1
|
Li H, Zhang J, Shen Y, Ye Y, Jiang Q, Chen L, Sun B, Chen Z, Shen L, Fang H, Yang J, Gu H. Targeting Mitochondrial Complex I Deficiency in MPP +/MPTP-induced Parkinson's Disease Cell Culture and Mouse Models by Transducing Yeast NDI1 Gene. Biol Proced Online 2024; 26:9. [PMID: 38594619 PMCID: PMC11003148 DOI: 10.1186/s12575-024-00236-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 03/27/2024] [Indexed: 04/11/2024] Open
Abstract
BACKGROUND MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine), original found in synthetic heroin, causes Parkinson's disease (PD) in human through its metabolite MPP+ by inhibiting complex I of mitochondrial respiratory chain in dopaminergic neurons. This study explored whether yeast internal NADH-quinone oxidoreductase (NDI1) has therapeutic effects in MPTP- induced PD models by functionally compensating for the impaired complex I. MPP+-treated SH-SY5Y cells and MPTP-treated mice were used as the PD cell culture and mouse models respectively. The recombinant NDI1 lentivirus was transduced into SH-SY5Y cells, or the recombinant NDI1 adeno-associated virus (rAAV5-NDI1) was injected into substantia nigra pars compacta (SNpc) of mice. RESULTS The study in vitro showed NDI1 prevented MPP+-induced change in cell morphology and decreased cell viability, mitochondrial coupling efficiency, complex I-dependent oxygen consumption, and mitochondria-derived ATP. The study in vivo revealed that rAAV-NDI1 injection significantly improved the motor ability and exploration behavior of MPTP-induced PD mice. Accordingly, NDI1 notably improved dopaminergic neuron survival, reduced the inflammatory response, and significantly increased the dopamine content in striatum and complex I activity in substantia nigra. CONCLUSIONS NDI1 compensates for the defective complex I in MPP+/MPTP-induced models, and vastly alleviates MPTP-induced toxic effect on dopaminergic neurons. Our study may provide a basis for gene therapy of sporadic PD with defective complex I caused by MPTP-like substance.
Collapse
Affiliation(s)
- Hongzhi Li
- Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Chashan University Town, Northern Zhongshan Road, Wenzhou, 325035, China.
| | - Jing Zhang
- Department of Pathology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Yuqi Shen
- Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Chashan University Town, Northern Zhongshan Road, Wenzhou, 325035, China
| | - Yifan Ye
- Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Chashan University Town, Northern Zhongshan Road, Wenzhou, 325035, China
| | - Qingyou Jiang
- Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Chashan University Town, Northern Zhongshan Road, Wenzhou, 325035, China
| | - Lan Chen
- Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Chashan University Town, Northern Zhongshan Road, Wenzhou, 325035, China
| | - Bohao Sun
- Department of Pathology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Zhuo Chen
- Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Chashan University Town, Northern Zhongshan Road, Wenzhou, 325035, China
| | - Luxi Shen
- Department of Internal Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Hezhi Fang
- Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Chashan University Town, Northern Zhongshan Road, Wenzhou, 325035, China
| | - Jifeng Yang
- Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Chashan University Town, Northern Zhongshan Road, Wenzhou, 325035, China.
| | - Haihua Gu
- Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Chashan University Town, Northern Zhongshan Road, Wenzhou, 325035, China.
| |
Collapse
|
2
|
Kim Y, Lee DY, Choi JU, Park JS, Lee SM, Kang CH, Park CH. Optimized conditions for gene transduction into primary immune cells using viral vectors. Sci Rep 2023; 13:12365. [PMID: 37524755 PMCID: PMC10390464 DOI: 10.1038/s41598-023-39597-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 07/27/2023] [Indexed: 08/02/2023] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy has emerged as a promising modality for anti-cancer treatment. Its efficacy is quite remarkable in hematological tumors. Owing to their excellent clinical results, gene- modified cell therapies, including T cells, natural killer (NK) cells, and macrophages, are being actively studied in both academia and industry. However, the protocol to make CAR immune cells is too complicated, so it is still unclear how to efficiently produce the potent CAR immune cells. To manufacture effective CAR immune cells, we need to be aware of not only how to obtain highly infective viral particles, but also how to transduce CAR genes into immune cells. In this paper, we provide detailed information on spinoculation, which is one of the best known protocols to transduce genes into immune cells, in a methodological view. Our data indicate that gene transduction is significantly dependent on speed and duration of centrifugation, concentration and number of viral particles, the concentration of polybrene, and number of infected immune cells. In addition, we investigated on the optimal polyethylene glycol (PEG) solution to concentrate the viral supernatant and the optimized DNA ratios transfected into 293T cells to produce high titer of viral particles. This study provides useful information for practical production of the gene-modified immune cells using viral vectors.
