1
|
Li N, Wei Z, Li X, Jian J, Zhou L, Wang S, Chen M, Cheng Y. TACO1 facilitates the proliferation and migration of gastric cancer cells via Notch1/Hes1 signaling and is associated with immune cell infiltration. Exp Cell Res 2025; 448:114574. [PMID: 40288625 DOI: 10.1016/j.yexcr.2025.114574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 04/10/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
Translational activator of cytochrome c oxidase 1 (TACO1) is a mitochondrial RNA-binding protein playing a fundamental role in mitochondrial translation. However, no studies to date have evaluated changes in the expression, biological functions, and potential molecular mechanisms of action of TACO1 in gastric cancer. Therefore, we investigated the clinical significance, biological function, and immune system modulation associated with TACO1 in gastric cancer. We found that TACO1 expression was upregulated in gastric cancer and associated with poor prognosis. Mechanistically, TACO1 facilitated gastric cancer cell proliferation and migration through modulation of the Notch1/Hes1 signaling pathways. Moreover, the change in TACO1 expression affected multiple immunological components to regulate the generation of an immunosuppressive tumor microenvironment (TME). In conclusion, we first report on the role of TACO1 in gastric cancer, with findings suggesting that TACO1 could represent a promising prognostic and immunological biomarker for gastric cancer.
Collapse
Affiliation(s)
- Na Li
- College of Basic Medicine, Chengde Medical University, Chengde, Hebei, 067000, People's Republic of China
| | - Zijie Wei
- College of Basic Medicine, Chengde Medical University, Chengde, Hebei, 067000, People's Republic of China
| | - Xiang Li
- Department of Pathology, Cancer Research Laboratory, Chengde Medical University, Chengde, Hebei, 067000, People's Republic of China
| | - Jiayu Jian
- College of Basic Medicine, Chengde Medical University, Chengde, Hebei, 067000, People's Republic of China
| | - Lulu Zhou
- College of Basic Medicine, Chengde Medical University, Chengde, Hebei, 067000, People's Republic of China
| | - Siqi Wang
- College of Basic Medicine, Chengde Medical University, Chengde, Hebei, 067000, People's Republic of China
| | - Miao Chen
- College of Basic Medicine, Chengde Medical University, Chengde, Hebei, 067000, People's Republic of China
| | - Yu Cheng
- Department of Pathology, Cancer Research Laboratory, Chengde Medical University, Chengde, Hebei, 067000, People's Republic of China.
| |
Collapse
|
2
|
Sinha S, Hembram KC, Chatterjee S. Targeting signaling pathways in cancer stem cells: A potential approach for developing novel anti-cancer therapeutics. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 385:157-209. [PMID: 38663959 DOI: 10.1016/bs.ircmb.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Cancer stem cells (CSCs) have emerged as prime players in the intricate landscape of cancer development, progression, and resistance to traditional treatments. These unique cellular subpopulations own the remarkable capability of self-renewal and differentiation, giving rise to the diverse cellular makeup of tumors and fostering their recurrence following conventional therapies. In the quest for developing more effective cancer therapeutics, the focus has now shifted toward targeting the signaling pathways that govern CSCs behavior. This chapter underscores the significance of these signaling pathways in CSC biology and their potential as pivotal targets for the development of novel chemotherapy approaches. We delve into several key signaling pathways essential for maintaining the defining characteristics of CSCs, including the Wnt, Hedgehog, Notch, JAK-STAT, NF-κB pathways, among others, shedding light on their potential crosstalk. Furthermore, we highlight the latest advancements in CSC-targeted therapies, spanning from promising preclinical models to ongoing clinical trials. A comprehensive understanding of the intricate molecular aspects of CSC signaling pathways and their manipulation holds the prospective to revolutionize cancer treatment paradigms. This, in turn, could lead to more efficacious and personalized therapies with the ultimate goal of eradicating CSCs and enhancing overall patient outcomes. The exploration of CSC signaling pathways represents a key step towards a brighter future in the battle against cancer.
