1
|
Zhao W, Liu Y, Hu Y, Zhang G. SOX4 accelerates intervertebral disc degeneration via EZH2/NRF2 pathway in response to mitochondrial ROS-dependent NLRP3 inflammasome activation in nucleus pulposus cells. J Transl Med 2025; 23:395. [PMID: 40181390 PMCID: PMC11969779 DOI: 10.1186/s12967-024-05913-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 11/22/2024] [Indexed: 04/05/2025] Open
Abstract
OBJECTIVE The transcription factor SRY-related HMG-box 4 (SOX4) has been implicated in intervertebral disc diseases. This study aimed to investigate the role of SOX4 in intervertebral disc degeneration (IDD) and explore the underlying molecular mechanisms. METHODS We established an IDD rat model via surgery and analyzed SOX4 expression using qRT-PCR and Western blotting. Histological evaluation, immunohistochemistry, and Safranin O staining assessed IDD progression. In vitro, an IDD cellular model was constructed using IL-1β-stimulated nucleus pulposus (NP) cells. SOX4 knockdown and overexpression experiments in NP cells examined SOX4 effects on ECM degradation, NLRP3-mediated pyroptosis, and mitochondrial ROS-dependent NLRP3 inflammasome activation. The involvement of the EZH2/NRF2 pathway in SOX4-mediated NLRP3 activation was also examined. RESULTS SOX4 expression was significantly increased in IDD rats and promoted IDD progression. Knockdown of SOX4 inhibited ECM degradation and NLRP3-mediated pyroptosis in NP cells. In vitro experiments showed that SOX4 promoted ECM degradation by upregulating MMPs and ADAMTS-5 expression, and suppressed collagen II and aggrecan synthesis. SOX4 knockdown inhibited NLRP3-mediated pyroptosis, while overexpression accelerated it in NP cells. Additionally, SOX4 was found to exacerbate mitochondrial ROS-dependent NLRP3 inflammasome activation in NP cells. Further investigation revealed that SOX4 enhanced NLRP3 inflammasome activation by upregulating EZH2 expression and modulating the EZH2/NRF2 pathway, with EZH2 inhibition attenuating SOX4-induced NLRP3 activation. CONCLUSION Our findings suggest that SOX4 accelerates IDD progression by promoting NLRP3 inflammasome activation via modulating the EZH2/NRF2 pathway, leading to NP cell pyroptosis and ECM degradation. Targeting SOX4 may represent a potential therapeutic strategy for treating IDD.
Collapse
Affiliation(s)
- Wenzhi Zhao
- Department of Traumatic Orthopedics, The Second Affiliated Hospital, Dalian Medical University, Dalian, 116011, China
| | - Yadong Liu
- Department of Spinal Surgery, Dalian Municipal Central Hospital, Dalian, 116033, China
| | - Yunxiang Hu
- Department of Spinal Surgery, Dalian Municipal Central Hospital, Dalian, 116033, China
| | - Guiqi Zhang
- Department of Spinal Surgery, Dalian Municipal Central Hospital, Dalian, 116033, China.
| |
Collapse
|
2
|
Zheng J, Ma Z, Liu P, Wei J, Min S, Shan Y, Zhang J, Li Y, Xue L, Tan Z, Wang D. EZH2 inhibits senescence-associated inflammation and attenuates intervertebral disc degeneration by regulating the cGAS/STING pathway via H3K27me3. Osteoarthritis Cartilage 2025:S1063-4584(25)00796-4. [PMID: 39938633 DOI: 10.1016/j.joca.2025.02.771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 01/28/2025] [Accepted: 02/06/2025] [Indexed: 02/14/2025]
Abstract
OBJECTIVE Senescent nucleus pulposus mesenchymal stem cells (NPMSCs) are key instigators of local chronic inflammation and disruptions in nucleus pulposus tissue repair in intervertebral disc degeneration (IVDD). This study aimed to investigate the interplay between EZH2 and NPMSCs senescence-associated inflammation. METHODS Nucleus pulposus samples were collected from IVDD patients (n = 15, F/M = 7/8, average age 47.9 (21-72) year-old). Multiplex immunohistochemistry was conducted to detect the expression of EZH2 and the cGAS/STING pathway. Subsequently, NPMSCs were isolated from 7 patients (n = 7, F/M = 4/3, average age 49.4 (36-68) year-old). After treatment with tert-butyl hydroperoxide and lentivirus-overexpression-EZH2 (Lv-OE-EZH2), real time fluorescent quantitative PCR, immunofluorescence, western blot, and ChIP were used to detect the expression of EZH2 and the cGAS/STING pathway. Micro-CT, magnetic resonance imaging, and histological staining were performed to assess the therapeutic effects of Lv-OE-EZH2 and a STING inhibitor on rat IVDD. All experiment designs were independent. RESULTS In both human nucleus pulposus tissues and an in vitro cell model, EZH2 expression decreased while the cGAS/STING pathway became activated in senescent NPMSCs. ChIP assays and Lv-OE-EZH2 experiments validated that EZH2 epigenetically inhibited STING expression via H3K27me3, thereby impairing the cGAS/STING pathway and attenuating senescence-associated inflammation. Moreover, overexpression of EZH2 (Pfirrmann grade means difference -1.375, p = 0.0089) and inhibition of STING effectively attenuated rat IVDD. CONCLUSION The decreased expression of EZH2 in senescent NPMSCs promotes senescence-associated inflammation and the progression of IVDD, possibly by relieving the transcriptional inhibition of STING and enabling the activation of the cGAS/STING pathway.
