1
|
El-Sayed MKF, Elshahawi MM, Abu El-Azm FSM, Hosni EM, Kamal M, Ali YM. Synthesis, molecular modelling and evaluation of larvicidal efficacy of annulated Benzo[h]chromenes against Culex pipiens L. Larvae. Sci Rep 2024; 14:18393. [PMID: 39117743 PMCID: PMC11310521 DOI: 10.1038/s41598-024-68035-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/18/2024] [Indexed: 08/10/2024] Open
Abstract
A new series of substituted benzo[h]chromene, benzochromenopyrimidine, and benzochromenotriazolopyrimidine derivatives were synthesized via chemical transformations of iminonitrile, ethoxymethylene amino, and cyanomethylene functionalities. The chemical structures of the synthesized compounds were assured by spectroscopic data and elemental analysis. The larvicidal efficacy of these compounds against Culex pipiens L. larvae was investigated, revealing potent insecticidal activity, particularly for compounds 6, 10, and 16, exceeding that of the standard insecticide chlorpyrifos. The mode of action of these compounds was explored through molecular docking studies, indicating their potential as acetylcholine esterase (AChE) inhibitors and nicotinic acetylcholine receptors (nAChR) blockers. The structure-activity relationship analysis highlighted the influence of substituents and fused heterocyclic rings on larvicidal potency. These findings suggest that the synthesized compounds hold promise as potential candidates for developing novel and effective mosquito control agents.
Collapse
Affiliation(s)
- Mahmoud K F El-Sayed
- Chemistry Department, Faculty of Science, Ain Shams University, Cairo, 11566, Egypt
| | - Manal M Elshahawi
- Chemistry Department, Faculty of Science, Ain Shams University, Cairo, 11566, Egypt
| | - Fatma S M Abu El-Azm
- Chemistry Department, Faculty of Science, Ain Shams University, Cairo, 11566, Egypt
| | - Eslam M Hosni
- Entomology Department, Faculty of Science, Ain Shams University, Cairo, 11566, Egypt
| | - Mahmoud Kamal
- Entomology Department, Faculty of Science, Ain Shams University, Cairo, 11566, Egypt
| | - Yasmeen M Ali
- Chemistry Department, Faculty of Science, Ain Shams University, Cairo, 11566, Egypt.
| |
Collapse
|
2
|
Karcz D, Starzak K, Ciszkowicz E, Lecka-Szlachta K, Kamiński D, Creaven B, Miłoś A, Jenkins H, Ślusarczyk L, Matwijczuk A. Design, Spectroscopy, and Assessment of Cholinesterase Inhibition and Antimicrobial Activities of Novel Coumarin–Thiadiazole Hybrids. Int J Mol Sci 2022; 23:ijms23116314. [PMID: 35682998 PMCID: PMC9180949 DOI: 10.3390/ijms23116314] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/01/2022] [Accepted: 06/03/2022] [Indexed: 11/29/2022] Open
Abstract
A novel series of coumarin–thiadiazole hybrids, derived from substituted coumarin-3-carboxylic acids was isolated and fully characterized with the use of a number of spectroscopic techniques and XRD crystallography. Several of the novel compounds showed intensive fluorescence in the visible region, comparable to that of known coumarin-based fluorescence standards. Moreover, the new compounds were tested as potential antineurodegenerative agents via their ability to act as acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibitors. Compared to the commercial standards, only a few compounds demonstrated moderate AChE and BuChE activities. Moreover, the novel derivatives were tested for their antimicrobial activity against a panel of pathogenic bacterial and fungal species. Their lack of activity and toxicity across a broad range of biochemical assays, together with the exceptional emission of some hybrid molecules, highlights the possible use of a number of the novel hybrids as potential fluorescence standards or fluorescence imaging agents.
