1
|
Biswas A, Gharami S, Maji A, Guha S, Das G, Naskar R, Mondal TK. A distinctive and proficient fluorescent switch for ratiometric recognition of the menacing cyanide ion: biological studies on MDA-MB-231 cells. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:8010-8018. [PMID: 39469889 DOI: 10.1039/d4ay01676a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
A new fluorescent ratiometric switch (BOHB) was developed for swift and selective detection of cyanide ions in aqueous media without any interference from other competitive anions. Upon gradual addition of cyanide ions into the probe solution, a prominent fluorescence color change from yellow to cyan was observed under a UV chamber. The fluorescence changes thus observed were ratiometric, and the detection limit of this new probe was found to be (22.1 ± 0.89) μM, suggesting that the efficiency of BOHB for the detection of cyanide ions is brilliant even at a minute level. The blue shift in fluorescence intensity upon the addition of cyanide ions was attributed to the deprotonation mechanism of acidic protons present in BOHB. This phenomenon was further explored using 1H-NMR study, which supported the mechanism. Further, stability study was performed over a period of 5 days to prominently establish the stability of BOHB. The probe is also highly capable of recognizing CN- within a very short time-span (almost 15 seconds), thereby making it a brilliant fluorescent switch for the swift recognition of CN-. Furthermore, BOHB was employed for real water sample analysis to display its practical application. Besides, the easy-to-prepare dipstick experiment provides a simple, reusable and recyclable protocol for the suitable qualitative identification of CN-. Lastly, triple negative breast adenocarcinoma (MDA-MB-231) cells were made susceptible to CN- sensing in a biological system, thereby making BOHB a biomarker tool.
Collapse
Affiliation(s)
- Amitav Biswas
- Department of Chemistry, Jadavpur University, Kolkata-700 032, India.
| | - Saswati Gharami
- Department of Chemistry, Jadavpur University, Kolkata-700 032, India.
| | - Atanu Maji
- Department of Chemistry, Jadavpur University, Kolkata-700 032, India.
| | - Subhabrata Guha
- Department of Signal Transduction and Biogenis Amines (STBA), Chittaranjan National Cancer Institute, Kolkata-700026, India
| | - Gaurav Das
- Department of Signal Transduction and Biogenis Amines (STBA), Chittaranjan National Cancer Institute, Kolkata-700026, India
| | - Rahul Naskar
- Department of Chemistry, Jadavpur University, Kolkata-700 032, India.
| | | |
Collapse
|
2
|
Li D, Peng S, Zhou X, Shen L, Yang X, Xu H, Redshaw C, Zhang C, Zhang Q. A Coumarin-Hemicyanine Deep Red Dye with a Large Stokes Shift for the Fluorescence Detection and Naked-Eye Recognition of Cyanide. Molecules 2024; 29:618. [PMID: 38338363 PMCID: PMC10856579 DOI: 10.3390/molecules29030618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/22/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
In this study, we synthesized a coumarin-hemicyanine-based deep red fluorescent dye that exhibits an intramolecular charge transfer (ICT). The probe had a large Stokes shift of 287 nm and a large molar absorption coefficient (ε = 7.5 × 105 L·mol-1·cm-1) and is best described as a deep red luminescent fluorescent probe with λem = 667 nm. The color of probe W changed significantly when it encountered cyanide ions (CN-). The absorption peak (585 nm) decreased gradually, and the absorption peak (428 nm) increased gradually, so that cyanide (CN-) could be identified by the naked eye. Moreover, an obvious fluorescence change was evident before and after the reaction under irradiation using 365 nm UV light. The maximum emission peak (667 nm) decreased gradually, whilst the emission peak (495 nm) increased gradually, which allowed for the proportional fluorescence detection of cyanide (CN-). Using fluorescence spectrometry, the fluorescent probe W could linearly detect CN- over the concentration range of 1-9 μM (R2 = 9913, RSD = 0.534) with a detection limit of 0.24 μM. Using UV-Vis spectrophotometry, the linear detection range for CN- was found to be 1-27 μM (R2 = 0.99583, RSD = 0.675) with a detection limit of 0.13 μM. The sensing mechanism was confirmed by 1H NMR spectroscopic titrations, 13C NMR spectroscopy, X-ray crystallographic analysis and HRMS. The recognition and detection of CN- by probe W was characterized by a rapid response, high selectivity, and high sensitivity. Therefore, this probe provides a convenient, effective and economical method for synthesizing and detecting cyanide efficiently and sensitively.
Collapse
Affiliation(s)
- Dongmei Li
- School of Basic Medical Science, Guizhou Medical University, Guiyang 550004, China; (D.L.); (S.P.); (X.Z.); (L.S.); (X.Y.); (C.Z.)
| | - Senlin Peng
- School of Basic Medical Science, Guizhou Medical University, Guiyang 550004, China; (D.L.); (S.P.); (X.Z.); (L.S.); (X.Y.); (C.Z.)
| | - Xu Zhou
- School of Basic Medical Science, Guizhou Medical University, Guiyang 550004, China; (D.L.); (S.P.); (X.Z.); (L.S.); (X.Y.); (C.Z.)
| | - Lingyi Shen
- School of Basic Medical Science, Guizhou Medical University, Guiyang 550004, China; (D.L.); (S.P.); (X.Z.); (L.S.); (X.Y.); (C.Z.)
| | - Xianjiong Yang
- School of Basic Medical Science, Guizhou Medical University, Guiyang 550004, China; (D.L.); (S.P.); (X.Z.); (L.S.); (X.Y.); (C.Z.)