Collapse
Affiliation(s)
- Jianrui Zheng
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518000, PR China.
| | - Zetao Ma
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518000, PR China.
| | - Pei Liu
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518000, PR China.
| | - Jiewen Wei
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518000, PR China; Shantou University Medical College, Shantou 515000, PR China.
| | - Shaoxiong Min
- Department of Spine Surgery, Peking University Shenzhen Hospital, Shenzhen 518000, PR China.
| | - Ying Shan
- Clinical Research Academy, Peking University Shenzhen Hospital, Shenzhen 518000, PR China.
| | - Jianlin Zhang
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100000, PR China.
| | - Ye Li
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, 999077, Hong Kong.
| | - Lixiang Xue
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100000, PR China.
| | - Zhen Tan
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518000, PR China.
| | - Deli Wang
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518000, PR China.
| |
Collapse
|
3
|
Zhang J, Jiao Q, Chen Z. Investigating the Prognostic and Oncogenic Roles of Membrane-Associated Ring-CH-Type Finger 9 in Colorectal Cancer. Genet Res (Camb) 2024; 2024:9279653. [PMID: 39185021 PMCID: PMC11344643 DOI: 10.1155/2024/9279653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 06/12/2024] [Accepted: 07/06/2024] [Indexed: 08/27/2024] Open
Abstract
Backgroundsand Aims. Colorectal cancer (CRC) represents a major global health challenge, necessitating comprehensive investigations into its underlying molecular mechanisms to enhance diagnostic and therapeutic strategies. This study focuses on elucidating the oncogenic role of Membrane-Associated Ring-CH-Type Finger 9 (MARCHF9), a RING-Type E3 ubiquitin transferase, in CRC. We aim to assess MARCHF9's clinical significance, functional impact on CRC progression, and its potential as a prognostic biomarker. Methods. We leveraged data from the Cancer Genome Atlas (TCGA) cohort to evaluate MARCHF9 expression profiles in CRC. In vitro experiments involved siRNA-mediated MARCHF9 knockdown in COAD cell lines (SW480 and LoVo). Cell proliferation and invasion assays were conducted to investigate MARCHF9's functional relevance. Survival analyses were performed to assess its prognostic role. Results. Our analysis revealed significantly elevated MARCHF9 expression in CRC tissues compared to normal colorectal tissues (P < 0.05). High MARCHF9 expression correlated with advanced clinical stages, distant metastases, and the presence of residual tumors in CRC patients. Survival analyses demonstrated that high MARCHF9 expression predicted unfavorable overall and disease-free survival outcomes (P < 0.05). In vitro experiments further supported its oncogenic potential, with MARCHF9 knockdown inhibiting COAD cell proliferation and invasion. Conclusions. This study unveils the oncogenic role of MARCHF9 in CRC, highlighting its clinical relevance as a potential biomarker and therapeutic target. MARCHF9's association with adverse clinicopathological features and its functional impact on cancer cell behavior underscore its significance in CRC progression. Further research is essential to elucidate precise mechanisms by which MARCHF9 enhances tumorigenesis and to explore its therapeutic potential in CRC management.