Collapse
Affiliation(s)
- Dariusz Karcz
- Department of Chemical Technology and Environmental Analytics (C1), Faculty of Chemical Engineering and Technology, Cracow University of Technology, 311-55 Kraków, Poland;
- Correspondence: ; Tel.: +48-(12)-6282177
| | - Karolina Starzak
- Department of Chemical Technology and Environmental Analytics (C1), Faculty of Chemical Engineering and Technology, Cracow University of Technology, 311-55 Kraków, Poland;
| | - Ewa Ciszkowicz
- Department of Biotechnology and Bioinformatics, Faculty of Chemistry, Rzeszow University of Technology, 35-959 Rzeszow, Poland; (E.C.); (K.L.-S.)
| | - Katarzyna Lecka-Szlachta
- Department of Biotechnology and Bioinformatics, Faculty of Chemistry, Rzeszow University of Technology, 35-959 Rzeszow, Poland; (E.C.); (K.L.-S.)
| | - Daniel Kamiński
- Department of General and Coordination Chemistry and Crystallography, Institute of Chemical Sciences, Maria Curie-Sklodowska University in Lublin, 20-031 Lublin, Poland;
| | - Bernadette Creaven
- School of Chemical and Pharmaceutical Sciences, Technological University Dublin, Central Quad, Grangegorman, D07 ADY7 Dublin, Ireland;
| | - Anna Miłoś
- Department of Biotechnology and Bioinformatics, Faculty of Chemistry, Doctoral School of Engineering and Technical Sciences, Rzeszow University of Technology, 35-959 Rzeszow, Poland;
| | - Hollie Jenkins
- Department of Applied Science, Technological University Dublin, Tallaght, D24 FKT9 Dublin, Ireland;
| | - Lidia Ślusarczyk
- Department of Biophysics, University of Life Sciences in Lublin, 20-950 Lublin, Poland; (L.Ś.); (A.M.)
| | - Arkadiusz Matwijczuk
- Department of Biophysics, University of Life Sciences in Lublin, 20-950 Lublin, Poland; (L.Ś.); (A.M.)
| |
Collapse
|
3
|
Feng D, Zhang A, Yang Y, Yang P. Coumarin-containing hybrids and their antibacterial activities. Arch Pharm (Weinheim) 2020; 353:e1900380. [PMID: 32253782 DOI: 10.1002/ardp.201900380] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 03/09/2020] [Accepted: 03/17/2020] [Indexed: 12/31/2022]
Abstract
Infections caused by Gram-positive and -negative bacteria are one of the foremost causes of morbidity and mortality globally. Antibiotics are the mainstay of therapy for bacterial infections, but the emergence and wide spread of drug-resistant pathogens have already become a huge issue for public healthcare systems. The coumarin moiety, which is ubiquitous in nature, could bind to the B subunit of DNA gyrase in bacteria and inhibit DNA supercoiling by blocking the ATPase activity; hence, coumarin derivatives possess potential antibacterial activity. Several coumarin-containing hybrids such as coumermycin A1, clorobiocin, and novobiocin have already been used in clinical practice for the treatment of various bacterial infections; thus, it is conceivable that hybridization of the coumarin moiety with other antibacterial pharmacophores may provide opportunities for the development of novel antibiotics. This review outlines the advances in coumarin-containing hybrids with antibacterial potential in the recent 5 years and the structure-activity relationships are also discussed.
Collapse
Affiliation(s)
- Dongxu Feng
- Department of Disinfection Center, Zhuji Affiliated Hospital of Shaoxing University, Shaoxing, Zhejiang, China
| | - Aihua Zhang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, Guizhou, China
| | - Yuan Yang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, Guizhou, China.,Dong Medicine Key Laboratory of Hunan Province, Department of Laboratory Medicine, Hunan University of Medicine, Huaihua, Hunan, China
| | - Peng Yang
- Dong Medicine Key Laboratory of Hunan Province, Department of Laboratory Medicine, Hunan University of Medicine, Huaihua, Hunan, China
| |
Collapse
|
4
|
Li Q, An R, Xu Y, Zhou M, Li Y, Guo C, Wang R. Synthesis of (1,3,4-thiadiazol-2-yl)-acrylamide derivatives as potential antitumor agents against acute leukemia cells. Bioorg Med Chem Lett 2020; 30:127114. [PMID: 32209294 DOI: 10.1016/j.bmcl.2020.127114] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/12/2020] [Accepted: 03/14/2020] [Indexed: 12/01/2022]
Abstract
A lead compound with the (1,3,4-thiadiazol-2-yl)-acrylamide scaffold was discovered to have significant cytotoxicity on several tumor cell lines in an in-house cell-based screening. A total of 60 derivative compounds were then synthesized and tested in a CCK-8 cell viability assay. Some of them exhibited improved cytotoxic activities. The most potent compounds had IC50 values of 1-5 μM on two acute leukemia tumor cell lines, i.e. RS4;11 and HL-60. Flow cytometry analysis of several active compounds and detection of caspase activation indicated that they induced caspase-dependent apoptosis. It was also encouraging to observe that these compounds did not have obvious cytotoxicity on normal cells, i.e. IC50 > 50 μM on HEK-293T cells. Although the molecular targets of this class of compound are yet to be revealed, our current results suggest that this class of compound represents a new possibility for developing drug candidates against acute leukemia.
