cells and animal models, and outline a basic and clinical pipeline for CRISPR-Cas9-based treatments of genetic eye diseases.
Collapse
|
13
|
Song Z, Wang Z, Shen J, Xu S, Hu Z. Nerve growth factor delivery by ultrasound-mediated nanobubble destruction as a treatment for acute spinal cord injury in rats. Int J Nanomedicine 2017; 12:1717-1729. [PMID: 28280337 PMCID: PMC5340249 DOI: 10.2147/ijn.s128848] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Spinal cord injuries (SCIs) can cause severe disability or death. Treatment options include surgical intervention, drug therapy, and stem cell transplantation. However, the efficacy of these methods for functional recovery remains unsatisfactory. Purpose This study was conducted to explore the effect of ultrasound (US)-mediated destruction of poly(lactic-co-glycolic acid) (PLGA) nanobubbles (NBs) expressing nerve growth factor (NGF) (NGF/PLGA NBs) on nerve regeneration in rats following SCI. Materials and methods Adult male Sprague Dawley rats were randomly divided into four treatment groups after Allen hit models of SCI were established. The groups were normal saline (NS) group, NGF and NBs group, NGF and US group, and NGF/PLGA NBs and US group. Histological changes after SCI were observed by hematoxylin and eosin staining. Neuron viability was determined by Nissl staining. Terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling staining was used to examine cell apoptosis. NGF gene and protein expressions were detected by quantitative reverse transcription polymerase chain reaction and Western blotting. Green fluorescent protein expression in the spinal cord was examined using an inverted fluorescence microscope. The recovery of neural function was determined using the Basso, Beattie, and Bresnahan test. Results NGF therapy using US-mediated NGF/PLGA NBs destruction significantly increased NGF expression, attenuated histological injury, decreased neuron loss, inhibited neuronal apoptosis in injured spinal cords, and increased BBB scores in rats with SCI. Conclusion US-mediated NGF/PLGA NBs destruction effectively transfects the NGF gene into target tissues and has a significant effect on the injured spinal cord. The combination of US irradiation and gene therapy through NGF/PLGA NBs holds great promise for the future of nanomedicine and the development of noninvasive treatment options for SCI and other diseases.
Collapse
Affiliation(s)
- Zhaojun Song
- Department of Orthopedics, The First Affiliated Hospital
| | - Zhigang Wang
- Institution of Ultrasound Imaging, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, People's Republic of China
| | - Jieliang Shen
- Department of Orthopedics, The First Affiliated Hospital
| | - Shengxi Xu
- Department of Orthopedics, The First Affiliated Hospital
| | - Zhenming Hu
- Department of Orthopedics, The First Affiliated Hospital
| |
Collapse
|
14
|
Chai Q, Huang Y, Kirley TL, Ayres N. Shape memory polymer foams prepared from a heparin-inspired polyurethane/urea. Polym Chem 2017. [DOI: 10.1039/c7py00204a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Shape memory foams have been prepared using a heparin-inspired polyurea/urethane that displays excellent resistance to platelet adherence.
Collapse
Affiliation(s)
- Q. Chai
- Department of Chemistry
- The University of Cincinnati
- Cincinnati
- USA
| | - Y. Huang
- Department of Chemistry
- The University of Cincinnati
- Cincinnati
- USA
| | - T. L. Kirley
- Department of Pharmacology and Cell Biophysics
- College of Medicine
- The University of Cincinnati
- Cincinnati
- USA
| | - N. Ayres
- Department of Chemistry
- The University of Cincinnati
- Cincinnati
- USA
| |
Collapse
|
15
|
Boissenot T, Bordat A, Fattal E, Tsapis N. Ultrasound-triggered drug delivery for cancer treatment using drug delivery systems: From theoretical considerations to practical applications. J Control Release 2016; 241:144-163. [DOI: 10.1016/j.jconrel.2016.09.026] [Citation(s) in RCA: 161] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 09/19/2016] [Accepted: 09/21/2016] [Indexed: 12/21/2022]
|
16
|
Wu B, Qiao Q, Han X, Jing H, Zhang H, Liang H, Cheng W. Targeted nanobubbles in low-frequency ultrasound-mediated gene transfection and growth inhibition of hepatocellular carcinoma cells. Tumour Biol 2016; 37:12113-12121. [PMID: 27216880 DOI: 10.1007/s13277-016-5082-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Accepted: 05/15/2016] [Indexed: 01/06/2023] Open
Abstract
The use of SonoVue combined with ultrasound exposure increases the transfection efficiency of short interfering RNA (siRNA). The objective of this study was to prepare targeted nanobubbles (TNB) conjugated with NET-1 siRNA and an antibody GPC3 to direct nanobubbles to hepatocellular carcinoma cells. SMMC-7721 human hepatocellular carcinoma cells were treated with six different groups. The transfection efficiency and cellular apoptosis were measured by flow cytometry. The protein and messenger RNA (mRNA) expression were measured by Western blot and quantitative real-time PCR, respectively. The migration and invasion potential of the cells were determined by Transwell analysis. The results show that US-guided siRNA-TNB transfection effectively enhanced gene silencing. In summary, siRNA-TNB may be an effective delivery vector to mediate highly effective RNA interference in tumor treatment.