Collapse
Affiliation(s)
- Jiayan Zhang
- Department of GynecologyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qinghan Jiao
- Department of Nuclear MedicineThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhigang Chen
- Department of InterventionalThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
4
|
Yao Q, Lei Y, Zhang Y, Chen H, Dong X, Ye Z, Liang H. EZH2-H3K27me3-Mediated Epigenetic Silencing of DKK1 Induces Nucleus Pulposus Cell Pyroptosis in Intervertebral Disc Degeneration by Activating NLRP3 and NAIP/NLRC4. Inflammation 2024:10.1007/s10753-024-02096-1. [PMID: 39052181 DOI: 10.1007/s10753-024-02096-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 06/14/2024] [Accepted: 07/01/2024] [Indexed: 07/27/2024]
Abstract
Nucleus pulposus (NP) cell pyroptosis is crucial for intervertebral disc degeneration (IDD). However, the precise mechanisms underlying pyroptosis in IDD remain elusive. Therefore, this study aimed to investigate how dickkopf-1 (DKK1) influences NP cell pyroptosis and delineate the regulatory mechanisms of IDD. Behavioral tests and histological examinations were conducted in rat IDD models to assess the effect of DKK1 on the structure and function of intervertebral discs. Detected pyroptosis levels using Hoechst 33,342/propidium iodide (PI) double staining, and determined pyroptosis-related protein expression via western blotting. The cellular mechanisms of DKK1 in pyroptosis were explored in interleukin (IL)-1β-induced NP cells transfected with or without DKK1 overexpression plasmids (oe-DKK1). In addition, IL-1β-treated NP cells transfected with sh-EZH2 and/or sh-DKK1 were utilized to clarify the interplay between the enhancer of zeste homologue 2 (EZH2) and DKK1 in pyroptosis. Additionally, the epigenetic regulation of DKK1 by EZH2 was explored in NP cells treated with the EZH2 inhibitors GSK126/DZNep. DKK1 expression decreased in IDD rats. Transfection with oe-DKK1 reduced pro-inflammatory factors and extracellular matrix markers in IDD rats. In IL-1β-induced NP cells, DKK1 overexpression suppressed pyroptosis and inhibited the NLRP3 and NAIP/NLRC4 inflammasome activation. EZH2 knockdown increased DKK1 expression and reduced pyroptosis-related proteins. Conversely, DKK1 downregulation reversed the inhibitory effects of EZH2 knockdown on pyroptosis. Furthermore, EZH2 suppressed DKK1 expression via H3K27 methylation at the DKK1 promoter. EZH2 negatively regulates DKK1 expression via H3K27me3 methylation, promoting NP cell pyroptosis in IDD patients. This regulatory effect involves the activation of NLRP3 and NAIP/NLRC4 inflammasomes.
Collapse
Affiliation(s)
- Qijun Yao
- Department of Bone and Soft Tissue Repair and Reconstructive Surgery, The Second Hospital of Dalian Medical University, No. 467 Zhongshan Road, Dalian, Liaoning, 116000, China
| | - Yue Lei
- Department of Bone and Soft Tissue Repair and Reconstructive Surgery, The Second Hospital of Dalian Medical University, No. 467 Zhongshan Road, Dalian, Liaoning, 116000, China
| | - Yongxu Zhang
- Department of Bone and Soft Tissue Repair and Reconstructive Surgery, The Second Hospital of Dalian Medical University, No. 467 Zhongshan Road, Dalian, Liaoning, 116000, China
| | - Haoran Chen
- Department of Bone and Soft Tissue Repair and Reconstructive Surgery, The Second Hospital of Dalian Medical University, No. 467 Zhongshan Road, Dalian, Liaoning, 116000, China
| | - Xiaowei Dong
- Department of Bone and Soft Tissue Repair and Reconstructive Surgery, The Second Hospital of Dalian Medical University, No. 467 Zhongshan Road, Dalian, Liaoning, 116000, China
| | - Zhiqiang Ye
- Department of Bone and Soft Tissue Repair and Reconstructive Surgery, The Second Hospital of Dalian Medical University, No. 467 Zhongshan Road, Dalian, Liaoning, 116000, China
| | - Haidong Liang
- Department of Bone and Soft Tissue Repair and Reconstructive Surgery, The Second Hospital of Dalian Medical University, No. 467 Zhongshan Road, Dalian, Liaoning, 116000, China.