Collapse
Affiliation(s)
- Saptarshi Sinha
- National Institute of Biomedical Genomics, Kalyani, West Bengal, India
| | | | - Subhajit Chatterjee
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, MD, United States.
| |
Collapse
|
3
|
Chagas PS, Veronez LC, de Sousa GR, Cruzeiro GAV, Corrêa CAP, Saggioro FP, de Paula Queiroz RG, Marie SKN, Brandalise SR, Cardinalli IA, Yunes JA, Júnior CGC, Machado HR, Santos MV, Scrideli CA, Tone LG, Valera ET. Musashi-1 regulates cell cycle and confers resistance to cisplatin treatment in Group 3/4 medulloblastomas cells. Hum Cell 2023; 36:2129-2139. [PMID: 37460706 DOI: 10.1007/s13577-023-00954-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/10/2023] [Indexed: 10/20/2023]
Abstract
Groups (Grp) 3 and 4 are aggressive molecular subgroups of medulloblastoma (MB), with high rates of leptomeningeal dissemination. To date, there is still a paucity of biomarkers for these subtypes of MBs. In this study, we investigated the clinical significance and biological functions of Musashi-1 (MSI1) in Grp3 and Grp4-MBs. First, we assessed the expression profile of MSI1 in 59 primary MB samples (15-WNT, 18-SHH, 9-Grp3, and 17-Grp4 subgroups) by qRT-PCR. MSI1 mRNA expression levels were also validated in an additional public dataset of MBs (GSE85217). The ROC curve was used to validate the diagnostic standards of MSI1 expression. Next, the potential correlated cell-cycle genes were measured by RNA-Seq. Cell cycle, cell viability, and apoptosis were evaluated in a Grp3/Grp4 MB cell line after knockdown of MSI1 and cisplatin treatment. We identified an overexpression of MSI1 with a high accuracy to discriminate Grp3/Grp4-MBs from non-Grp3/Grp4-MBs. We identified that MSI1 knockdown not only triggered transcriptional changes in the cell-cycle pathway, but also affected G2/M phase in vitro, supporting the role of knockdown of MSI1 in cell-cycle arrest. Finally, MSI1 knockdown decreased cell viability and sensitized D283-Med cells to cisplatin treatment by enhancing cell apoptosis. Based on these findings, we suggest that MSI1 modulates cell-cycle progression and may play a role as biomarker for Grp3/Grp4-MBs. In addition, MSI1 knockdown combined with cisplatin may offer a potential strategy to be further explored in Grp3/Grp4-MBs.
Collapse
Affiliation(s)
- Pablo Shimaoka Chagas
- Department of Genetics, Ribeirão Preto Medical School-University of São Paulo, Bandeirantes Avenue, 3900, Ribeirão Preto, São Paulo, 14048-900, Brazil.
| | - Luciana Chain Veronez
- Department of Pediatrics, Clinics Hospital-Ribeirão Preto Medical School-University of São Paulo, Ribeirão Preto, Brazil
| | - Graziella Ribeiro de Sousa
- Department of Genetics, Ribeirão Preto Medical School-University of São Paulo, Bandeirantes Avenue, 3900, Ribeirão Preto, São Paulo, 14048-900, Brazil
| | - Gustavo Alencastro Veiga Cruzeiro
- Department of Pediatrics, Clinics Hospital-Ribeirão Preto Medical School-University of São Paulo, Ribeirão Preto, Brazil
- Department of Pediatric Oncology, Harvard Medical School-Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Carolina Alves Pereira Corrêa
- Department of Pediatrics, Clinics Hospital-Ribeirão Preto Medical School-University of São Paulo, Ribeirão Preto, Brazil
| | - Fabiano Pinto Saggioro
- Department of Pathology, Ribeirão Preto Medical School, 3900 Bandeirantes Avenue, Ribeirão Preto, SP, 14049-900, Brazil
- Department of Pathology, Rede D'Or São Luiz Hospital, Rua das Perobas, São Paulo, SP, 04321-120, Brazil
| | - Rosane Gomes de Paula Queiroz
- Department of Pediatrics, Clinics Hospital-Ribeirão Preto Medical School-University of São Paulo, Ribeirão Preto, Brazil
| | - Suely Kazue Nagahashi Marie
- Laboratory of Cellular and Molecular Biology, Department of Neurology, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, SP, Brazil
| | | | | | | | | | - Hélio Rubens Machado
- Division of Pediatric Neurosurgery, Department of Surgery and Anatomy, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Marcelo Volpon Santos
- Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo, Bandeirantes Av., Ribeirão Preto, SP, 390014049-900, Brazil
| | - Carlos Alberto Scrideli
- Department of Genetics, Ribeirão Preto Medical School-University of São Paulo, Bandeirantes Avenue, 3900, Ribeirão Preto, São Paulo, 14048-900, Brazil
- Department of Pediatrics, Clinics Hospital-Ribeirão Preto Medical School-University of São Paulo, Ribeirão Preto, Brazil
| | - Luiz Gonzaga Tone
- Department of Genetics, Ribeirão Preto Medical School-University of São Paulo, Bandeirantes Avenue, 3900, Ribeirão Preto, São Paulo, 14048-900, Brazil
- Department of Pediatrics, Clinics Hospital-Ribeirão Preto Medical School-University of São Paulo, Ribeirão Preto, Brazil
| | - Elvis Terci Valera
- Department of Pediatrics, Clinics Hospital-Ribeirão Preto Medical School-University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
4
|
Asghariazar V, Kadkhodayi M, Sarailoo M, Jolfayi AG, Baradaran B. MicroRNA-143 as a potential tumor suppressor in cancer: An insight into molecular targets and signaling pathways. Pathol Res Pract 2023; 250:154792. [PMID: 37689002 DOI: 10.1016/j.prp.2023.154792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 08/25/2023] [Accepted: 09/02/2023] [Indexed: 09/11/2023]
Abstract
MicroRNAs (MiRNAs), which are highly conserved and small noncoding RNAs, negatively regulate gene expression and influence signaling pathways involved in essential biological activities, including cell proliferation, differentiation, apoptosis, and cell invasion. MiRNAs have received much attention in the past decade due to their significant roles in cancer development. In particular, microRNA-143 (miR-143) is recognized as a tumor suppressor and is downregulated in most cancers. However, it seems that miR-143 is upregulated in rare cases, such as prostate cancer stem cells, and acts as an oncogene. The present review will outline the current studies illustrating the impact of miR-143 expression levels on cancer progression and discuss its target genes and their relevant signaling pathways to discover a potential therapeutic way for cancer.
Collapse
Affiliation(s)
- Vahid Asghariazar
- Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Deputy of Research and Technology, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Mahtab Kadkhodayi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Animal Biology, Faculty of Natural Sciences, The University of Tabriz, Tabriz, Iran
| | - Mehdi Sarailoo
- Students Research Committee, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Amir Ghaffari Jolfayi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
5
|
Jiang L, Xue S, Xu J, Fu X, Wei J, Zhang C. Prognostic value of Musashi 2 (MSI2) in cancer patients: A systematic review and meta-analysis. Front Oncol 2022; 12:969632. [PMID: 36530989 PMCID: PMC9751961 DOI: 10.3389/fonc.2022.969632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 11/02/2022] [Indexed: 11/10/2023] Open
Abstract
Musashi 2 (MSI2) is an RNA-binding protein that regulates mRNA translation of numerous intracellular targets and plays an important role in the development of cancer. However, the prognostic value of MSI2 in various cancers remains controversial. Herein, we conducted this meta-analysis including 21 studies with 2640 patients searched from PubMed, Web of Science, EMBASE, Chinese National Knowledge Infrastructure databases, and WanFang databases to accurately assess the prognostic significance of MSI2 in various cancers. Our results indicated that high MSI2 expression was significantly related to poor overall survival (HR = 1.84, 95% CI: 1.66-2.05, P < 0.001) and disease-free survival (HR = 1.73, 95% CI: 1.35-2.22, P < 0.001). In addition, MSI2 positive expression was associated with certain phenotypes of tumor aggressiveness, such as clinical stage, depth of invasion, lymph node metastasis, liver metastasis and tumor size. In conclusion, elevated MSI2 expression is closely correlated with poor prognosis in various cancers, and may serve as a potential molecular target for cancer patients.
