1
|
Zhong Y, He JW, Huang CX, Lai HZ, Li XK, Zheng C, Fu X, You FM, Ma Q. The NcRNA/Wnt axis in lung cancer: oncogenic mechanisms, remarkable indicators and therapeutic targets. J Transl Med 2025; 23:326. [PMID: 40087753 PMCID: PMC11907837 DOI: 10.1186/s12967-025-06326-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 02/27/2025] [Indexed: 03/17/2025] Open
Abstract
Early diagnosis of lung cancer (LC) is challenging, treatment options are limited, and treatment resistance leads to poor prognosis and management in most patients. The Wnt/β-catenin signaling pathway plays a vital role in the occurrence, progression, and therapeutic response of LC. Recent studies indicate that non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs) function as epigenetic regulators that can promote or inhibit Wnt/β-catenin signaling by interacting with Wnt proteins, receptors, signaling transducers, and transcriptional effectors, thereby affecting LC cell proliferation, metastasis, invasion, and treatment resistance. Deepening our understanding of the regulatory network between ncRNAs and the Wnt/β-catenin signaling pathway will help overcome the limitations of current LC diagnosis and treatment methods. This article comprehensively reviews the regulatory mechanisms related to the functions of ncRNAs and the Wnt/β-catenin pathway in LC, examining their potential as diagnostic and prognostic biomarkers and therapeutic targets, aiming to offer new promising perspectives for LC diagnosis and treatment.
Collapse
Affiliation(s)
- Yang Zhong
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 610072, China
| | - Jia-Wei He
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 610072, China
| | - Chun-Xia Huang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 610072, China
| | - Heng-Zhou Lai
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 610072, China
| | - Xue-Ke Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 610072, China
| | - Chuan Zheng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 610072, China.
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 610072, China.
| | - Xi Fu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 610072, China.
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 610072, China.
| | - Feng-Ming You
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 610072, China.
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 610072, China.
| | - Qiong Ma
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 610072, China.
| |
Collapse
|
2
|
Li H, Wu F, Han Y, Guo Z, Chen T, Ma Z. CircRNA regulates lung cancer metastasis. Gene 2025; 935:149060. [PMID: 39481770 DOI: 10.1016/j.gene.2024.149060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/11/2024] [Accepted: 10/28/2024] [Indexed: 11/02/2024]
Abstract
Lung cancer stands prominently among the foremost contributors to human mortality, distinguished by its elevated fatality rate and the second-highest incidence rate among malignancies. The metastatic dissemination of lung cancer stands as a primary determinant of its elevated mortality and recurrence rates, underscoring the imperative for comprehensive investigation into its metastatic pathways. Circular RNAs (circRNAs), a subclass of non-coding RNA (ncRNA) molecules, have garnered attention for their pivotal involvement in the genesis and advancement of lung cancer. Emerging evidence highlights the indispensable functions of circRNAs in orchestrating the metastatic cascade of lung cancer. This review primarily discusses the mechanisms by which circRNAs act as competitive endogenous RNAs (ceRNAs) and modulate various signaling pathways to regulate lung cancer metastasis. CircRNAs influence critical cellular processes including angiogenesis, autophagy, and glycolysis, thereby exerting influence over the metastatic cascade in lung cancer. These discoveries offer innovative perspectives and therapeutic avenues for the diagnosis and management of lung cancer.
Collapse
Affiliation(s)
- Han Li
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, 381 Nanchen Road, Shanghai 200444, China
| | - Fan Wu
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, 381 Nanchen Road, Shanghai 200444, China
| | - Yaqi Han
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, 381 Nanchen Road, Shanghai 200444, China
| | - Ziyi Guo
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, 381 Nanchen Road, Shanghai 200444, China
| | - Tangbing Chen
- Department of Thoracic Surgery, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China.
| | - Zhongliang Ma
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, 381 Nanchen Road, Shanghai 200444, China.