Collapse
Affiliation(s)
- Bolin Wu
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin Medical University Cancer Hospital, Harbin, 150081, Heilongjiang Province, China
| | - Qiang Qiao
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin Medical University Cancer Hospital, Harbin, 150081, Heilongjiang Province, China
| | - Xue Han
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin Medical University Cancer Hospital, Harbin, 150081, Heilongjiang Province, China
| | - Hui Jing
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin Medical University Cancer Hospital, Harbin, 150081, Heilongjiang Province, China
| | - Hao Zhang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Hongjian Liang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Wen Cheng
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin Medical University Cancer Hospital, Harbin, 150081, Heilongjiang Province, China.
| |
Collapse
|
17
|
Zhao YZ, Zhang M, Wong HL, Tian XQ, Zheng L, Yu XC, Tian FR, Mao KL, Fan ZL, Chen PP, Li XK, Lu CT. Prevent diabetic cardiomyopathy in diabetic rats by combined therapy of aFGF-loaded nanoparticles and ultrasound-targeted microbubble destruction technique. J Control Release 2016; 223:11-21. [DOI: 10.1016/j.jconrel.2015.12.030] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Revised: 12/10/2015] [Accepted: 12/16/2015] [Indexed: 01/01/2023]
|
18
|
Wan C, Li F, Li H. Gene therapy for ocular diseases meditated by ultrasound and microbubbles (Review). Mol Med Rep 2015; 12:4803-14. [PMID: 26151686 PMCID: PMC4581786 DOI: 10.3892/mmr.2015.4054] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 06/03/2015] [Indexed: 02/06/2023] Open
Abstract
The eye is an ideal target organ for gene therapy as it is easily accessible and immune‑privileged. With the increasing insight into the underlying molecular mechanisms of ocular diseases, gene therapy has been proposed as an effective approach. Successful gene therapy depends on efficient gene transfer to targeted cells to prove stable and prolonged gene expression with minimal toxicity. At present, the main hindrance regarding the clinical application of gene therapy is not the lack of an ideal gene, but rather the lack of a safe and efficient method to selectively deliver genes to target cells and tissues. Ultrasound‑targeted microbubble destruction (UTMD), with the advantages of high safety, repetitive applicability and tissue targeting, has become a potential strategy for gene‑ and drug delivery. When gene‑loaded microbubbles are injected, UTMD is able to enhance the transport of the gene to the targeted cells. High‑amplitude oscillations of microbubbles act as cavitation nuclei which can effectively focus ultrasound energy, produce oscillations and disruptions that increase the permeability of the cell membrane and create transient pores in the cell membrane. Thereby, the efficiency of gene therapy can be significantly improved. The UTMD‑mediated gene delivery system has been widely used in pre‑clinical studies to enhance gene expression in a site‑specific manner in a variety of organs. With reasonable application, the effects of sonoporation can be spatially and temporally controlled to improve localized tissue deposition of gene complexes for ocular gene therapy applications. In addition, appropriately powered, focused ultrasound combined with microbubbles can induce a reversible disruption of the blood‑retinal barrier with no significant side effects. The present review discusses the current status of gene therapy of ocular diseases as well as studies on gene therapy of ocular diseases meditated by UTMD.