Collapse
Affiliation(s)
- Lin Jiang
- Department of Anesthesiology, Taizhou People’s Hospital, Affiliated to Nanjing Medical University, Taizhou, Jiangsu, China
| | - Shanshan Xue
- Department of Clinical Laboratory, Taizhou People’s Hospital, Affiliated to Nanjing Medical University, Taizhou, Jiangsu, China
| | - Jie Xu
- The Center for Translational Medicine, Taizhou People’s Hospital, Affiliated to Nanjing Medical University, Taizhou, Jiangsu, China
| | - Xiaoyang Fu
- The Center for Translational Medicine, Taizhou People’s Hospital, Affiliated to Nanjing Medical University, Taizhou, Jiangsu, China
| | - Jing Wei
- Department of Obstetrics and Gynecology, Taizhou People’s Hospital, Affiliated to Nanjing Medical University, Taizhou, Jiangsu, China
| | - Chuanmeng Zhang
- The Center for Translational Medicine, Taizhou People’s Hospital, Affiliated to Nanjing Medical University, Taizhou, Jiangsu, China
| |
Collapse
|
6
|
Suo J, Zou S, Wang J, Han Y, Zhang L, Lv C, Jiang B, Ren Q, Chen L, Yang L, Ji P, Zheng X, Hu P, Zou W. The RNA-binding protein Musashi2 governs osteoblast-adipocyte lineage commitment by suppressing PPARγ signaling. Bone Res 2022; 10:31. [PMID: 35301280 PMCID: PMC8930990 DOI: 10.1038/s41413-022-00202-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/29/2021] [Accepted: 01/08/2022] [Indexed: 11/12/2022] Open
Abstract
Osteoporosis caused by aging is characterized by reduced bone mass and accumulated adipocytes in the bone marrow cavity. How the balance between osteoblastogenesis and adipogenesis from bone marrow mesenchymal stem cells (BMSCs) is lost upon aging is still unclear. Here, we found that the RNA-binding protein Musashi2 (Msi2) regulates BMSC lineage commitment. Msi2 is commonly enriched in stem cells and tumor cells. We found that its expression was downregulated during adipogenic differentiation and upregulated during osteogenic differentiation of BMSCs. Msi2 knockout mice exhibited decreased bone mass with substantial accumulation of marrow adipocytes, similar to aging-induced osteoporosis. Depletion of Msi2 in BMSCs led to increased adipocyte commitment. Transcriptional profiling analysis revealed that Msi2 deficiency led to increased PPARγ signaling. RNA-interacting protein immunoprecipitation assays demonstrated that Msi2 could inhibit the translation of the key adipogenic factor Cebpα, thereby inhibiting PPAR signaling. Furthermore, the expression of Msi2 decreased significantly during the aging process of mice, indicating that decreased Msi2 function during aging contributes to abnormal accumulation of adipocytes in bone marrow and osteoporosis. Thus, our results provide a putative biochemical mechanism for aging-related osteoporosis, suggesting that modulating Msi2 function may benefit the treatment of bone aging.
Collapse
Affiliation(s)
- Jinlong Suo
- Department of Orthopedic Surgery and Institute of Microsurgery on Extremities, Shanghai Jiaotong University Affiliated Sixth People's Hospital, 200233, Shanghai, China
| | - Sihai Zou
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, 401147, Chongqing, China
| | - Jinghui Wang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200031, Shanghai, China
| | - Yujiao Han
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200031, Shanghai, China
| | - Lingli Zhang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200031, Shanghai, China
| | - Chenchen Lv
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200031, Shanghai, China
| | - Bo Jiang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200031, Shanghai, China
| | - Qian Ren
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200031, Shanghai, China
| | - Long Chen
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200031, Shanghai, China
| | - Lele Yang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200031, Shanghai, China
| | - Ping Ji
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, 401147, Chongqing, China
| | - Xianyou Zheng
- Department of Orthopedic Surgery and Institute of Microsurgery on Extremities, Shanghai Jiaotong University Affiliated Sixth People's Hospital, 200233, Shanghai, China.
| | - Ping Hu
- Guangzhou Laboratory, No. 9 XingDaoHuan Road, Guanghzou International Bio lsland, 510005, Guangzhou, China. .,Colorectal Cancer Center/Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, China. .,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, 100101, Beijing, China. .,Bio-Research Innovation Center, Shanghai Institute of Biochemistry and Cell Biology, Suzhou, China.
| | - Weiguo Zou
- Department of Orthopedic Surgery and Institute of Microsurgery on Extremities, Shanghai Jiaotong University Affiliated Sixth People's Hospital, 200233, Shanghai, China. .,State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200031, Shanghai, China.