| |
Collapse
|
5
|
Dai J, Liu J, Shen Y, Zhang B, Li C, Liu Z. Regulation of endoplasmic reticulum stress on autophagy and apoptosis of nucleus pulposus cells in intervertebral disc degeneration and its related mechanisms. PeerJ 2024; 12:e17212. [PMID: 38666076 PMCID: PMC11044878 DOI: 10.7717/peerj.17212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
Intervertebral disc degeneration (IVDD) is a common and frequent disease in orthopedics, which seriously affects the quality of life of patients. Endoplasmic reticulum stress (ERS)-regulated autophagy and apoptosis play an important role in nucleus pulposus (NP) cells in IVDD. Hypoxia and serum deprivation were used to induce NP cells. Cell counting kit-8 (CCK-8) assay was used to detect cell activity and immunofluorescence (IF) was applied for the appraisement of glucose regulated protein 78 (GRP78) and green fluorescent protein (GFP)-light chain 3 (LC3). Cell apoptosis was detected by flow cytometry and the expression of LC3II/I was detected by western blot. NP cells under hypoxia and serum deprivation were induced by lipopolysaccharide (LPS), and intervened by ERS inhibitor (4-phenylbutyric acid, 4-PBA) and activator (Thapsigargin, TP). Then, above functional experiments were conducted again and western blot was employed for the evaluation of autophagy-, apoptosis and ERS-related proteins. Finally, NP cells under hypoxia and serum deprivation were stimulated by LPS and intervened using apoptosis inhibitor z-Val-Ala-DL-Asp-fluoromethyl ketone (Z-VAD-FMK) and autophagy inhibitor 3-methyladenine (3-MA). CCK-8 assay, IF, flow cytometry and western blot were performed again. Besides, the levels of inflammatory cytokines were measured with enzyme-linked immunosorbent assay (ELISA) and the protein expressions of programmed death markers were estimated with western blot. It showed that serum deprivation induces autophagy and apoptosis. ERS was significantly activated by LPS in hypoxic and serum deprivation environment, and autophagy and apoptosis were significantly promoted. Overall, ERS affects the occurrence and development of IVDD by regulating autophagy, apoptosis and other programmed death.
Collapse
Affiliation(s)
- Jiuming Dai
- Department of Orthopedics, Binhai County People’s Hospital, Yancheng, China
| | - Jin Liu
- Department of Orthopedics, Binhai County People’s Hospital, Yancheng, China
| | - Yucheng Shen
- Department of Orthopedics, Binhai County People’s Hospital, Yancheng, China
| | - Bing Zhang
- Department of Orthopedics, Binhai County People’s Hospital, Yancheng, China
| | - Chaonian Li
- Department of Traditional Chinese Medicine, Binhai County People’s Hospital, Yancheng, China
| | - Zhidong Liu
- Department of Orthopedics, Binhai County People’s Hospital, Yancheng, China
| |
Collapse
|
6
|
Genedy HH, Humbert P, Laoulaou B, Le Moal B, Fusellier M, Passirani C, Le Visage C, Guicheux J, Lepeltier É, Clouet J. MicroRNA-targeting nanomedicines for the treatment of intervertebral disc degeneration. Adv Drug Deliv Rev 2024; 207:115214. [PMID: 38395361 DOI: 10.1016/j.addr.2024.115214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/09/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024]
Abstract
Low back pain stands as a pervasive global health concern, afflicting almost 80% of adults at some point in their lives with nearly 40% attributable to intervertebral disc degeneration (IVDD). As only symptomatic relief can be offered to patients there is a dire need for innovative treatments.Given the accumulating evidence that multiple microRNAs (miRs) are dysregulated during IVDD, they could have a huge potential against this debilitating condition. The way miRs can profoundly modulate signaling pathways and influence several cellular processes at once is particularly exciting to tackle this multifaceted disorder. However, miR delivery encounters extracellular and intracellular biological barriers. A promising technology to address this challenge is the vectorization of miRs within nanoparticles, providing both protection and enhancing their uptake within the scarce target cells of the degenerated IVD. This comprehensive review presents the diverse spectrum of miRs' connection with IVDD and demonstrates their therapeutic potential when vectorized in nanomedicines.
Collapse
Affiliation(s)
- Hussein H Genedy
- Nantes Université, Oniris, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR1229, Nantes, France; Univ Angers, INSERM, CNRS, MINT, SFR ICAT, F-49000 Angers, France
| | - Paul Humbert
- Nantes Université, Oniris, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR1229, Nantes, France
| | - Bilel Laoulaou
- Nantes Université, Oniris, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR1229, Nantes, France; Univ Angers, INSERM, CNRS, MINT, SFR ICAT, F-49000 Angers, France
| | - Brian Le Moal
- Nantes Université, Oniris, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR1229, Nantes, France; Univ Angers, INSERM, CNRS, MINT, SFR ICAT, F-49000 Angers, France
| | - Marion Fusellier
- Nantes Université, Oniris, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR1229, Nantes, France; Department of Diagnostic Imaging, CRIP, ONIRIS, College of Veterinary Medicine, Food Science and Engineering, Nantes F-44307, France
| | | | - Catherine Le Visage
- Nantes Université, Oniris, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR1229, Nantes, France
| | - Jérôme Guicheux
- Nantes Université, Oniris, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR1229, Nantes, France
| | - Élise Lepeltier
- Univ Angers, INSERM, CNRS, MINT, SFR ICAT, F-49000 Angers, France; Institut Universitaire de France (IUF), France.