Collapse
Affiliation(s)
- Caifeng Wan
- Department of Ultrasound, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Fenghua Li
- Department of Ultrasound, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Hongli Li
- Department of Ultrasound, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| |
Collapse
|
19
|
Ma J, Xu CS, Gao F, Chen M, Li F, Du LF. Diagnostic and therapeutic research on ultrasound microbubble/nanobubble contrast agents (Review). Mol Med Rep 2015; 12:4022-4028. [PMID: 26081968 DOI: 10.3892/mmr.2015.3941] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 12/12/2014] [Indexed: 11/06/2022] Open
Abstract
The contrast enhanced imaging function of ultrasound contrast agents (UCAs) has been extensively investigated using physical acoustic signatures. It has a number of novel applications, including tissue‑specific molecular imaging and multi‑modal imaging. In addition there are numerous other therapeutic applications of UCAs, for example as vehicles for drug or gene delivery. These uses are discussed, as well as the acoustically‑induced biological effects, including ultrasound targeted microbubble destruction (UTMD). This review also explores the considerations for the safe use of UCA from an acoustic standpoint. The scope of the application of UCA has markedly expanded in recent years, and it is a rapidly growing field of medical research. The current article reviews recent advances in the diagnostic and therapeutic applications of ultrasound microbubble/nanobubble contrast agents.
Collapse
Affiliation(s)
- Jing Ma
- Department of Ultrasound, Shanghai First People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P.R. China
| | - Chang Song Xu
- Department of Ultrasound, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Feng Gao
- Department of Ultrasound, Shanghai First People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P.R. China
| | - Ming Chen
- Department of Cardiovascular Ultrasound, Shanghai East Hospital Affiliated to Tongji University, Shanghai 200120, P.R. China
| | - Fan Li
- Department of Ultrasound, Shanghai First People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P.R. China
| | - Lian Fang Du
- Department of Ultrasound, Shanghai First People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P.R. China
| |
Collapse
|
20
|
Zhang B, Ma XP, Sui MH, Van Kirk E, Murdoch WJ, Radosz M, Lin NM, Shen YQ. Guanidinoamidized linear polyethyleneimine for gene delivery. CHINESE JOURNAL OF POLYMER SCIENCE 2015. [DOI: 10.1007/s10118-015-1644-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
21
|
Ma J, Xing LX, Shen M, Li F, Zhu MJ, Jin LF, Li Z, Gao F, Su Y, Duan YR, Du LF. Ultrasound contrast-enhanced imaging and in vitro antitumor effect of paclitaxel-poly(lactic-co-glycolic acid)-monomethoxypoly (ethylene glycol) nanocapsules with ultrasound-targeted microbubble destruction. Mol Med Rep 2014; 11:2413-20. [PMID: 25500683 PMCID: PMC4337512 DOI: 10.3892/mmr.2014.3072] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 10/02/2014] [Indexed: 11/20/2022] Open
Abstract
A combination of diagnostic and therapeutic ultrasound (US) techniques may be able to provide the basis of specific therapeutic protocols, particularly for the treatment of tumors. Nanotechnology may aid the progression towards the use of US for tumor diagnosis and targeted therapy. The current study investigated in vivo and in vitro US contrast imaging using nanocapsules (NCs), and also US and US-targeted microbubble destruction (UTMD) therapy using drug-loaded NCs for pancreatic cancer in vitro. In the current study, the NCs were made from the polymer nanomaterial poly(lactic-co-glycolic acid)-monomethoxypoly(ethylene glycol) (PLGA-mPEG), encapsulated with paclitaxel (PTX), to create PTX-PLGA-mPEG NCs. The PTX-PLGA-mPEG NCs were used as a US contrast agent (UCA), which produced satisfactory US contrast-enhanced images in vitro and in vivo of the rabbit kidneys, with good contrast compared with lesions in the peripheral regions. However, clear contrast-enhanced images were not obtained using PTX-PLGA-mPEG NCs as a UCA, when imaging the superficial pancreatic tumors of nude mice in vivo. Subsequently, fluorescence and flow cytometry were used to measure the NC uptake rate of pancreatic tumor cells under various US or UTMD conditions. An MTT assay was used to evaluate the efficiency of PTX and PTX-PLGA-mPEG NCs in killing tumor cells following 24 or 48 h of US or UTMD therapy, compared with controls. The specific US or UTMD conditions had been previously demonstrated to be optimal through repeated testing, to determine the conditions by which cells were not impaired and the efficiency of uptake of nanoparticles was highest. The current study demonstrated high cellular uptake rates of PLGA-mPEG NCs and high tumor cell mortality with PTX-PLGA-mPEG NCs under US or UTMD optimal conditions. It was concluded that the use of NCs in US-mediated imaging and antitumor therapy may provide a novel application for US.