| |
Collapse
|
7
|
Impact of Musashi-1 and Musashi-2 Double Knockdown on Notch Signaling and the Pathogenesis of Endometriosis. Int J Mol Sci 2022; 23:ijms23052851. [PMID: 35269992 PMCID: PMC8911246 DOI: 10.3390/ijms23052851] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/25/2022] [Accepted: 03/02/2022] [Indexed: 12/12/2022] Open
Abstract
The stem cell marker and RNA-binding protein Musashi-1 is overexpressed in endometriosis. Musashi-1-siRNA knockdown in Ishikawa cells altered the expression of stem cell related genes, such as OCT-4. To investigate the role of both human Musashi homologues (MSI-1 and MSI-2) in the pathogenesis of endometriosis, immortalized endometriotic 12-Z cells and primary endometriotic stroma cells were treated with Musashi-1- and Musashi-2-siRNA. Subsequently, the impact on cell proliferation, cell apoptosis, cell necrosis, spheroid formation, stem cell phenotype and the Notch signaling pathway was studied in vitro. Using the ENDOMET Turku Endometriosis database, the gene expression of stem cell markers and Notch signaling pathway constituents were analyzed according to localization of the endometriosis lesions. The database analysis demonstrated that expression of Musashi and Notch pathway-related genes are dysregulated in patients with endometriosis. Musashi-1/2-double-knockdown increased apoptosis and necrosis and reduced stem cell gene expression, cell proliferation, and the formation of spheroids. Musashi silencing increased the expression of the anti-proliferation mediator p21. Our findings suggest the therapeutic potential of targeting the Musashi–Notch axis. We conclude that the Musashi genes have an impact on Notch signaling and the pathogenesis of endometriosis through the downregulation of proliferation, stemness characteristics and the upregulation of apoptosis, necrosis and of the cell cycle regulator p21.
Collapse
|
8
|
Abstract
RNA-binding proteins (RBPs) are of fundamental importance for post-transcriptional gene regulation and protein synthesis. They are required for pre-mRNA processing and for RNA transport, degradation and translation into protein, and can regulate every step in the life cycle of their RNA targets. In addition, RBP function can be modulated by RNA binding. RBPs also participate in the formation of ribonucleoprotein complexes that build up macromolecular machineries such as the ribosome and spliceosome. Although most research has focused on mRNA-binding proteins, non-coding RNAs are also regulated and sequestered by RBPs. Functional defects and changes in the expression levels of RBPs have been implicated in numerous diseases, including neurological disorders, muscular atrophy and cancers. RBPs also contribute to a wide spectrum of kidney disorders. For example, human antigen R has been reported to have a renoprotective function in acute kidney injury (AKI) but might also contribute to the development of glomerulosclerosis, tubulointerstitial fibrosis and diabetic kidney disease (DKD), loss of bicaudal C is associated with cystic kidney diseases and Y-box binding protein 1 has been implicated in the pathogenesis of AKI, DKD and glomerular disorders. Increasing data suggest that the modulation of RBPs and their interactions with RNA targets could be promising therapeutic strategies for kidney diseases.
Collapse
|
9
|
The RNA-Binding Protein Musashi1 Regulates a Network of Cell Cycle Genes in Group 4 Medulloblastoma. Cells 2021; 11:cells11010056. [PMID: 35011618 PMCID: PMC8750343 DOI: 10.3390/cells11010056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 11/17/2022] Open
Abstract
Medulloblastoma is the most common malignant brain tumor in children. Treatment with surgery, irradiation, and chemotherapy has improved survival in recent years, but patients are frequently left with devastating neurocognitive and other sequelae. Patients in molecular subgroups 3 and 4 still experience a high mortality rate. To identify new pathways contributing to medulloblastoma development and create new routes for therapy, we have been studying oncogenic RNA-binding proteins. We defined Musashi1 (Msi1) as one of the main drivers of medulloblastoma development. The high expression of Msi1 is prevalent in Group 4 and correlates with poor prognosis while its knockdown disrupted cancer-relevant phenotypes. Genomic analyses (RNA-seq and RIP-seq) indicated that cell cycle and division are the main biological categories regulated by Msi1 in Group 4 medulloblastoma. The most prominent Msi1 targets include CDK2, CDK6, CCND1, CDKN2A, and CCNA1. The inhibition of Msi1 with luteolin affected the growth of CHLA-01 and CHLA-01R Group 4 medulloblastoma cells and a synergistic effect was observed when luteolin and the mitosis inhibitor, vincristine, were combined. These findings indicate that a combined therapeutic strategy (Msi1 + cell cycle/division inhibitors) could work as an alternative to treat Group 4 medulloblastoma.