| | - Johann Clouet
- Nantes Université, Oniris, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR1229, Nantes, France
| |
Collapse
|
7
|
Petrosyan E, Fares J, Lesniak MS, Koski TR, El Tecle NE. Biological principles of adult degenerative scoliosis. Trends Mol Med 2023; 29:740-752. [PMID: 37349248 DOI: 10.1016/j.molmed.2023.05.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 06/24/2023]
Abstract
The global aging population has led to an increase in geriatric diseases, including adult degenerative scoliosis (ADS). ADS is a spinal deformity affecting adults, particularly females. It is characterized by asymmetric intervertebral disc and facet joint degeneration, leading to spinal imbalance that can result in severe pain and neurological deficits, thus significantly reducing the quality of life. Despite improved management, molecular mechanisms driving ADS remain unclear. Current literature primarily comprises epidemiological and clinical studies. Here, we investigate the molecular mechanisms underlying ADS, with a focus on angiogenesis, inflammation, extracellular matrix remodeling, osteoporosis, sarcopenia, and biomechanical stress. We discuss current limitations and challenges in the field and highlight potential translational applications that may arise with a better understanding of these mechanisms.
Collapse
Affiliation(s)
- Edgar Petrosyan
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Jawad Fares
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Maciej S Lesniak
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Tyler R Koski
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Najib E El Tecle
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
8
|
Ma Z, Chen L, Wang Y, Zhang S, Zheng J, Luo Y, Wang C, Zeng H, Xue L, Tan Z, Wang D. Novel insights of EZH2-mediated epigenetic modifications in degenerative musculoskeletal diseases. Ageing Res Rev 2023; 90:102034. [PMID: 37597667 DOI: 10.1016/j.arr.2023.102034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 07/06/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023]
Abstract
Degenerative musculoskeletal diseases (Osteoporosis, Osteoarthritis, Degenerative Spinal Disease and Sarcopenia) are pathological conditions that affect the function and pain of tissues such as bone, cartilage, and muscles, and are closely associated with ageing and long-term degeneration. Enhancer of zeste homolog 2 (EZH2), an important epigenetic regulator, regulates gene expression mainly through the PRC2-dependent trimethylation of histone H3 at lysine 27 (H3K27me3). Increasing evidence suggests that EZH2 is involved in several biological processes closely related to degenerative musculoskeletal diseases, such as osteogenic-adipogenic differentiation of bone marrow mesenchymal stem cells, osteoclast activation, chondrocyte functional status, and satellite cell proliferation and differentiation, mainly through epigenetic regulation (H3K27me3). Therefore, the synthesis and elucidation of the role of EZH2 in degenerative musculoskeletal diseases have attracted increasing attention. In addition, although EZH2 inhibitors have been approved for clinical use, whether they can be repurposed for the treatment of degenerative musculoskeletal diseases needs to be considered. Here, we reviewed the role of EZH2 in the development of degenerative musculoskeletal diseases and brought forward prospects of its pharmacological inhibitors in the improvement of the treatment of the diseases.
Collapse
Affiliation(s)
- Zetao Ma
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, People's Republic of China
| | - Lei Chen
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, People's Republic of China; Shantou University Medical College, Shantou 515031, People's Republic of China
| | - Yushun Wang
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, People's Republic of China
| | - Sheng Zhang
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, People's Republic of China
| | - Jianrui Zheng
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, People's Republic of China
| | - Yuhong Luo
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, People's Republic of China
| | - Chao Wang
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, People's Republic of China
| | - Hui Zeng
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, People's Republic of China
| | - Lixiang Xue
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100191, People's Republic of China.
| | - Zhen Tan
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, People's Republic of China.
| | - Deli Wang
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, People's Republic of China.