Collapse
Affiliation(s)
- Jing Ma
- Department of Ultrasound, Shanghai First People's Hospital Affiliated to Shanghai Jiao tong University School of Medicine, Shanghai 200080, P.R. China
| | - Ling Xi Xing
- Department of Ultrasound, Shanghai First People's Hospital Affiliated to Shanghai Jiao tong University School of Medicine, Shanghai 200080, P.R. China
| | - Ming Shen
- Cancer Institute, Renji Hospital Affiliated to Shanghai Jiao tong University School of Medicine, Shanghai 200032, P.R. China
| | - Fan Li
- Department of Ultrasound, Shanghai First People's Hospital Affiliated to Shanghai Jiao tong University School of Medicine, Shanghai 200080, P.R. China
| | - Ming Jie Zhu
- Cancer Institute, Renji Hospital Affiliated to Shanghai Jiao tong University School of Medicine, Shanghai 200032, P.R. China
| | - Li Fang Jin
- Department of Ultrasound, Shanghai First People's Hospital Affiliated to Shanghai Jiao tong University School of Medicine, Shanghai 200080, P.R. China
| | - Zhaojun Li
- Department of Ultrasound, Shanghai First People's Hospital Affiliated to Shanghai Jiao tong University School of Medicine, Shanghai 200080, P.R. China
| | - Feng Gao
- Department of Ultrasound, Shanghai First People's Hospital Affiliated to Shanghai Jiao tong University School of Medicine, Shanghai 200080, P.R. China
| | - Yijin Su
- Department of Ultrasound, Shanghai First People's Hospital Affiliated to Shanghai Jiao tong University School of Medicine, Shanghai 200080, P.R. China
| | - You Rong Duan
- Cancer Institute, Renji Hospital Affiliated to Shanghai Jiao tong University School of Medicine, Shanghai 200032, P.R. China
| | - Lian Fang Du
- Department of Ultrasound, Shanghai First People's Hospital Affiliated to Shanghai Jiao tong University School of Medicine, Shanghai 200080, P.R. China
| |
Collapse
|
22
|
Li F, Jin L, Wang H, Wei F, Bai M, Shi Q, Du L. The dual effect of ultrasound-targeted microbubble destruction in mediating recombinant adeno-associated virus delivery in renal cell carcinoma: transfection enhancement and tumor inhibition. J Gene Med 2014; 16:28-39. [PMID: 24464622 DOI: 10.1002/jgm.2755] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 01/02/2014] [Accepted: 01/22/2014] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Recombinant adeno-associated virus (rAAV) is recognized as a promising vector for cancer gene therapy, although its low transfer efficiency in less permissive cells limits extensive application. Our previous studies reported that ultrasound-targeted microbubble (MB) destruction (UTMD) enhanced rAAV transfer in its permissive retinal cells. In the present study, we investigated whether UTMD increased rAAV transfer in less permissive human renal cell carcinoma (hRCC) cells and tumors. METHODS hRCC cells were treated with rAAV2 under different conditions of UTMD, and the viral transfer efficiency and cell viability were analyzed. Fifty-two male nude mice (BALB/c) implanted with hRCC cells were randomly assigned to four groups consisting of rAAV, rAAV + ultrasound and rAAV + UTMD (20 µl and 40 µl of MBs). UTMD was initiated immediately after intratumoral viral injection, and viral transfer efficiency and tumor volumes were analyzed at 12 weeks after infection. RESULTS The efficiency of non-augmented transfer of rAAV2 into hRCC cells was low (17.28 ± 2.44%). The use of UTMD enhanced viral transfer efficiency by two- to three-fold, and enhanced viral genomic DNA by more than nine-fold, without decreasing cell viability. In vivo studies also showed that UTMD increased rAAV2 transfer in tumor. The enhancements were maintained for a period of 12 weeks. Tumor growth in mice was inhibited by UTMD treatment, and UTMD treatment augmented by MBs (40 µl) produced an even stronger effect. CONCLUSIONS UTMD enhanced rAAV2 transfer into less permissive RCC cells and tumors, resulting in inhibition of tumor growth, which suggests that UTMD may be a useful delivery tool for cancer gene therapy.