Collapse
Affiliation(s)
- Yeongrin Kim
- Bio and Drug Discovery Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, PO Box 107, Daejeon, 34114, Republic of Korea
- Medicinal Chemistry and Pharmacology, Korea University of Science and Technology, Daejeon, 34316, Republic of Korea
| | - Da Yeon Lee
- Bio and Drug Discovery Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, PO Box 107, Daejeon, 34114, Republic of Korea
- College of Pharmacy, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Ji U Choi
- Bio and Drug Discovery Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, PO Box 107, Daejeon, 34114, Republic of Korea
- Medicinal Chemistry and Pharmacology, Korea University of Science and Technology, Daejeon, 34316, Republic of Korea
| | - Jin Song Park
- Bio and Drug Discovery Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, PO Box 107, Daejeon, 34114, Republic of Korea
| | - So Myoung Lee
- Bio and Drug Discovery Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, PO Box 107, Daejeon, 34114, Republic of Korea
| | - Chung Hyo Kang
- Bio and Drug Discovery Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, PO Box 107, Daejeon, 34114, Republic of Korea
| | - Chi Hoon Park
- Bio and Drug Discovery Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, PO Box 107, Daejeon, 34114, Republic of Korea.
- Medicinal Chemistry and Pharmacology, Korea University of Science and Technology, Daejeon, 34316, Republic of Korea.
| |
Collapse
|
3
|
Zhou Y, Fan K, Dou N, Li L, Wang J, Chen J, Li Y, Gao Y. YTHDF2 exerts tumor-suppressor roles in gastric cancer via up-regulating PPP2CA independently of m 6A modification. Biol Proced Online 2023; 25:6. [PMID: 36870954 PMCID: PMC9985201 DOI: 10.1186/s12575-023-00195-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 02/24/2023] [Indexed: 03/06/2023] Open
Abstract
BACKGROUND YTHDF2 is one of important readers of N6-methyladenosine (m6A) modification on RNA. Growing evidence implicates that YTHDF2 takes an indispensable part in the regulation of tumorigenesis and metastasis in different cancers, but its biological functions and underlying mechanisms remain elusive in gastric cancer (GC). AIM To investigate the clinical relevance and biological function of YTHDF2 in GC. RESULTS Compared with matched normal stomach tissues, YTHDF2 expression was markedly decreased in gastric cancer tissues. The expression level of YTHDF2 was inversely associated with gastric cancer patients' tumor size, AJCC classification and prognosis. Functionally, YTHDF2 reduction facilitated gastric cancer cell growth and migration in vitro and in vivo, whereas YTHDF2 overexpression exhibited opposite phenotypes. Mechanistically, YTHDF2 enhanced expression of PPP2CA, the catalytic subunit of PP2A (Protein phosphatase 2A), in an m6A-independent manner, and silencing of PPP2CA antagonized the anti-tumor effects caused by overexpression of YTHDF2 in GC cells. CONCLUSION These findings demonstrate that YTHDF2 is down-regulated in GC and its down-regulation promotes GC progression via a possible mechanism involving PPP2CA expression, suggesting that YTHDF2 may be a hopeful biomarker for diagnosis and an unrevealed treatment target for GC.
Collapse
Affiliation(s)
- Ying Zhou
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, 150 Ji-Mo Rd., Shanghai, 200120, China
| | - Kailing Fan
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, 150 Ji-Mo Rd., Shanghai, 200120, China
| | - Ning Dou
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, 150 Ji-Mo Rd., Shanghai, 200120, China
| | - Li Li
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, 150 Ji-Mo Rd., Shanghai, 200120, China
| | - Jialin Wang
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, 150 Ji-Mo Rd., Shanghai, 200120, China
| | - Jingde Chen
- Department of Oncology, Shanghai East Hospital Ji'an Hospital, Ji'an City, 343000, Jiangxi Province, China.,School of Medicine, Tongji University, Shanghai, 200120, China
| | - Yandong Li
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, 150 Ji-Mo Rd., Shanghai, 200120, China.
| | - Yong Gao
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, 150 Ji-Mo Rd., Shanghai, 200120, China.