Collapse
Affiliation(s)
- Qing Li
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China
| | - Ran An
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Yaochun Xu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China
| | - Mi Zhou
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China
| | - Yan Li
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, People's Republic of China.
| | - Chun Guo
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China.
| | - Renxiao Wang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China; Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, People's Republic of China; Shanxi Key Laboratory of Innovative Drugs for the Treatment of Serious Diseases Basing on Chronic Inflammation, College of Traditional Chinese Medicines, Shanxi University of Chinese Medicine, Taiyuan, Shanxi 030619, People's Republic of China.
| |
Collapse
|
5
|
Abu El-Azm FSM, El-Shahawi MM, Elgubbi AS, Madkour HMF. Design, synthesis, anti-proliferative activity, and molecular docking studies of novel benzo[f]chromene, chromeno [2,3-d]pyrimidines and chromenotriazolo[1,5-c]pyrimidines. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2019.1710850] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | - Manal M. El-Shahawi
- Faculty of Science, Chemistry Department, Ain Shams University, Cairo, Egypt
| | - Amna S. Elgubbi
- Faculty of Science, Chemistry Department, Misurata University, Misurata, Libya
| | | |
Collapse
|
6
|
Lv M, Liu G, Jia M, Xu H. Synthesis of matrinic amide derivatives containing 1,3,4-thiadiazole scaffold as insecticidal/acaricidal agents. Bioorg Chem 2018; 81:88-92. [DOI: 10.1016/j.bioorg.2018.07.034] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 07/18/2018] [Accepted: 07/31/2018] [Indexed: 01/24/2023]
|
7
|
Desai NC, Trivedi A, Somani H, Jadeja KA, Vaja D, Nawale L, Khedkar VM, Sarkar D. Synthesis, biological evaluation, and molecular docking study of pyridine clubbed 1,3,4-oxadiazoles as potential antituberculars. SYNTHETIC COMMUN 2018. [DOI: 10.1080/00397911.2017.1410892] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- N. C. Desai
- Division of Medicinal Chemistry, Department of Chemistry (DST-FIST Sponsored), Maharaja Krishnakumarsinhji Bhavnagar University, Bhavnagar, India
| | - Amit Trivedi
- Division of Medicinal Chemistry, Department of Chemistry (DST-FIST Sponsored), Maharaja Krishnakumarsinhji Bhavnagar University, Bhavnagar, India
| | - Hardik Somani
- Division of Medicinal Chemistry, Department of Chemistry (DST-FIST Sponsored), Maharaja Krishnakumarsinhji Bhavnagar University, Bhavnagar, India
| | - Krunalsinh A. Jadeja
- Division of Medicinal Chemistry, Department of Chemistry (DST-FIST Sponsored), Maharaja Krishnakumarsinhji Bhavnagar University, Bhavnagar, India
| | - Darshita Vaja
- Division of Medicinal Chemistry, Department of Chemistry (DST-FIST Sponsored), Maharaja Krishnakumarsinhji Bhavnagar University, Bhavnagar, India
| | - Laxman Nawale
- CSIR-National Chemical Laboratory, Combi Chem-Bio Resource Centre, Pune, India
| | - Vijay M. Khedkar
- Department of Pharmaceutical Chemistry, Shri Vile Parle Kelavani Mandal’s Institute of Pharmacy, Mumbai, India
| | - Dhiman Sarkar
- CSIR-National Chemical Laboratory, Combi Chem-Bio Resource Centre, Pune, India
| |
Collapse
|