Collapse
Affiliation(s)
- Fan Li
- Department of Ultrasound, Shanghai Jiaotong University Affiliated First People's Hospital, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
23
|
Nabili M, Shenoy A, Chawla S, Mahesh S, Liu J, Geist C, Zderic V. Ultrasound-enhanced ocular delivery of dexamethasone sodium phosphate: an in vivo study. J Ther Ultrasound 2014; 2:6. [PMID: 24921047 PMCID: PMC4036608 DOI: 10.1186/2050-5736-2-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Accepted: 02/04/2014] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The eye's unique anatomy and its physiological and anatomical barriers can limit effective drug delivery into the eye. METHODS An in vivo study was designed to determine the effectiveness and safety of ultrasound application in enhancing drug delivery in a rabbit model. Permeability of a steroid ophthalmic drug, dexamethasone sodium phosphate, was investigated in ultrasound- and sham-treated cases. For this study, an eye cup filled with dexamethasone sodium phosphate was placed on the cornea. Ultrasound was applied at intensity of 0.8 W/cm(2) and frequency of 400 or 600 kHz for 5 min. The drug concentration in aqueous humor samples, collected 90 min after the treatment, was determined using chromatography methods. Light microscopy observations were done to determine the structural changes in the cornea as a result of ultrasound application. RESULTS An increase in drug concentration in aqueous humor samples of 2.8 times (p < 0.05) with ultrasound application at 400 kHz and 2.4 times (p < 0.01) with ultrasound application at 600 kHz was observed as compared to sham-treated samples. Histological analysis showed that the structural changes in the corneas exposed to ultrasound predominantly consisted of minor epithelial disorganization. CONCLUSIONS Ultrasound application enhanced the delivery of an anti-inflammatory ocular drug, dexamethasone sodium phosphate, through the cornea in vivo. Ultrasound-enhanced ocular drug delivery appears to be a promising area of research with a potential future application in a clinical setting.
Collapse
Affiliation(s)
- Marjan Nabili
- Department of Electrical and Computer Engineering, George Washington University, Washington, DC 20052, USA
| | - Aditi Shenoy
- Department of Electrical and Computer Engineering, George Washington University, Washington, DC 20052, USA
| | - Shawn Chawla
- Department of Electrical and Computer Engineering, George Washington University, Washington, DC 20052, USA
| | | | - Ji Liu
- Department of Ophthalmology, George Washington University, Washington, DC 20052, USA
| | - Craig Geist
- Department of Ophthalmology, George Washington University, Washington, DC 20052, USA
| | - Vesna Zderic
- Department of Electrical and Computer Engineering, George Washington University, Washington, DC 20052, USA
| |
Collapse
|
24
|
Devulapally R, Paulmurugan R. Polymer nanoparticles for drug and small silencing RNA delivery to treat cancers of different phenotypes. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2014; 6:40-60. [PMID: 23996830 PMCID: PMC3865230 DOI: 10.1002/wnan.1242] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 07/25/2013] [Accepted: 08/01/2013] [Indexed: 02/06/2023]
Abstract
Advances in nanotechnology have provided powerful and efficient tools in the development of cancer diagnosis and therapy. There are numerous nanocarriers that are currently approved for clinical use in cancer therapy. In recent years, biodegradable polymer nanoparticles have attracted a considerable attention for their ability to function as a possible carrier for target-specific delivery of various drugs, genes, proteins, peptides, vaccines, and other biomolecules in humans without much toxicity. This review will specifically focus on the recent advances in polymer-based nanocarriers for various drugs and small silencing RNA's loading and delivery to treat different types of cancer.