Collapse
|
10
|
Landínez-Macías M, Urwyler O. The Fine Art of Writing a Message: RNA Metabolism in the Shaping and Remodeling of the Nervous System. Front Mol Neurosci 2021; 14:755686. [PMID: 34916907 PMCID: PMC8670310 DOI: 10.3389/fnmol.2021.755686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/18/2021] [Indexed: 01/25/2023] Open
Abstract
Neuronal morphogenesis, integration into circuits, and remodeling of synaptic connections occur in temporally and spatially defined steps. Accordingly, the expression of proteins and specific protein isoforms that contribute to these processes must be controlled quantitatively in time and space. A wide variety of post-transcriptional regulatory mechanisms, which act on pre-mRNA and mRNA molecules contribute to this control. They are thereby critically involved in physiological and pathophysiological nervous system development, function, and maintenance. Here, we review recent findings on how mRNA metabolism contributes to neuronal development, from neural stem cell maintenance to synapse specification, with a particular focus on axon growth, guidance, branching, and synapse formation. We emphasize the role of RNA-binding proteins, and highlight their emerging roles in the poorly understood molecular processes of RNA editing, alternative polyadenylation, and temporal control of splicing, while also discussing alternative splicing, RNA localization, and local translation. We illustrate with the example of the evolutionary conserved Musashi protein family how individual RNA-binding proteins are, on the one hand, acting in different processes of RNA metabolism, and, on the other hand, impacting multiple steps in neuronal development and circuit formation. Finally, we provide links to diseases that have been associated with the malfunction of RNA-binding proteins and disrupted post-transcriptional regulation.
Collapse
Affiliation(s)
- María Landínez-Macías
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland.,Molecular Life Sciences Program, Life Science Zurich Graduate School, University of Zurich and Eidgenössische Technische Hochschule (ETH) Zurich, Zurich, Switzerland
| | - Olivier Urwyler
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland.,Molecular Life Sciences Program, Life Science Zurich Graduate School, University of Zurich and Eidgenössische Technische Hochschule (ETH) Zurich, Zurich, Switzerland.,Neuroscience Center Zurich (ZNZ), University of Zurich, Zurich, Switzerland
| |
Collapse
|
11
|
Veronez LC, das Chagas PF, Corrêa CAP, Baroni M, da Silva KR, Nagano LF, Borges KS, Queiroz RGP, Tone LG, Scrideli CA. MSI2 expression in adrenocortical carcinoma: Association with unfavorable prognosis and correlation with steroid and immune-related pathways. J Cell Biochem 2021; 122:1925-1935. [PMID: 34581457 DOI: 10.1002/jcb.30153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/23/2021] [Accepted: 09/09/2021] [Indexed: 11/06/2022]
Abstract
Adrenocortical carcinoma (ACC) is a rare, but highly aggressive cancer of the adrenal cortex with a generally poor prognosis. Despite being rare, completely resected ACCs present a high risk of recurrence. Musashi-2 (MSI2) has recently been recognized as a potential prognostic biomarker and therapeutic target in many cancers. However, no studies have evaluated the clinical significance of MSI2 expression in ACC. Here, we addressed MSI2 expression and its association with ACC prognosis and clinicopathological parameters. MSI2 expression was analyzed in TCGA, GSE12368, GSE33371, and GSE49278 ACC datasets; and its correlation with other genes and immune cell infiltration were investigated by using the R2: Genomics Analysis and Visualization Platform and TIMER databases, respectively. Enrichment analysis was performed with the DAVID Functional Annotation Tool. Kaplan-Meier curves, log-rank tests, and Cox regression analyses were used to explore the prognostic role of MSI2 in ACC. Our findings demonstrated the potential value of MSI2 overexpression as an independent predictor of poor prognosis in patients with completely resected ACC (hazard ratio 6.715, 95% confidence interval 1.266 - 35.620, p =.025). In addition, MSI2 overexpression was associated with characteristics of unfavorable prognosis, such as cortisol excess (p = .002), recurrence (p =.003), and death (p =.015); positively correlated with genes related to steroid biosynthesis (p < .05); and negatively correlated with immune-related pathways (p < .05). Our findings demonstrate that MSI2 has value as a prognostic marker for completely resected ACC and reinforce the investigation of its role as a possible therapeutic target for patients with ACC.