| |
Collapse
|
3
|
Zhang Z, Westover D, Tang Z, Liu Y, Sun J, Sun Y, Zhang R, Wang X, Zhou S, Hesilaiti N, Xia Q, Du Z. Wnt/β-catenin signaling in the development and therapeutic resistance of non-small cell lung cancer. J Transl Med 2024; 22:565. [PMID: 38872189 PMCID: PMC11170811 DOI: 10.1186/s12967-024-05380-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024] Open
Abstract
Wnt/β-catenin signaling is a critical pathway that influences development and therapeutic response of non-small cell lung cancer (NSCLC). In recent years, many Wnt regulators, including proteins, miRNAs, lncRNAs, and circRNAs, have been found to promote or inhibit signaling by acting on Wnt proteins, receptors, signal transducers and transcriptional effectors. The identification of these regulators and their underlying molecular mechanisms provides important implications for how to target this pathway therapeutically. In this review, we summarize recent studies of Wnt regulators in the development and therapeutic response of NSCLC.
Collapse
Affiliation(s)
- Zixu Zhang
- Department of Genetic and Developmental Biology, School of Medicine, Southeast University, Nanjing, 210003, China
| | - David Westover
- High-Throughput Analytics, Analytical Research and Development, Merck & Co. Inc., Rahway, NJ, USA
| | - Zhantong Tang
- Department of Genetic and Developmental Biology, School of Medicine, Southeast University, Nanjing, 210003, China
| | - Yue Liu
- Department of Genetic and Developmental Biology, School of Medicine, Southeast University, Nanjing, 210003, China
| | - Jinghan Sun
- School of Life Science and Technology, Southeast University, Nanjing, 210018, China
| | - Yunxi Sun
- Department of Genetic and Developmental Biology, School of Medicine, Southeast University, Nanjing, 210003, China
| | - Runqing Zhang
- Department of Genetic and Developmental Biology, School of Medicine, Southeast University, Nanjing, 210003, China
| | - Xingyue Wang
- Department of Genetic and Developmental Biology, School of Medicine, Southeast University, Nanjing, 210003, China
| | - Shihui Zhou
- Department of Genetic and Developmental Biology, School of Medicine, Southeast University, Nanjing, 210003, China
| | - Nigaerayi Hesilaiti
- Department of Genetic and Developmental Biology, School of Medicine, Southeast University, Nanjing, 210003, China
| | - Qi Xia
- Department of Genetic and Developmental Biology, School of Medicine, Southeast University, Nanjing, 210003, China
| | - Zhenfang Du
- Department of Genetic and Developmental Biology, School of Medicine, Southeast University, Nanjing, 210003, China.
| |
Collapse
|
4
|
Chu A, Sun C, Liu Z, Liu S, Li M, Song R, Gan L, Wang Y, Fan R. Circ-POSTN promotes the progression and reduces radiosensitivity in esophageal cancer by regulating the miR-876-5p/FYN axis. Thorac Cancer 2024; 15:1082-1094. [PMID: 38553795 PMCID: PMC11062886 DOI: 10.1111/1759-7714.15273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/19/2024] [Accepted: 02/22/2024] [Indexed: 05/03/2024] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) play critical roles in the tumorigenesis and radiosensitivity of multiple cancers. Nevertheless, the biological functions of circRNA periostin (circ-POSTN) in esophageal cancer (EC) progression and radiosensitivity have not been well elucidated. METHODS The expression of circ-POSTN, microRNA-876-5p (miR-876-5p), and proto-oncogene tyrosine-protein kinase (FYN) was analyzed by quantitative reverse transcription PCR (RT-qPCR). Cell proliferation was assessed by MTT, colony formation, and 5-ethynyl-2'-deoxyuridine (EDU) assays. All protein levels were detected by western blot assay. Cell apoptosis and invasion were assessed by flow cytometry analysis and transwell assay, respectively. Dual-luciferase reporter and RNA immunoprecipitation (RIP) assays were used to validate the interaction between miR-876-5p and circ-POSTN or FYN. The role of circ-POSTN in vivo was explored by establishing mice xenograft model. RESULTS Circ-POSTN was overexpressed in EC tissues and cells. Knockdown of circ-POSTN inhibited cell proliferation and invasion and elevated apoptosis and radiosensitivity in EC cells. MiR-876-5p was a direct target of circ-POSTN, and its knockdown reversed the role of sh-circ-POSTN in EC cells. FYN was a direct target of miR-876-5p, and FYN elevation weakened the effects of miR-876-5p overexpression on the progression and radiosensitivity of EC cells. Moreover, circ-POSTN acted as a miR-876-5p sponge to regulate FYN expression. Circ-POSTN interference also suppressed tumor growth and enhanced radiosensitivity in vivo. CONCLUSION Circ-POSTN knockdown inhibited proliferation and invasion, but increased apoptosis and enhanced radiosensitivity in EC cells via modulating miR-876-5p/FYN axis, which might be a potential diagnostic and therapeutic target for EC.