| |
Collapse
|
9
|
Chen T, Qian Q, Makvandi P, Zare EN, Chen Q, Chen L, Zhang Z, Zhou H, Zhou W, Wang H, Wang X, Chen Y, Zhou Y, Wu A. Engineered high-strength biohydrogel as a multifunctional platform to deliver nucleic acid for ameliorating intervertebral disc degeneration. Bioact Mater 2023; 25:107-121. [PMID: 37056255 PMCID: PMC10088054 DOI: 10.1016/j.bioactmat.2023.01.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/07/2023] [Accepted: 01/12/2023] [Indexed: 02/04/2023] Open
Abstract
Intervertebral disc degeneration (IVDD) is a leading cause of low back pain. The strategy of using functional materials to deliver nucleic acids provides a powerful tool for ameliorating IVDD. However, the immunogenicity of nucleic acid vectors and the poor mechanical properties of functional materials greatly limit their effects. Herein, antagomir-204-3p (AM) shows low immunogenicity and effectively inhibits the apoptosis of nucleus pulposus cells. Moreover, a high-strength biohydrogel based on zinc-oxidized sodium alginate-gelatin (ZOG) is designed as a multifunctional nucleic acid delivery platform. ZOG loaded with AM (ZOGA) exhibits great hygroscopicity, antibacterial activity, biocompatibility, and biodegradability. Moreover, ZOGA can be cross-linked with nucleus pulposus tissue to form a high-strength collagen network that improves the mechanical properties of the intervertebral disc (IVD). In addition, ZOGA provides an advantageous microenvironment for genetic expression in which AM can play an efficient role in maintaining the metabolic balance of the extracellular matrix. The results of the radiological and histological analyses demonstrate that ZOGA restores the height of the IVD, retains moisture in the IVD, and maintains the tissue structure. The ZOGA platform shows the sustained release of nucleic acids and has the potential for application to ameliorate IVDD, opening a path for future studies related to IVD.
Collapse
|
10
|
Kang L, Zhang H, Jia C, Zhang R, Shen C. Epigenetic modifications of inflammation in intervertebral disc degeneration. Ageing Res Rev 2023; 87:101902. [PMID: 36871778 DOI: 10.1016/j.arr.2023.101902] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 02/17/2023] [Accepted: 03/02/2023] [Indexed: 03/07/2023]
Abstract
Intervertebral disc degeneration (IDD) is a common cause of joint-related chronic disability in elderly individuals worldwide. It seriously impacts the quality of life and inflicts a substantial social and economic burden. The pathological mechanisms underlying IDD have not been fully revealed, leading to less satisfactory clinical treatment outcomes. More studies are urgently needed to reveal its precise pathological mechanisms. Numerous studies have revealed that inflammation is closely related to various pathological processes of IDD, including the continuous loss of extracellular matrix, cell apoptosis, and senescence, indicating the important role of inflammation in the pathological mechanism of IDD. Epigenetic modifications affect the functions and characteristics of genes mainly through DNA methylation, histone modification, non-coding RNA regulation, and other mechanisms, thus having a major effect on the survival state of the body. Recently, the role of epigenetic modifications in inflammation during IDD has been attracting research interest. In this review, we summarize the roles of different types of epigenetic modifications in inflammation during IDD in recent years, to improve our understanding of the etiology of IDD and to transform basic research strategy into a clinically effective treatment for joint-related chronic disability in elderly individuals.
Collapse
Affiliation(s)
- Liang Kang
- Department of Orthopedics & Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Huaqing Zhang
- Department of Orthopedics & Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Chongyu Jia
- Department of Orthopedics & Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Renjie Zhang
- Department of Orthopedics & Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.
| | - Cailiang Shen
- Department of Orthopedics & Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.
| |
Collapse
|
11
|
Wang Z, Ma Y, Chen Z, Yang R, Liu Q, Pan J, Wang J, Liu Y, Zhou M, Zhang Y, Zhou Y, Yang S, Zou B, Lin J, Cai Y, Jiang Z, Zhou Z, Zhao Z. COVID-19 inhibits spermatogenesis in the testes by inducing cellular senescence. Front Genet 2023; 13:981471. [PMID: 36685935 PMCID: PMC9849386 DOI: 10.3389/fgene.2022.981471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 12/19/2022] [Indexed: 01/07/2023] Open
Abstract
Introduction: COVID-19 (SARS-CoV-2) has been linked to organ damage in humans since its worldwide outbreak. It can also induce severe sperm damage, according to research conducted at numerous clinical institutions. However, the exact mechanism of damage is still unknown. Methods: In this study, testicular bulk-RNA-seq Data were downloaded from three COVID-19 patients and three uninfected controls from GEO to evaluate the effect of COVID-19 infection on spermatogenesis. Relative expression of each pathway and the correlation between genes or pathways were analyzed by bioinformatic methods. Results: By detecting the relative expression of each pathway and the correlation between genes or pathways, we found that COVID-19 could induce testicular cell senescence through MAPK signaling pathway. Cellular senescence was synergistic with MAPK pathway, which further affected the normal synthesis of cholesterol and androgen, inhibited the normal synthesis of lactate and pyruvate, and ultimately affected spermatogenesis. The medications targeting MAPK signaling pathway, especially MAPK1 and MAPK14, are expected to be effective therapeutic medications for reducing COVID-19 damage to spermatogenesis. Conclusion: These results give us a new understanding of how COVID-19 inhibits spermatogenesis and provide a possible solution to alleviate this damage.