| |
Collapse
|
4
|
Li H, Sun B, Huang Y, Zhang J, Xu X, Shen Y, Chen Z, Yang J, Shen L, Hu Y, Gu H. Gene therapy of yeast NDI1 on mitochondrial complex I dysfunction in rotenone-induced Parkinson’s disease models in vitro and vivo. Mol Med 2022; 28:29. [PMID: 35255803 PMCID: PMC8900322 DOI: 10.1186/s10020-022-00456-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 02/18/2022] [Indexed: 01/18/2023] Open
Abstract
Abstract
Purpose
Parkinson's disease (PD) is the second most common neurodegenerative disease without cure or effective treatment. This study explores whether the yeast internal NADH-quinone oxidoreductase (NDI1) can functionally replace the defective mammalian mitochondrial complex I, which may provide a gene therapy strategy for treating sporadic PD caused by mitochondrial complex I dysfunction.
Method
Recombinant lentivirus expressing NDI1 was transduced into SH-SY5Y cells, or recombinant adeno-associated virus type 5 expressing NDI1 was transduced into the right substantia nigra pars compacta (SNpc) of mouse. PD cell and mouse models were established by rotenone treatment. The therapeutic effects of NDI1 on rotenone-induced PD models in vitro and vivo were assessed in neurobehavior, neuropathology, and mitochondrial functions, by using the apomorphine-induced rotation test, immunohistochemistry, immunofluorescence, western blot, complex I enzyme activity determination, oxygen consumption detection, ATP content determination and ROS measurement.
Results
NDI1 was expressed and localized in mitochondria in SH-SY5Y cells. NDI1 resisted rotenone-induced changes in cell morphology, loss of cell viability, accumulation of α-synuclein and pS129 α-synuclein, mitochondrial ROS production and mitochondria-mediated apoptosis. The basal and maximal oxygen consumption, mitochondrial coupling efficiency, basal and oligomycin-sensitive ATP and complex I activity in cell model were significantly increased in rotenone + NDI1 group compared to rotenone + vector group. NDI1 was efficiently expressed in dopaminergic neurons in the right SNpc without obvious adverse effects. The rotation number to the right side (NDI1-treated side) was significantly increased compared to that to the left side (untreated side) in mouse model. The number of viable dopaminergic neurons, the expression of tyrosine hydroxylase, total and maximal oxygen consumption, mitochondrial coupling efficiency and complex I enzyme activity in right substantia nigra, and the content of dopamine in right striatum were significantly increased in rotenone + NDI1 group compared to rotenone + vector group.
Conclusion
Yeast NDI1 can rescue the defect of oxidative phosphorylation in rotenone-induced PD cell and mouse models, and ameliorate neurobehavioral and neuropathological damages. The results may provide a basis for the yeast NDI1 gene therapy of sporadic PD caused by mitochondrial complex I dysfunction.
Collapse
|
5
|
Remley VA, Jin J, Sarkar S, Moses L, Prochazkova M, Cai Y, Shao L, Liu H, Fuksenko T, Jin P, Stroncek DF, Highfill SL. High efficiency closed-system gene transfer using automated spinoculation. J Transl Med 2021; 19:474. [PMID: 34819105 PMCID: PMC8675485 DOI: 10.1186/s12967-021-03126-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 10/22/2021] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Gene transfer is an important tool for cellular therapies. Lentiviral vectors are most effectively transferred into lymphocytes or hematopoietic progenitor cells using spinoculation. To enable cGMP (current Good Manufacturing Practice)-compliant cell therapy production, we developed and compared a closed-system spinoculation method that uses cell culture bags, and an automated closed system spinoculation method to decrease technician hands on time and reduce the likelihood for microbial contamination. METHODS Sepax spinoculation, bag spinoculation, and static bag transduction without spinoculation were compared for lentiviral gene transfer in lymphocytes collected by apheresis. The lymphocytes were transduced once and cultured for 9 days. The lentiviral vectors tested encoded a CD19/CD22 Bispecific Chimeric Antigen Receptor (CAR), a FGFR4-CAR, or a CD22-CAR. Sepax spinoculation times were evaluated by testing against bag spinoculation and static transduction to optimize the Sepax spin time. The Sepax spinoculation was then used to test the transduction of different CAR vectors. The performance of the process using healthy donor and a patient sample was evaluated. Functional assessment was performed of the CD19/22 and CD22 CAR T-cells using killing assays against the NALM6 tumor cell line and cytokine secretion analysis. Finally, gene expression of the transduced T-cells was examined to determine if there were any major changes that may have occurred as a result of the spinoculation process. RESULTS The process of spinoculation lead to significant enhancement in gene transfer. Sepax spinoculation using a 1-h spin time showed comparable transduction efficiency to the bag spinoculation, and much greater than the static bag transduction method (83.4%, 72.8%, 35.7% n = 3). The performance of three different methods were consistent for all lentiviral vectors tested and no significant difference was observed when using starting cells from healthy donor versus a patient sample. Sepax spinoculation does not affect the function of the CAR T-cells against tumor cells, as these cells appeared to kill target cells equally well. Spinoculation also does not appear to affect gene expression patterns that are necessary for imparting function on the cell. CONCLUSIONS Closed system-bag spinoculation resulted in more efficient lymphocyte gene transfer than standard bag transductions without spinoculation. This method is effective for both retroviral and lentiviral vector gene transfer in lymphocytes and may be a feasible approach for gene transfer into other cell types including hematopoietic and myeloid progenitors. Sepax spinoculation further improved upon the process by offering an automated, closed system approach that significantly decreased hands-on time while also decreasing the risk of culture bag tears and microbial contamination.
