1
|
Javahershenas R, Han J, Kazemi M, Jervis PJ. Recent Advances in the Application of 2-Aminobenzothiazole to the Multicomponent Synthesis of Heterocycles. ChemistryOpen 2024; 13:e202400185. [PMID: 39246248 PMCID: PMC11564876 DOI: 10.1002/open.202400185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/26/2024] [Indexed: 09/10/2024] Open
Abstract
Heterocycles are a vital class of compounds in numerous fields, including drug discovery, agriculture, and materials science. Efficient methods for the synthesis of heterocycles remain critical for meeting the demands of these industries. Recent advances in multicomponent reactions (MCRs) utilizing 2-aminobenzothiazole (ABT) have shown promising results for the formation of heterocycles. The versatility of 2-aminobenzothiazole in this context has enabled the rapid and efficient construction of diverse heterocyclic structures. Various synthetic methodologies and reactions involving 2-aminobenzothiazole are discussed, highlighting its importance as a valuable building block in the synthesis of complex heterocycles. The potential applications of these heterocycles in drug discovery and material science are also explored. Overall, this review provides a comprehensive overview of the current state of research in the field and offers insights into the future directions of this promising area of study. We highlight the potential of ABT as a versatile and sustainable starting material in heterocyclic synthesis via MCRs, with significant implications for the chemical industry.
Collapse
Affiliation(s)
- Ramin Javahershenas
- Department of Organic ChemistryFaculty of ChemistryUrmia UniversityUrmiaIran
| | - Jianlin Han
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest ResourcesCollege of Chemical EngineeringNanjingForestry UniversityNanjing210037China
| | - Mosstafa Kazemi
- Young Researchers and Elite ClubTehran BranchIslamic Azad UniversityTehranIran
| | - Peter J. Jervis
- Center of ChemistryUniversity of MinhoCampus de Gualtar4710-057BragaPortugal
| |
Collapse
|
2
|
Desenko SM, Gorobets MY, Lipson VV, Sakhno YI, Chebanov VA. Dihydroazolopyrimidines: Past, Present and Perspectives in Synthesis, Green Chemistry and Drug Discovery. CHEM REC 2024; 24:e202300244. [PMID: 37668291 DOI: 10.1002/tcr.202300244] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/22/2023] [Indexed: 09/06/2023]
Abstract
Dihydroazolopyrimidines are an important class of heterocycles that are isosteric to natural purines and are therefore of great interest primarily as drug-like molecules. In contrast to the heteroaromatic analogs, synthetic approaches to these compounds were developed much later, and their chemical properties and biological activity have not been studied in detail until recently. In the review, different ways to build dihydroazolopyrimidine systems from different building blocks are described - via the initial formation of a partially hydrogenated pyrimidine ring or an azole ring, as well as a one-pot assembly of azole and azine fragments. Special attention is given to modern approaches: multicomponent reactions, green chemistry, and the use of non-classical activation methods. Information on the chemical properties of dihydroazolopyrimidines and the prospects for their use in the design of drugs of various profiles are also summarized in this review.
Collapse
Affiliation(s)
- Serhiy M Desenko
- Department of Organic and Bioorganic Chemistry, State Scientific Institution "Institute for Single Crystals" NAS of Ukraine, Nauky ave. 60, Kharkiv, Ukraine, 61072
| | - Mykola Yu Gorobets
- Department of Organic and Bioorganic Chemistry, State Scientific Institution "Institute for Single Crystals" NAS of Ukraine, Nauky ave. 60, Kharkiv, Ukraine, 61072
| | - Victoria V Lipson
- Department of Organic and Bioorganic Chemistry, State Scientific Institution "Institute for Single Crystals" NAS of Ukraine, Nauky ave. 60, Kharkiv, Ukraine, 61072
- Faculty of Chemistry, V.N. Karazin Kharkiv National University, Svobody sq. 4, Kharkiv, Ukraine, 61022
- Department of Medicinal Chemistry, State Institution "V. Ya. Danilevsky Institute for Endocrine Pathology Problems" NAMS of Ukraine, Alchevskikh St. 10, Kharkiv, Ukraine, 61002
| | - Yana I Sakhno
- Department of Organic and Bioorganic Chemistry, State Scientific Institution "Institute for Single Crystals" NAS of Ukraine, Nauky ave. 60, Kharkiv, Ukraine, 61072