Collapse
|
12
|
Xiang Q, Zhao Y, Li W. Identification and validation of ferroptosis-related gene signature in intervertebral disc degeneration. Front Endocrinol (Lausanne) 2023; 14:1089796. [PMID: 36814575 PMCID: PMC9939442 DOI: 10.3389/fendo.2023.1089796] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/04/2023] [Indexed: 02/09/2023] Open
Abstract
Lower back pain (LBP) is a leading cause of disability in the elderly and intervertebral disc degeneration (IDD) is the major contributor to LBP. Ferroptosis is a newly discovered programmed cell death, characterized by iron-dependent lethal lipid peroxidation. Growing evidence has shown that ferroptosis plays important roles in various human diseases. However, the underlying mechanism of ferroptosis in IDD remains elusive. This study is aimed to uncover the key roles of ferroptosis in the pathogenesis and progression of IDD comprehensively. To investigate the ferroptosis related differentially expressed genes (FRDEGs) in IDD, we analyzed the microarray data from the Gene Expression Omnibus (GEO) database. Then we performed functional enrichment analysis and protein-protein interaction (PPI) network analysis, and screened out the hub FRDEGs. To further evaluate the predictive value of these hub FRDEGs, we performed ROC analysis based on the GSE124272 dataset. A total of 80 FRDEGs were identified, including 20 downregulated and 60 upregulated FRDEGs. The FRDEGs were primarily involved in the biological processes of response to chemical, and response to stress. KEGG pathway enrichment analysis showed that the FRDEGs were mainly involved in ferroptosis, TNF signaling pathway, HIF-1 signaling pathway, NOD-like receptor signaling pathway, and IL-17 signaling pathway. Ten hub OSRDEGs were obtained according to the PPI analysis, including HMOX1, KEAP1, MAPK1, HSPA5, TXNRD1, IL6, PPARA, JUN, HIF1A, DUSP1. The ROC analysis and RT-qPCR validation results suggested that most of the hub FRDEGs might be potential signature genes for IDD. This study reveals that ferroptosis might provide promising strategy for the diagnosis and treatment of IDD.
Collapse
Affiliation(s)
- Qian Xiang
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
| | - Yongzhao Zhao
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
| | - Weishi Li
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
- *Correspondence: Weishi Li,
| |
Collapse
|
13
|
Guo C, Chen Y, Wang Y, Hao Y. Regulatory roles of noncoding RNAs in intervertebral disc degeneration as potential therapeutic targets (Review). Exp Ther Med 2022; 25:44. [PMID: 36569433 PMCID: PMC9764052 DOI: 10.3892/etm.2022.11743] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/16/2022] [Indexed: 12/04/2022] Open
Abstract
Intervertebral disc degeneration (IDD) is the leading cause of lower back pain, which is one of the primary factors that lead to disability and pose a serious economic burden. The key pathological processes involved are extracellular matrix degradation, autophagy, apoptosis, and inflammation of nucleus pulposus cells. Non-coding RNAs (ncRNAs), including microRNAs, long ncRNAs and circular RNAs, are key regulators of the aforementioned processes. ncRNAs are differentially expressed in tissues of the intervertebral disc between healthy individuals and patients and participate in the pathological progression of IDD via a complex pattern of gene regulation. However, the regulatory mechanisms of ncRNAs in IDD remain unclear. The present review summarizes the latest insights into the regulatory role of ncRNAs in IDD and sheds light on potentially novel therapeutic strategies for IDD that may be implemented in the future.