Collapse
Affiliation(s)
- Victoria Ann Remley
- Center for Cellular Engineering, Department of Transfusion Medicine, NIH Clinical Center, Bethesda, USA
| | - Jianjian Jin
- Center for Cellular Engineering, Department of Transfusion Medicine, NIH Clinical Center, Bethesda, USA
| | - Sarmila Sarkar
- Center for Cellular Engineering, Department of Transfusion Medicine, NIH Clinical Center, Bethesda, USA
| | - Larry Moses
- Center for Cellular Engineering, Department of Transfusion Medicine, NIH Clinical Center, Bethesda, USA
| | - Michaela Prochazkova
- Center for Cellular Engineering, Department of Transfusion Medicine, NIH Clinical Center, Bethesda, USA
| | - Yihua Cai
- Center for Cellular Engineering, Department of Transfusion Medicine, NIH Clinical Center, Bethesda, USA
| | - Lipei Shao
- Center for Cellular Engineering, Department of Transfusion Medicine, NIH Clinical Center, Bethesda, USA
| | - Hui Liu
- Center for Cellular Engineering, Department of Transfusion Medicine, NIH Clinical Center, Bethesda, USA
| | - Tatyana Fuksenko
- Center for Cellular Engineering, Department of Transfusion Medicine, NIH Clinical Center, Bethesda, USA
| | - Ping Jin
- Center for Cellular Engineering, Department of Transfusion Medicine, NIH Clinical Center, Bethesda, USA
| | - David F Stroncek
- Center for Cellular Engineering, Department of Transfusion Medicine, NIH Clinical Center, Bethesda, USA
| | - Steven L Highfill
- Center for Cellular Engineering, Department of Transfusion Medicine, NIH Clinical Center, Bethesda, USA. .,Center for Cellular Engineering, Clinical Center, NIH, 10 Center Drive-MSC-1184, Building 10, Room 3C720, Bethesda, MD, 20892-1184, USA.
| |
Collapse
|
6
|
Abstract
Gene therapy makes it possible to engineer chimeric antigen receptors (CARs) to create T cells that target specific diseases. However, current approaches require elaborate and expensive protocols to manufacture engineered T cells ex vivo, putting this therapy beyond the reach of many patients who might benefit. A solution could be to program T cells in vivo. Here, we evaluate the clinical need for in situ CAR T cell programming, compare competing technologies, review current progress, and provide a perspective on the long-term impact of this emerging and rapidly flourishing biotechnology field.