Collapse
Affiliation(s)
- Alan Chu
- Department of Radiation OncologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Chen Sun
- Department of Radiation OncologyThe Second Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Zongwen Liu
- Department of Radiation OncologyThe Second Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Shijia Liu
- Department of Radiation OncologyThe Second Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Mengxi Li
- Department of Radiation OncologyThe Second Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Rui Song
- Department of Radiation OncologyThe Second Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Lanlan Gan
- Department of Radiation OncologyThe Second Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Yongtai Wang
- Department of Radiation OncologyThe Second Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Ruitai Fan
- Department of Radiation OncologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| |
Collapse
|
5
|
Bhat AA, Riadi Y, Afzal M, Bansal P, Kaur H, Deorari M, Ali H, Shahwan M, Almalki WH, Kazmi I, Alzarea SI, Dureja H, Singh SK, Dua K, Gupta G. Exploring ncRNA-mediated pathways in sepsis-induced pyroptosis. Pathol Res Pract 2024; 256:155224. [PMID: 38452584 DOI: 10.1016/j.prp.2024.155224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/08/2024] [Accepted: 02/21/2024] [Indexed: 03/09/2024]
Abstract
Sepsis, a potentially fatal illness caused by an improper host response to infection, remains a serious problem in the world of healthcare. In recent years, the role of ncRNA has emerged as a pivotal aspect in the intricate landscape of cellular regulation. The exploration of ncRNA-mediated regulatory networks reveals their profound influence on key molecular pathways orchestrating pyroptotic responses during septic conditions. Through a comprehensive analysis of current literature, we navigate the diverse classes of ncRNAs, including miRNAs, lncRNAs, and circRNAs, elucidating their roles as both facilitators and inhibitors in the modulation of pyroptotic processes. Furthermore, we highlight the potential diagnostic and therapeutic implications of targeting these ncRNAs in the context of sepsis, aiming to cover the method for novel and effective strategies to mitigate the devastating consequences of septic pathogenesis. As we unravel the complexities of this regulatory axis, a deeper understanding of the intricate crosstalk between ncRNAs and pyroptosis emerges, offering promising avenues for advancing our approach to sepsis intervention. The intricate pathophysiology of sepsis is examined in this review, which explores the dynamic interaction between ncRNAs and pyroptosis, a highly regulated kind of programmed cell death.
Collapse
Affiliation(s)
- Asif Ahmad Bhat
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
| | - Yassine Riadi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Pooja Bansal
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bengaluru, Karnataka 560069, India; Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan 303012, India
| | - Harpreet Kaur
- School of Basic & Applied Sciences, Shobhit University, Gangoh, Uttar Pradesh 247341, India; Department of Health & Allied Sciences, Arka Jain University, Jamshedpur, Jharkhand 831001, India
| | - Mahamedha Deorari
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; Department of Pharmacology, Kyrgyz State Medical College, Bishkek, Kyrgyzstan
| | - Moyad Shahwan
- Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman 3467, United Arab Emirates; Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, Ajman 3469, United Arab Emirates
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Aljouf 72341, Saudi Arabia
| | - Hairsh Dureja
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology, Sydney, Ultimo-NSW 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology, Sydney, Ultimo-NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology, Sydney, Ultimo-NSW 2007, Australia
| | - Gaurav Gupta
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, Ajman 3469, United Arab Emirates; School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India.