| | - Hong Xu
- School of Basic Medical Science, Guizhou Medical University, Guiyang 550004, China; (D.L.); (S.P.); (X.Z.); (L.S.); (X.Y.); (C.Z.)
| | - Carl Redshaw
- Chemistry, School of Natural Sciences, University of Hull, Cottingham Road, Hull HU6 7RX, UK;
| | - Chunlin Zhang
- School of Basic Medical Science, Guizhou Medical University, Guiyang 550004, China; (D.L.); (S.P.); (X.Z.); (L.S.); (X.Y.); (C.Z.)
| | - Qilong Zhang
- School of Basic Medical Science, Guizhou Medical University, Guiyang 550004, China; (D.L.); (S.P.); (X.Z.); (L.S.); (X.Y.); (C.Z.)
| |
Collapse
|
3
|
Pal A, Karmakar M, Bhatta SR, Thakur A. A detailed insight into anion sensing based on intramolecular charge transfer (ICT) mechanism: A comprehensive review of the years 2016 to 2021. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214167] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
4
|
Munusamy S, Swaminathan S, Jothi D, Muralidharan VP, Iyer SK. A sensitive and selective BINOL based ratiometric fluorescence sensor for the detection of cyanide ions. RSC Adv 2021; 11:15656-15662. [PMID: 35481207 PMCID: PMC9029250 DOI: 10.1039/d1ra01213d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 04/20/2021] [Indexed: 12/17/2022] Open
Abstract
A highly selective, novel BINOL based sensor BBCN has been developed for the fluorescent ratiometric detection of cyanide ions (CN−). The optical study revealed that BBCN exhibited unique spectral changes only with cyanide ions in the presence of other competing ions. Besides, an apparent fluorescent colour change from green to blue was observed. A clear linear relationship was observed between the fluorescence ratiometric ratio of BBCN and the concentration of CN− with a reasonably low detection limit (LOD) of 189 nM (507 ppb). The optical response was due to the nucleophilic addition of CN− to the dicyanovinyl group of the sensor, which compromises the probe's intramolecular charge transfer. This mechanism was well confirmed by Job's plot, 1H-NMR and ESI-MS studies. BBCN showed immediate spectral response towards (1 second) CN− and detection could be realized in a broad pH window. Furthermore, the practical utility of BBCN was studied by test paper-based analysis and the detection of CN− in various water resources. A highly selective, novel BINOL based sensor BBCN has been developed for the fluorescent ratiometric detection of cyanide ions (CN−).![]()
Collapse
Affiliation(s)
- Sathishkumar Munusamy
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology Vellore-632014 India
| | - Sathish Swaminathan
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology Vellore-632014 India
| | - Dhanapal Jothi
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology Vellore-632014 India
| | - Vivek Panyam Muralidharan
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology Vellore-632014 India
| | | |
Collapse
|
5
|
Manickam S, Iyer SK. Highly sensitive turn-off fluorescent detection of cyanide in aqueous medium using dicyanovinyl-substituted phenanthridine fluorophore. RSC Adv 2020; 10:11791-11799. [PMID: 35496610 PMCID: PMC9050552 DOI: 10.1039/d0ra00623h] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 03/03/2020] [Indexed: 11/21/2022] Open
Abstract
Herein, the turn-off fluorescence sensor of 2-((4'-(7,8,13,14-tetrahydrodibenzo[a,i]phenanthridin-5-yl)-[1,1'-biphenyl]-4-yl)methylene)malanonitrile (7) was developed for the recognition of CN- ions and studied using different spectroscopic techniques. The selective recognition of CN- ions by 7 was investigated via UV-vis spectroscopy and fluorescence studies in acetonitrile solvent, which exhibited an obvious color change from orange to colorless under 365 UV light. The sensor compound 7 possesses a high binding constant (K a) for CN- ions in the order of 5.22 × 106 M-1. The results from the interference studies revealed that probe 7 shows high sensing selectivity and sensitivity for CN- ions over other competitive anions. Probe 7 interacts with cyanide to form a 1 : 1 adduct, and this mechanism was further verified by 1H NMR titration, Job's plot analyses and DFT studies. The sensor probe 7 exhibits advantages such as low limit of detection (LOD) of 39.3 nM, fast response and sensing in a wide pH range of 3 to 11. The practical application of 7 was successfully demonstrated for the determination of CN- ions in test paper strips and various water samples.
Collapse
Affiliation(s)
- Saravanakumar Manickam
- Department of Chemistry, School of Advanced Sciences, VIT University Vellore-632014 India
| | | |
Collapse
|
6
|
Wang J, He J, Zhang J, Chen Z, Yin X. Controllable and reversible proton transfer for inorganic cyanide visual sensing based on the deprotonation of azo-phenolic hydroxyl group. Supramol Chem 2019. [DOI: 10.1080/10610278.2019.1676424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Jun Wang
- Key Lab of Functional Materials Chemistry of Guizhou Province, College of Chemistry and Material Science, Guizhou Normal University, Guiyang, China
| | - Jinjun He
- Key Lab of Functional Materials Chemistry of Guizhou Province, College of Chemistry and Material Science, Guizhou Normal University, Guiyang, China
| | - Jinsheng Zhang
- Key Lab of Functional Materials Chemistry of Guizhou Province, College of Chemistry and Material Science, Guizhou Normal University, Guiyang, China
| | - Zhiming Chen
- Key Lab of Functional Materials Chemistry of Guizhou Province, College of Chemistry and Material Science, Guizhou Normal University, Guiyang, China
| | - Xiaogang Yin
- Key Lab of Functional Materials Chemistry of Guizhou Province, College of Chemistry and Material Science, Guizhou Normal University, Guiyang, China
| |
Collapse
|