Collapse
Affiliation(s)
- Neha N Parayath
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Matthias T Stephan
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA.,Department of Bioengineering and Molecular Engineering & Sciences Institute, University of Washington, Seattle, Washington 98195, USA;
| |
Collapse
|
7
|
Li P, Yang L, Li T, Bin S, Sun B, Huang Y, Yang K, Shan D, Gu H, Li H. The Third Generation Anti-HER2 Chimeric Antigen Receptor Mouse T Cells Alone or Together With Anti-PD1 Antibody Inhibits the Growth of Mouse Breast Tumor Cells Expressing HER2 in vitro and in Immune Competent Mice. Front Oncol 2020; 10:1143. [PMID: 32766150 PMCID: PMC7381237 DOI: 10.3389/fonc.2020.01143] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 06/05/2020] [Indexed: 12/18/2022] Open
Abstract
Chimeric Antigen Receptor (CAR)-T cells have great efficacy against CD19+ leukemia but little success for solid tumors. This study explored the effectiveness of third generation anti-HER2 CAR-T cells alone or in combination with anti-PD1 antibody on breast tumor cells expressing HER2 in vitro and in immune competent mouse model. The PDL1-positive mouse mammary tumor cell line 4T1 engineered to express luciferase and human HER2 was used as the target cell line (4T1-Luc-HER2). Anti-HER2 CAR-T cells were generated by transducing mouse spleen T cells with recombinant lentiviruses. ELISA analysis showed that IL-2 and IFN-γ secretion was increased in CAR-T cells co-cultured with the target cells, and the secretion of these two cytokines was increased further with the addition of anti-PD1 antibody. Lactate dehydrogenase assay revealed that CAR-T cells displayed a potent cytotoxicity against the target cells, and the addition of anti-PD1 antibody further enhanced the cytotoxicity. At the effector: target ratio of 16:1, cytotoxicity was 39.8% with CAR-T cells alone, and increased to 49.5% with the addition of anti-PD1 antibody. In immune competent syngeneic mouse model, CAR-T cells were found to be present in tumor stroma, inhibited tumor growth and increased tumor apoptosis significantly. Addition of anti-PD1 antibody further enhanced these anti-tumor activities. Twenty-one days after treatment, tumor weight was reduced by 50.0% and 73.3% in CAR-T group and CAR-T plus anti-PD1 group compared with blank T group. Our results indicate that anti-PD1 antibody can greatly increase the efficacy of anti-HER2 CAR-T against HER2-positive solid tumors.
Collapse
Affiliation(s)
- Panyuan Li
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Lingcong Yang
- The Third People's Hospital of Dalian, Dalian, China
| | - Tong Li
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Shufang Bin
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Bohao Sun
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yuting Huang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Kaiyan Yang
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Daming Shan
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Haihua Gu
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Hongzhi Li
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
8
|
Nie Y, Lu W, Chen D, Tu H, Guo Z, Zhou X, Li M, Tu S, Li Y. Mechanisms underlying CD19-positive ALL relapse after anti-CD19 CAR T cell therapy and associated strategies. Biomark Res 2020; 8:18. [PMID: 32514351 PMCID: PMC7254656 DOI: 10.1186/s40364-020-00197-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 05/18/2020] [Indexed: 02/07/2023] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy, especially anti-CD19 CAR T cell therapy, has shown remarkable anticancer activity in patients with relapsed/refractory acute lymphoblastic leukemia, demonstrating an inspiring complete remission rate. However, with extension of the follow-up period, the limitations of this therapy have gradually emerged. Patients are at a high risk of early relapse after achieving complete remission. Although there are many studies with a primary focus on the mechanisms underlying CD19- relapse related to immune escape, early CD19+ relapse owing to poor in vivo persistence and impaired efficacy accounts for a larger proportion of the high relapse rate. However, the mechanisms underlying CD19+ relapse are still poorly understood. Herein, we discuss factors that could become obstacles to improved persistence and efficacy of CAR T cells during production, preinfusion processing, and in vivo interactions in detail. Furthermore, we propose potential strategies to overcome these barriers to achieve a reduced CD19+ relapse rate and produce prolonged survival in patients after CAR T cell therapy.
Collapse
Affiliation(s)
- Yuru Nie
- Second Clinical Medical College, Southern Medical University, No. 253, Industrial Avenue, Guangzhou, Guangdong Province China
| | - Weiqing Lu
- Second Clinical Medical College, Southern Medical University, No. 253, Industrial Avenue, Guangzhou, Guangdong Province China
| | - Daiyu Chen
- Second Clinical Medical College, Southern Medical University, No. 253, Industrial Avenue, Guangzhou, Guangdong Province China
| | - Huilin Tu
- Second Clinical Medical College, Southern Medical University, No. 253, Industrial Avenue, Guangzhou, Guangdong Province China
| | - Zhenling Guo
- Department of Hematology, Zhujiang Hospital, Southern Medical University, No. 253, Industrial Avenue, Guangzhou, Guangdong Province China
| | - Xuan Zhou
- Department of Hematology, Zhujiang Hospital, Southern Medical University, No. 253, Industrial Avenue, Guangzhou, Guangdong Province China
| | - Meifang Li
- Department of Hematology, Zhujiang Hospital, Southern Medical University, No. 253, Industrial Avenue, Guangzhou, Guangdong Province China
| | - Sanfang Tu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, No. 253, Industrial Avenue, Guangzhou, Guangdong Province China
| | - Yuhua Li
- Department of Hematology, Zhujiang Hospital, Southern Medical University, No. 253, Industrial Avenue, Guangzhou, Guangdong Province China
| |
Collapse
|