| |
Collapse
|
6
|
Meng L, Wu H, Wu J, Ding P, He J, Sang M, Liu L. Mechanisms of immune checkpoint inhibitors: insights into the regulation of circular RNAS involved in cancer hallmarks. Cell Death Dis 2024; 15:3. [PMID: 38177102 PMCID: PMC10766988 DOI: 10.1038/s41419-023-06389-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 01/06/2024]
Abstract
Current treatment strategies for cancer, especially advanced cancer, are limited and unsatisfactory. One of the most substantial advances in cancer therapy, in the last decades, was the discovery of a new layer of immunotherapy approach, immune checkpoint inhibitors (ICIs), which can specifically activate immune cells by targeting immune checkpoints. Immune checkpoints are a type of immunosuppressive molecules expressed on immune cells, which can regulate the degree of immune activation and avoid autoimmune responses. ICIs, such as anti-PD-1/PD-L1 drugs, has shown inspiring efficacy and broad applicability across various cancers. Unfortunately, not all cancer patients benefit remarkably from ICIs, and the overall response rates to ICIs remain relatively low for most cancer types. Moreover, the primary and acquired resistance to ICIs pose serious challenges to the clinical application of cancer immunotherapy. Thus, a deeper understanding of the molecular biological properties and regulatory mechanisms of immune checkpoints is urgently needed to improve clinical options for current therapies. Recently, circular RNAs (circRNAs) have attracted increasing attention, not only due to their involvement in various aspects of cancer hallmarks, but also for their impact on immune checkpoints in shaping the tumor immune microenvironment. In this review, we systematically summarize the current status of immune checkpoints in cancer and the existing regulatory roles of circRNAs on immune checkpoints. Meanwhile, we also aim to settle the issue in an evidence-oriented manner that circRNAs involved in cancer hallmarks regulate the effects and resistance of ICIs by targeting immune checkpoints.
Collapse
Affiliation(s)
- Lingjiao Meng
- Department of Tumor Immunotherapy, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050035, China
- Research Center and Tumor Research Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Haotian Wu
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050011, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, 050011, China
| | - Jiaxiang Wu
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050011, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, 050011, China
| | - Ping'an Ding
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050011, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, 050011, China
| | - Jinchen He
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050011, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, 050011, China
| | - Meixiang Sang
- Research Center and Tumor Research Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050017, China.
- Science and Education Department, Shanghai Electric Power Hospital, Shanghai, 20050, China.
| | - Lihua Liu
- Department of Tumor Immunotherapy, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050035, China.