Collapse
Affiliation(s)
- Rammohan Devulapally
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University School of Medicine, Palo Alto, California 94304, USA
| | - Ramasamy Paulmurugan
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University School of Medicine, Palo Alto, California 94304, USA
| |
Collapse
|
25
|
Zhou HY, Hao JL, Wang S, Zheng Y, Zhang WS. Nanoparticles in the ocular drug delivery. Int J Ophthalmol 2013; 6:390-6. [PMID: 23826539 DOI: 10.3980/j.issn.2222-3959.2013.03.25] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 05/29/2013] [Indexed: 02/01/2023] Open
Abstract
Ocular drug transport barriers pose a challenge for drug delivery comprising the ocular surface epithelium, the tear film and internal barriers of the blood-aqueous and blood-retina barriers. Ocular drug delivery efficiency depends on the barriers and the clearance from the choroidal, conjunctival vessels and lymphatic. Traditional drug administration reduces the clinical efficacy especially for poor water soluble molecules and for the posterior segment of the eye. Nanoparticles (NPs) have been designed to overcome the barriers, increase the drug penetration at the target site and prolong the drug levels by few internals of drug administrations in lower doses without any toxicity compared to the conventional eye drops. With the aid of high specificity and multifunctionality, DNA NPs can be resulted in higher transfection efficiency for gene therapy. NPs could target at cornea, retina and choroid by surficial applications and intravitreal injection. This review is concerned with recent findings and applications of NPs drug delivery systems for the treatment of different eye diseases.
Collapse
Affiliation(s)
- Hong-Yan Zhou
- Department of Ophthalmology, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin Province, China
| | | | | | | | | |
Collapse
|
26
|
Yin T, Wang P, Li J, Zheng R, Zheng B, Cheng D, Li R, Lai J, Shuai X. Ultrasound-sensitive siRNA-loaded nanobubbles formed by hetero-assembly of polymeric micelles and liposomes and their therapeutic effect in gliomas. Biomaterials 2013; 34:4532-43. [DOI: 10.1016/j.biomaterials.2013.02.067] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 02/24/2013] [Indexed: 12/16/2022]
|
27
|
Ma J, DU LF, Chen M, Wang HH, Xing LX, Jing LF, Li YH. Drug-loaded nano-microcapsules delivery system mediated by ultrasound-targeted microbubble destruction: A promising therapy method. Biomed Rep 2013; 1:506-510. [PMID: 24648976 DOI: 10.3892/br.2013.110] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 04/15/2013] [Indexed: 11/06/2022] Open
Abstract
The nano-microcapsules drug delivery system is currently a promising method for the treatment of many types of diseases, particularly tumors. However, the drug delivery efficiency does not reach a satisfactory level to meet treatment demands. Therefore, the effectiveness of delivery needs to be improved. Based on the alterations in the structure and modification of nano-microcapsules, ultrasound-targeted microbubble destruction (UTMD), a safe physical targeted method, may increase tissue penetration and cell membrane permeability, aiding the drug-loaded nano-microcapsules ingress the interior of targeted tissues and cells. The effectiveness and exact mechanism of action of the drug-loaded nano-microcapsules delivery system mediated by UTMD have yet to be fully elucidated. In this study, the latest advancement in UTMD-mediated drug loaded nano-microcapsules system technology was reviewed and the hindrances of UTMD-mediated drug delivery were assessed, in combination with a prospective study. The findings suggested that the drug delivery efficiency of nano-microcapsules mediated by UTMD was distinctly improved. Thus, the UTMD-mediated drug-loaded nano-microcapsules delivery system may significantly improve the efficiency of drug delivery, which may be a promising new therapeutic method.