Collapse
Affiliation(s)
- Luciana C Veronez
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Pablo F das Chagas
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Carolina A P Corrêa
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Mirella Baroni
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Keteryne R da Silva
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Luis F Nagano
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Kleiton S Borges
- Division of Endocrinology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Rosane G P Queiroz
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Luiz G Tone
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Carlos A Scrideli
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
12
|
Qu C, He L, Yao N, Li J, Jiang Y, Li B, Peng S, Hu K, Chen D, Chen G, Huang W, Cao M, Fan J, Yuan Y, Ye W, Hong J. Myofibroblast-Specific Msi2 Knockout Inhibits HCC Progression in a Mouse Model. Hepatology 2021; 74:458-473. [PMID: 33609283 DOI: 10.1002/hep.31754] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/31/2020] [Accepted: 01/11/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND AND AIMS Myofibroblasts play a pivotal role in the development and progression of HCC. Here, we aimed to explore the role and mechanism of myofibroblast Musashi RNA binding protein 2 (MSI2) in HCC progression. APPROACH AND RESULTS Myofibroblast infiltration and collagen deposition were detected and assessed in the tissues from 117 patients with HCC. Transgenic mice (Msi2ΔCol1a1 ) with floxed Msi2 allele and collagen type I alpha 1 chain (Col1a1)-ligand inducible Cre recombinases (CreER) were constructed to generate a myofibroblast-specific Msi2 knockout model. Mouse HCC cells were orthotopically transplanted into the Msi2ΔCol1a1 or the control mice (Msi2F/F ). We found that the deposition of collagen fibers, the main product of myofibroblasts, predicted a poor prognosis for HCC; meanwhile, we detected high MSI2 expression in the peritumoral infiltrated myofibroblasts. Conditional deletion of Msi2 in myofibroblasts significantly inhibited the growth of orthotopically implanted HCC, reduced both intrahepatic and lung metastasis, and prolonged the overall survival of tumor-bearing mice (P = 0.002). In vitro analysis demonstrated that myofibroblasts promoted cell proliferation, invasion, and epithelial-mesenchymal transformation of HCC cells, whereas Msi2 deletion in myofibroblasts reversed these effects. Mechanically, Msi2 knockout decreased myofibroblast-derived IL-6 and IL-11 secretion by inhibiting the extracellular signal-regulated kinase 1/2 pathway, and thus attenuated the cancer stem cell-promoting effect of myofibroblasts. Interestingly, we found that the simultaneous knockout of Msi2 in myofibroblasts and knockdown of Msi2 in HCC cells could not further attenuate the implanted HCC progression. CONCLUSIONS Myofibroblast-specific Msi2 knockout abrogated the tumor-promoting function of myofibroblasts and inhibited HCC progression in mouse models. Targeting myofibroblast MSI2 expression may therefore prove to be a therapeutic strategy for HCC treatment in the future.
Collapse
Affiliation(s)
- Chen Qu
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, China
| | - Lu He
- Department of Radiotherapy, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Nan Yao
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Jinying Li
- Department of Gastroenterology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yuchuan Jiang
- Department of Hepatological Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Binkui Li
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Shuang Peng
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, China
| | - Kunpeng Hu
- Department of General Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Dong Chen
- Department of Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Guo Chen
- Department of Biochemistry, School of Medicine, Jinan University, Guangzhou, China
| | - Wei Huang
- Department of Gastroenterology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Mingrong Cao
- Department of Hepatological Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Jun Fan
- Department of Biochemistry, School of Medicine, Jinan University, Guangzhou, China
| | - Yunfei Yuan
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wencai Ye
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Jian Hong
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, China
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
- Department of Hepatological Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|