| |
Collapse
|
7
|
Rengganaten V, Huang CJ, Wang ML, Chien Y, Tsai PH, Lan YT, Ong HT, Chiou SH, Choo KB. Circular RNA ZNF800 (hsa_circ_0082096) regulates cancer stem cell properties and tumor growth in colorectal cancer. BMC Cancer 2023; 23:1088. [PMID: 37950151 PMCID: PMC10636831 DOI: 10.1186/s12885-023-11571-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 10/26/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND Cancer stem cells form a rare cell population in tumors that contributes to metastasis, recurrence and chemoresistance in cancer patients. Circular RNAs (circRNAs) are post-transcriptional regulators of gene expression that sponge targeted microRNA (miRNAs) to affect a multitude of downstream cellular processes. We previously showed in an expression profiling study that circZNF800 (hsa_circ_0082096) was up-regulated in cancer stem cell-enriched spheroids derived from colorectal cancer (CRC) cell lines. METHODS Spheroids were generated in suspension spheroidal culture. The ZNF800 mRNA, pluripotency stem cell markers and circZNF800 levels were determined by quantitative RT-PCR. CircZNF800-miRNA interactions were shown in RNA pulldown assays and the miRNA levels determined by stem-loop qRT-PCR. The effects of circZNF800 on cell proliferation were tested by EdU staining followed by flowcytometry. Expression of stem cell markers CD44/CD133, Lgr5 and SOX9 was demonstrated in immunofluorescence microscopy. To manipulate the cellular levels of circZNF800, circZNF800 over-expression was achieved via transfection of in vitro synthesized and circularized circZNF800, and knockdown attained using a CRISPR-Cas13d-circZNF800 vector system. Xenografted nude mice were used to demonstrate effects of circZNF800 over-expression and knockdown on tumor growth in vivo. RESULTS CircZNF800 was shown to be over-expressed in late-stage tumor tissues of CRC patients. Data showed that circZNF800 impeded expression of miR-140-3p, miR-382-5p and miR-579-3p while promoted the mRNA levels of ALK/ACVR1C, FZD3 and WNT5A targeted by the miRNAs, as supported by alignments of seed sequences between the circZNF800-miRNA, and miRNA-mRNA paired interactions. Analysis in CRC cells and biopsied tissues showed that circZNF800 positively regulated the expression of intestinal stem cell, pluripotency and cancer stem cell markers, and promoted CRC cell proliferation, spheroid and colony formation in vitro, all of which are cancer stem cell properties. In xenografted mice, circZNF800 over-expression promoted tumor growth, while circZNF800 knockdown via administration of CRISPR Cas13d-circZNF800 viral particles at the CRC tumor sites impeded tumor growth. CONCLUSIONS CircZNF800 is an oncogenic factor that regulate cancer stem cell properties to lead colorectal tumorigenesis, and may be used as a predictive marker for tumor progression and the CRISPR Cas13d-circZNF800 knockdown strategy for therapeutic intervention of colorectal cancer.
Collapse
Affiliation(s)
- Vimalan Rengganaten
- Centre for Stem Cell Research, Universiti Tunku Abdul Rahman, 43000, Kajang, Selangor, Malaysia
- Postgraduate Program, M. Kandiah Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, 43000, Kajang, Malaysia
- Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - Chiu-Jung Huang
- Department of Animal Science & Graduate Institute of Biotechnology, Chinese Culture University, Taipei, 11221, Taiwan
| | - Mong-Lien Wang
- Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, 11221, Taiwan
- Institute of Food Safety and Health Risk Assessment, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - Yueh Chien
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, 11221, Taiwan
| | - Ping-Hsing Tsai
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, 11221, Taiwan
| | - Yuan-Tzu Lan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
- Division of Colon & Rectal Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, 11221, Taiwan
| | - Hooi Tin Ong
- Centre for Cancer Research, Universiti Tunku Abdul Rahman, 43000, Kajang, Selangor, Malaysia
- Department of Preclinical Sciences, M. Kandiah Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Sg Long, 43000, Kajang, Selangor, Malaysia
| | - Shih-Hwa Chiou
- Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan.
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan.
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, 11221, Taiwan.
| | - Kong Bung Choo
- Centre for Stem Cell Research, Universiti Tunku Abdul Rahman, 43000, Kajang, Selangor, Malaysia.
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, 11221, Taiwan.
- Department of Preclinical Sciences, M. Kandiah Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Sg Long, 43000, Kajang, Selangor, Malaysia.