Collapse
Affiliation(s)
- Cunliang Guo
- Department of Orthopedics, First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, P.R. China
| | - Yungang Chen
- Department of Orthopedics, First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, P.R. China
| | - Yuhe Wang
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, P.R. China
| | - Yanke Hao
- Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, P.R. China,Correspondence to: Dr Yanke Hao, Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, 16369 Jingshi Road, Lixia, Jinan, Shandong 250014, P.R. China
| |
Collapse
|
14
|
Li G, Zhang W, Liang H, Yang C. Epigenetic regulation in intervertebral disc degeneration. Trends Mol Med 2022; 28:803-805. [PMID: 36030154 DOI: 10.1016/j.molmed.2022.07.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/29/2022] [Accepted: 07/29/2022] [Indexed: 10/15/2022]
Abstract
Intervertebral disc (IVD) degeneration is the leading cause of low back pain, which has a striking impact on numerous patients. Therefore, comprehensively illuminating the regulatory mechanisms of IVD degeneration is of great significance. Here, we discuss the latest advances in understanding the main epigenetic mechanisms regulating IVD degeneration.
Collapse
Affiliation(s)
- Gaocai Li
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, China
| | - Weifeng Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, China
| | - Huaizhen Liang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, China
| | - Cao Yang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, China.
| |
Collapse
|
15
|
Identification of miRNA-mRNA Pairs in Relation to TNF-α/IL-1β Induced Inflammatory Response in Intervertebral Disc Degeneration. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:3374091. [PMID: 35990856 PMCID: PMC9391105 DOI: 10.1155/2022/3374091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/07/2022] [Accepted: 07/09/2022] [Indexed: 11/30/2022]
Abstract
Objective The determination of miRNA-mRNA pairs for intervertebral disc degeneration (IVDD) regulated by pro-inflammatory cytokines were investigated. Methods Two dataset (accession number GSE27494 and GSE41883 from platform GPL1352) of expression profiling was downloaded from Gene Expression Omnibus (GEO). The annulus cells were isolated from annulus fibrosus in patients with degenerative disc disease. The cells were then cultured in a three-dimensional (3D) collagen containing with/without proinflammatory cytokines (tumor necrosis factor alpha (TNF-α) or interleukin beta (IL-1β)). After being cultured for 14 days, the isolated total RNA was analyzed via microarray, and the expression array data were obtained using BRB-Array Tools followed by analyzing the differentially expressed genes (DEGs) and the prediction of potential miRNA targets of hub genes through online database. Results Firstly, 52 and 296 DEGs were found in IL-1β- and TNF-α-induced annulus cells, respectively, of these there had 42 common DEGs (co-DEGs) with 34 increased transcripts and 8 reduced ones. Based on the GO and KEGG software, these co-DEGs were mainly enriched in the response to lipopolysaccharide (LPS) and molecule of bacterial origin, the regulation of receptor ligand activity and signaling receptor activator activity, as well as the following signaling pathways, including TNF signaling pathway, IL-17 signaling pathway, and NF-κB signaling pathway. Top hub genes (CXCL1, CXCL2, CXCL8, IL1Β and PTGS2) regulated by several potential microRNAs were involved in TNF-α/IL-1β treated annulus cells. Conclusions Several candidate genes regulated by miRNAs caused by TNF-α/IL-1β in the annulus cells were found, which will guide diagnosis and treatment for degenerative disc disease.
Collapse
|
16
|
Oxidative Stress in Intervertebral Disc Degeneration: New Insights from Bioinformatic Strategies. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2239770. [PMID: 35401932 PMCID: PMC8991415 DOI: 10.1155/2022/2239770] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/10/2022] [Indexed: 12/27/2022]
Abstract
Oxidative stress has been proved to play important roles in the development of intervertebral disc degeneration (IDD); however, the underlying mechanism remains obscure to date. The aim of this study was to elucidate the vital roles of oxidative stress-related genes in the development of IDD using strict bioinformatic algorithms. The microarray data relevant to the IDD was downloaded from Gene Expression Omnibus database for further analysis. A series of bioinformatic strategies were used to determine the oxidative stress-related and IDD-related genes (OSIDDRGs), perform the function enrichment analysis and protein-protein interaction analysis, construct the lncRNA-miRNA-mRNA regulatory network, and investigate the potential relationship of oxidative stress to immunity abnormality and autophagy in IDD. We observed a significantly different status of oxidative stress between normal intervertebral disc tissues and IDD tissues. A total of 72 OSIDDRGs were screened out for the further function enrichment analysis, and 10 hub OSIDDRGs were selected to construct the lncRNA-miRNA-mRNA regulatory network. There was a very close association of oxidative stress with immunity abnormality and autophagy in IDD. Taken together, our findings can provide new insights into the mechanism research of oxidative stress in the development of IDD and offer new potential targets for the treatment strategies.
Collapse
|