Collapse
Affiliation(s)
- Jing Ma
- Department of Ultrasound, Shanghai First People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200080; ; Department of Cardiovascular Ultrasound, Shanghai East Hospital Affiliated to Tongji University, Shanghai 200120, P.R. China
| | - Lian Fang DU
- Department of Ultrasound, Shanghai First People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200080
| | - Ming Chen
- Department of Cardiovascular Ultrasound, Shanghai East Hospital Affiliated to Tongji University, Shanghai 200120, P.R. China
| | - Hang Hui Wang
- Department of Ultrasound, Shanghai First People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200080
| | - Ling Xi Xing
- Department of Ultrasound, Shanghai First People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200080
| | - Li Fang Jing
- Department of Ultrasound, Shanghai First People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200080
| | - Yun Hua Li
- Department of Ultrasound, Shanghai First People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200080
| |
Collapse
|
28
|
Wang Y, Liu P, Qiu L, Sun Y, Zhu M, Gu L, Di W, Duan Y. Toxicity and therapy of cisplatin-loaded EGF modified mPEG-PLGA-PLL nanoparticles for SKOV3 cancer in mice. Biomaterials 2013; 34:4068-4077. [DOI: 10.1016/j.biomaterials.2012.12.033] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Accepted: 12/26/2012] [Indexed: 11/26/2022]
|
29
|
Florinas S, Nam HY, Kim SW. Enhanced siRNA delivery using a combination of an arginine-grafted bioreducible polymer, ultrasound, and microbubbles in cancer cells. Mol Pharm 2013; 10:2021-30. [PMID: 23527953 DOI: 10.1021/mp400048p] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
RNAi-based gene therapy for cancer treatment has not shown significant clinical impact due to poor siRNA delivery to the target site. Here, we design a nonviral siRNA gene carrier using a combination of an arginine-grafted bioreducible polymer (ABP), microbubbles (MB), and ultrasound (US), for targeting vascular endothelial growth factor (VEGF) in a human ovarian cancer cell line. Newly designed MBs with a perfluorocrownether gas core show higher stability compared to controls. Further, MBs in combination with polyplexes show a significant higher loading capacity compared to naked siRNA. Lastly, only siRNA-ABP-MB (SAM) complexes in combination with US show significant VEGF knock down in A2780 human ovarian cancer cell line compared to naked siRNA when incubated for a short time after sonication treatment.
Collapse
Affiliation(s)
- Stelios Florinas
- Center for Controlled Chemical Delivery (CCCD), Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | | | | |
Collapse
|
30
|
Endo-Takahashi Y, Negishi Y, Nakamura A, Suzuki D, Ukai S, Sugimoto K, Moriyasu F, Takagi N, Suzuki R, Maruyama K, Aramaki Y. pDNA-loaded Bubble liposomes as potential ultrasound imaging and gene delivery agents. Biomaterials 2013; 34:2807-13. [DOI: 10.1016/j.biomaterials.2012.12.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 12/15/2012] [Indexed: 10/27/2022]
|
31
|
Mullin LB, Phillips LC, Dayton PA. Nanoparticle delivery enhancement with acoustically activated microbubbles. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2013; 60:65-77. [PMID: 23287914 PMCID: PMC3822910 DOI: 10.1109/tuffc.2013.2538] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The application of microbubbles and ultrasound to deliver nanoparticle carriers for drug and gene delivery is an area that has expanded greatly in recent years. Under ultrasound exposure, microbubbles can enhance nanoparticle delivery by increasing cellular and vascular permeability. In this review, the underlying mechanisms of enhanced nanoparticle delivery with ultrasound and microbubbles and various proposed delivery techniques are discussed. Additionally, types of nanoparticles currently being investigated in preclinical studies, as well as the general limitations and benefits of a microbubble- based approach to nanoparticle delivery, are reviewed.