| |
Collapse
|
8
|
Xue W, Cai L, Li S, Hou Y, Wang YD, Yang D, Xia Y, Nie X. WNT ligands in non-small cell lung cancer: from pathogenesis to clinical practice. Discov Oncol 2023; 14:136. [PMID: 37486552 PMCID: PMC10366069 DOI: 10.1007/s12672-023-00739-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/26/2023] [Indexed: 07/25/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) is the malignant tumor with the highest morbidity and leading cause of death worldwide, whereas its pathogenesis has not been fully elucidated. Although mutations in some crucial genes in WNT pathways such as β-catenin and APC are not common in NSCLC, the abnormal signal transduction of WNT pathways is still closely related to the occurrence and progression of NSCLC. WNT ligands (WNTs) are a class of secreted glycoproteins that activate WNT pathways through binding to their receptors and play important regulatory roles in embryonic development, cell differentiation, and tissue regeneration. Therefore, the abnormal expression or dysfunction of WNTs undoubtedly affects WNT pathways and thus participates in the pathogenesis of diseases. There are 19 members of human WNTs, WNT1, WNT2, WNT2b, WNT3, WNT3a, WNT4, WNT5a, WNT5b, WNT6, WNT7a, WNT7b, WNT8a, WNT8b, WNT9a, WNT9b, WNT10a, WNT10b, WNT11 and WNT16. The expression levels of WNTs, binding receptors, and activated WNT pathways are diverse in different tissue types, which endows the complexity of WNT pathways and multifarious biological effects. Although abundant studies have reported the role of WNTs in the pathogenesis of NSCLC, it still needs further study as therapeutic targets for lung cancer. This review will systematically summarize current research on human WNTs in NSCLC, from molecular pathogenesis to potential clinical practice.
Collapse
Affiliation(s)
- Wanting Xue
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences, Hebi Key Laboratory of Liver Disease, People's Hospital of Hebi, Henan University, Kaifeng, Hebi, China
| | - Lihong Cai
- Kaifeng Key Laboratory of Radiation Oncology, Kaifeng Cancer Hospital, Kaifeng University, Kaifeng, 475003, China
| | - Su Li
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences, Hebi Key Laboratory of Liver Disease, People's Hospital of Hebi, Henan University, Kaifeng, Hebi, China
| | - Yujia Hou
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences, Hebi Key Laboratory of Liver Disease, People's Hospital of Hebi, Henan University, Kaifeng, Hebi, China
| | - Yan-Dong Wang
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Dongbin Yang
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences, Hebi Key Laboratory of Liver Disease, People's Hospital of Hebi, Henan University, Kaifeng, Hebi, China.
- Hebi Key Laboratory of Liver Disease, People's Hospital of Hebi, Henan University, Hebi, 458030, China.
| | - Yubing Xia
- Kaifeng Key Laboratory of Radiation Oncology, Kaifeng Cancer Hospital, Kaifeng University, Kaifeng, 475003, China.
| | - Xiaobo Nie
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences, Hebi Key Laboratory of Liver Disease, People's Hospital of Hebi, Henan University, Kaifeng, Hebi, China.
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
9
|
Kiełbowski K, Ptaszyński K, Wójcik J, Wojtyś ME. The role of selected non-coding RNAs in the biology of non-small cell lung cancer. Adv Med Sci 2023; 68:121-137. [PMID: 36933328 DOI: 10.1016/j.advms.2023.02.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 11/26/2022] [Accepted: 02/27/2023] [Indexed: 03/18/2023]
Abstract
Lung cancer is the second most frequently diagnosed cancer worldwide and a leading cause of cancer-related deaths. Non-small cell lung carcinoma (NSCLC) represents 85% of all cases. Accumulating evidence highlights the outstanding role of non-coding RNA (ncRNA) in regulating the tumorigenesis process by modulating crucial signaling pathways. Micro RNA (miRNA), long non-coding RNA (lncRNA) and circular RNA (circRNA) are either up- or downregulated in lung cancer patients and can promote or suppress the progression of the disease. These molecules interact with messenger RNA (mRNA) and with each other to regulate gene expression and stimulate proto-oncogenes or silence tumor suppressors. NcRNAs provide a new strategy to diagnose or treat lung cancer patients and multiple molecules have already been identified as potential biomarkers or therapeutic targets. The aim of this review is to summarize the current evidence on the roles of miRNA, lncRNA and circRNA in NSCLC biology and present their clinical potential.
Collapse
Affiliation(s)
- Kajetan Kiełbowski
- Department of Thoracic Surgery and Transplantation, Pomeranian Medical University, Szczecin, Poland
| | - Konrad Ptaszyński
- Department of Pathology, Faculty of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Poland
| | - Janusz Wójcik
- Department of Thoracic Surgery and Transplantation, Pomeranian Medical University, Szczecin, Poland
| | - Małgorzata Edyta Wojtyś
- Department of Thoracic Surgery and Transplantation, Pomeranian Medical University, Szczecin, Poland.
| |
Collapse
|
10
|
miR-4757-3p Inhibited the Migration and Invasion of Lung Cancer Cell via Targeting Wnt Signaling Pathway. JOURNAL OF ONCOLOGY 2023; 2023:6544042. [PMID: 36814555 PMCID: PMC9940952 DOI: 10.1155/2023/6544042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/13/2022] [Accepted: 11/24/2022] [Indexed: 02/17/2023]
Abstract
Lung cancer accounts for the vast majority of cancer-related deaths worldwide, and aberrant miRNA expression is commonly observed as the disease progresses. The current study aimed to determine the role of miR-4757-3p in the development of lung cancer. The real-time PCR test was performed to determine the expression of miR-4757-3p in lung cancer cell lines. miR-4757-3p was downregulated in A549 cells. CCK8 and transwell assays demonstrated that overexpression of miR-4757-3p significantly reduced A549 cell invasion and migration. Bioinformatic analysis by the TargetScan database predicted the possible targets of miR-4757-3p. A luciferase activity test was used to determine the direct relationship between miR-4757-3p, Wnt5a, and Wnt8b. The overexpression of miR-4757-3p drastically inhibited the expression of Wnt5a and Wnt8b. Furthermore, we discovered that silencing Wnt5a and Wnt8b significantly lowered β-catenin expression and hampered invasion and migration. Finally, miR-4757-3p inhibited lung cancer cell migration and invasion by inhibiting the activation of the Wnt signaling pathway. Our study provided evidence that miR-4757-3p could be developed as an indicator or an anticancer target in the clinical application.
Collapse
|
11
|
Chen H, Xu Z, Wang Y, Xu J, He K, Wang H, Bai X, Xiang G. CircVAPA contributes to hyper-proliferation and inflammation of keratinocytes through miR-125b-5p/sirt6 axis in psoriasis. Int Immunopharmacol 2023; 115:109632. [PMID: 36592530 DOI: 10.1016/j.intimp.2022.109632] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/14/2022] [Accepted: 12/20/2022] [Indexed: 01/01/2023]
Abstract
Psoriasis is an autoimmune skin disease with abnormal keratinocyte hyperproliferation. The important roles of circular RNAs (circRNAs) in various inflammatory diseases have been revealed. The present study aimed to investigate the roles of circVAPA and its molecular mechanisms in psoriasis. Quantitative real-time polymerase chain reaction was performed to measure the RNA expression. Enzyme-linked immunosorbent assays were employed to examine the production of inflammatory factors. Cell-counting kit-8, EDU and flow cytometry assay were conducted to examine the cell viability, proliferation and apoptosis respectively. Dual-luciferase reporter assay and ribonucleoprotein immunoprecipitation (RIP) were conducted to verify the target relationship between miR-125b-5p and circVAPA or Sirt6. Herein our findings showed increased expression of circVAPA and Sirt6 and decreased level of miR-125b-5p in psoriatic lesional tissues and M5-stimulated keratinocytes. Mechanistically, circVAPA knockdown significantly suppressed the promotion of M5 on cell viability, proliferation, and inflammation of HaCaT cells. circVAPA was verified to interact with miR-125b-5p, while inhibition of miR-125b-5p counteracted circVAPA knockdown-mediated effects in M5-stimulated HaCaT cells. Sirt6 was confirmed as a target of miR-125b-5p, and miR-125b-5p overexpression inhibited cell growth and inflammation partly by targeting Sirt6 in M5-stimulated HaCaT cells. Moreover, circVAPA was featured as a competing endogenous RNA by directly sponging miR-125b-5p to up-regulate the expression of Sirt6. CircVAPA participate in the progression of psoriasis through miR-125b-5p/sirt6 axis by regulating proliferation and inflammation of keratinocytes, highlighting a potential therapeutic target for psoriasis.