Collapse
Affiliation(s)
- Lee B Mullin
- Joint Department of Biomedical Engineering The University of North Carolina at Chapel Hill, and North Carolina State University
| | - Linsey C Phillips
- Joint Department of Biomedical Engineering The University of North Carolina at Chapel Hill, and North Carolina State University
| | - Paul A Dayton
- Joint Department of Biomedical Engineering The University of North Carolina at Chapel Hill, and North Carolina State University
- Author to whom correspondence should be addressed Paul A. Dayton Campus Box 7575, UNC Chapel Hill Chapel Hill, NC 27599
| |
Collapse
|
32
|
Thakur A, Fitzpatrick S, Zaman A, Kugathasan K, Muirhead B, Hortelano G, Sheardown H. Strategies for ocular siRNA delivery: Potential and limitations of non-viral nanocarriers. J Biol Eng 2012; 6:7. [PMID: 22686441 PMCID: PMC3533807 DOI: 10.1186/1754-1611-6-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Accepted: 04/26/2012] [Indexed: 02/07/2023] Open
Abstract
Controlling gene expression via small interfering RNA (siRNA) has opened the doors to a plethora of therapeutic possibilities, with many currently in the pipelines of drug development for various ocular diseases. Despite the potential of siRNA technologies, barriers to intracellular delivery significantly limit their clinical efficacy. However, recent progress in the field of drug delivery strongly suggests that targeted manipulation of gene expression via siRNA delivered through nanocarriers can have an enormous impact on improving therapeutic outcomes for ophthalmic applications. Particularly, synthetic nanocarriers have demonstrated their suitability as a customizable multifunctional platform for the targeted intracellular delivery of siRNA and other hydrophilic and hydrophobic drugs in ocular applications. We predict that synthetic nanocarriers will simultaneously increase drug bioavailability, while reducing side effects and the need for repeated intraocular injections. This review will discuss the recent advances in ocular siRNA delivery via non-viral nanocarriers and the potential and limitations of various strategies for the development of a ‘universal’ siRNA delivery system for clinical applications.
Collapse
Affiliation(s)
- Ajit Thakur
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada.
| | | | | | | | | | | | | |
Collapse
|
33
|
Negishi Y, Endo-Takahashi Y, Matsuki Y, Kato Y, Takagi N, Suzuki R, Maruyama K, Aramaki Y. Systemic Delivery Systems of Angiogenic Gene by Novel Bubble Liposomes Containing Cationic Lipid and Ultrasound Exposure. Mol Pharm 2012; 9:1834-40. [DOI: 10.1021/mp200554c] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | | | | | | | - Ryo Suzuki
- Department of Biopharmaceutics,
School of Pharmaceutical Sciences, Teikyo University, 1091-1 Suwarashi,
Midori-ku, Sagamihara, Kanagawa 252-5195, Japan
| | - Kazuo Maruyama
- Department of Biopharmaceutics,
School of Pharmaceutical Sciences, Teikyo University, 1091-1 Suwarashi,
Midori-ku, Sagamihara, Kanagawa 252-5195, Japan
| | | |
Collapse
|
34
|
PLGA Nanoparticles for Ultrasound-Mediated Gene Delivery to Solid Tumors. JOURNAL OF DRUG DELIVERY 2012; 2012:767839. [PMID: 22506124 PMCID: PMC3312337 DOI: 10.1155/2012/767839] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2011] [Accepted: 11/26/2011] [Indexed: 01/07/2023]
Abstract
This paper focuses on novel approaches in the field of nanotechnology-based carriers utilizing ultrasound stimuli as a means to spatially target gene delivery in vivo, using nanoparticles made with either poly(lactic-co-glycolic acid) (PLGA) or other polymers. We specifically discuss the potential for gene delivery by particles that are echogenic (amenable to destruction by ultrasound) composed either of polymers (PLGA, polystyrene) or other contrast agent materials (Optison, SonoVue microbubbles). The use of ultrasound is an efficient tool to further enhance gene delivery by PLGA or other echogenic particles in vivo. Echogenic PLGA nanoparticles are an attractive strategy for ultrasound-mediated gene delivery since this polymer is currently approved by the US Food and Drug Administration for drug delivery and diagnostics in cancer, cardiovascular disease, and also other applications such as vaccines and tissue engineering. This paper will review recent successes and the potential of applying PLGA nanoparticles for gene delivery, which include (a) echogenic PLGA used with ultrasound to enhance local gene delivery in tumors or muscle and (b) PLGA nanoparticles currently under development, which could benefit in the future from ultrasound-enhanced tumor targeted gene delivery.
Collapse
|
35
|
Endo-Takahashi Y, Negishi Y, Kato Y, Suzuki R, Maruyama K, Aramaki Y. Efficient siRNA delivery using novel siRNA-loaded Bubble liposomes and ultrasound. Int J Pharm 2012; 422:504-9. [DOI: 10.1016/j.ijpharm.2011.11.023] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 10/18/2011] [Accepted: 11/13/2011] [Indexed: 10/15/2022]
|