Collapse
Affiliation(s)
- Hongdong Chen
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China; Department of General Surgery, Guangdong Second Provincial General Hospital, Guangzhou 510317, Guangdong, China
| | - Zhenjie Xu
- Jianjiyue Biomedical Research Center, Xi'an 710016, Shaanxi, China
| | - Yuan Wang
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi, China
| | - Jianguo Xu
- Department of General Surgery, Heyuan People's Hospital, Heyuan 517001, Guangdong, China
| | - Ke He
- Department of General Surgery, Guangdong Second Provincial General Hospital, Guangzhou 510317, Guangdong, China
| | - Hui Wang
- Jianjiyue Biomedical Research Center, Xi'an 710016, Shaanxi, China
| | - Xiaochun Bai
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China.
| | - Guoan Xiang
- Department of General Surgery, Guangdong Second Provincial General Hospital, Guangzhou 510317, Guangdong, China.
| |
Collapse
|
12
|
Yu W, Ning K, Bai Q, Xiao J. Circ_0001686 knockdown suppresses tumorigenesis and enhances radiosensitivity in esophagus cancer through regulating miR-876-5p/SPIN1 axis. Pathol Res Pract 2023; 241:154216. [PMID: 36459832 DOI: 10.1016/j.prp.2022.154216] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 08/10/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022]
Abstract
BACKGROUND Abnormal expression of circular RNAs (circRNAs) plays an important role in tumorigenesis and radiosensitivity of many cancers. Nevertheless, it is not clear whether circ_0001686 is associated with the development and radiosensitivity of esophagus cancer. METHODS Quantitative real-time polymerase chain reaction (qRT-PCR) was used to detect the expression levels of circ_0001686, microRNA-876-5p (miR-876-5p) and spindlin 1 (SPIN1). Counting Kit-8 (CCK-8) assay, EdU assay, flow cytometry and transwell assay were applied to evaluate cell viability, cell proliferation, cell apoptosis and cell invasion capacities. Radiosensitivity was monitored by colony formation assay. The target relationship between miR-876-5p and circ_0001686 or SPIN1 was identified by dual-luciferase reporter assay. The protein level of SPIN1 was measured by western blot assay. Xenograft tumor models were used to analyze the influence of circ_0001686 on radiosensitivity and tumor growth in vivo. RESULTS The expression levels of circ_0001686 and SPIN1 were increased, while miR-876-5p was decreased in esophagus cancer tissues and cells. Interference of circ_0001686 constrained cell proliferation and invasion, but promoted cell apoptosis and radiosensitivity. Additionally, miR-876-5p was the target of circ_0001686 and miR-876-5p inhibition effectively ameliorated the impacts of circ_0001686 deficiency on tumorigenesis and radiosensitivity. Moreover, SPIN1 was a direct target of miR-876-5p and SPIN1 overexpression partially overturned the effects of miR-876-5p transfection on tumor progression and radiosensitivity. Importantly, circ_0001686 could sponge miR-876-5p to regulate SPIN1 expression. In addition, circ_0001686 silencing also constrained tumor growth and increased radiosensitivity in vivo. CONCLUSION Circ_0001686 contributed to the progression and radioresistance of esophagus cancer cells via regulating SPIN1 expression by targeting miR-876-5p, providing a new therapeutic target for improving the prognosis of esophagus cancer patients.
Collapse
Affiliation(s)
- Weihui Yu
- Department of Interventional Radiology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Ke Ning
- Department of Interventional Radiology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Qiwen Bai
- Endoscopic Diagnosis and Treatment Center, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Jincheng Xiao
- Department of Interventional Radiology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China.
| |
Collapse
|