| | - Valentyn A Chebanov
- Department of Organic and Bioorganic Chemistry, State Scientific Institution "Institute for Single Crystals" NAS of Ukraine, Nauky ave. 60, Kharkiv, Ukraine, 61072
- Faculty of Chemistry, V.N. Karazin Kharkiv National University, Svobody sq. 4, Kharkiv, Ukraine, 61022
| |
Collapse
|
3
|
Bouone YO, Bouzina A, Sayad R, Djemel A, Benaceur F, Zoukel A, Ibrahim-Ouali M, Aouf NE, Bouchareb F. BiCl 3-catalyzed green synthesis of 4-hydroxy-2-quinolone analogues under microwave irradiation. RSC Adv 2023; 13:28030-28041. [PMID: 37746335 PMCID: PMC10517106 DOI: 10.1039/d3ra05289c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/02/2023] [Indexed: 09/26/2023] Open
Abstract
Traditional chemical synthesis, which involves the use of dangerous protocols, hazardous solvents, and toxic products and catalysts, is considered environmentally inappropriate and harmful to human health. Bearing in mind its numerous drawbacks, it has become crucial to substitute conventional chemistry with green chemistry which is safer, more ecofriendly and more effective in terms of time and selectivity. Elaborating synthetic protocols producing interesting new compounds using both microwave heating and heterogeneous non-toxic catalysts is acknowledged as a green approach that avoids many classical chemistry-related problems. In the current study, β-enaminones were used as precursors to the synthesis of modified 4-hydroxy-2-quinolone analogues. The synthesis was monitored in a benign way under microwave irradiation and was catalyzed by bismuth chloride III in an amount of 20 mol%. This method is privileged by using a non-corrosive, non-toxic, low-cost and available bismuth Lewis acid catalyst that has made it more respectful to the demands of green chemistry. The synthesized compounds were obtained in moderate to good yields (51-71%) and were characterized by 1H, 13C NMR, and IR spectroscopy as well as elemental analysis. Compound 5i was subjected to a complete structural elucidation using the X-ray diffraction method, and the results show the obtention of the enolic tautomeric form.
Collapse
Affiliation(s)
- Yousra Ouafa Bouone
- Laboratory of Applied Organic Chemistry, Bioorganic Chemistry Group, Department of Chemistry, Sciences Faculty, Badji-Mokhtar - Annaba University Box 12 23000 Annaba Algeria
- Laboratory of Applied Organic Chemistry, Synthesis of Biomolecules and Molecular Modelling Group, Department of Chemistry, Sciences Faculty, Badji-Mokhtar - Annaba University Box 12 23000 Annaba Algeria
| | - Abdeslem Bouzina
- Laboratory of Applied Organic Chemistry, Bioorganic Chemistry Group, Department of Chemistry, Sciences Faculty, Badji-Mokhtar - Annaba University Box 12 23000 Annaba Algeria
| | - Rayene Sayad
- Laboratory of Applied Organic Chemistry, Bioorganic Chemistry Group, Department of Chemistry, Sciences Faculty, Badji-Mokhtar - Annaba University Box 12 23000 Annaba Algeria
| | - Abdelhak Djemel
- Research Unit in Medicinal Plants, URPM, Research Center of Biotechnology, CRBt 3000 Laghouat 25000 Constantine Algeria
| | - Farouk Benaceur
- Research Unit in Medicinal Plants, URPM, Research Center of Biotechnology, CRBt 3000 Laghouat 25000 Constantine Algeria
| | - Abdelhalim Zoukel
- Technical Platform of Physico-Chemical Analysis (PTAPC-Laghout-CRAPC), University of Laghouat Laghouat 03000 Algeria
| | | | - Nour-Eddine Aouf
- Laboratory of Applied Organic Chemistry, Bioorganic Chemistry Group, Department of Chemistry, Sciences Faculty, Badji-Mokhtar - Annaba University Box 12 23000 Annaba Algeria
| | - Fouzia Bouchareb
- Laboratory of Applied Organic Chemistry, Synthesis of Biomolecules and Molecular Modelling Group, Department of Chemistry, Sciences Faculty, Badji-Mokhtar - Annaba University Box 12 23000 Annaba Algeria
- Faculty of Sciences and Technology, Department of Chemistry, Chadli Bendjedid - EL Tarf University P.O. Box: 73 El Tarf 36000 Algeria
| |
Collapse
|
4
|
Sethiya A, Kalal P, Teli P, Sahiba N, Soni J, Joshi D, Agarwal S. Highly efficient and diversity-oriented solvent-free synthesis of biologically active fused heterocycles using glycerol-based sulfonic acid. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04822-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
5
|
Sánchez-Sancho F, Escolano M, Gaviña D, Csáky AG, Sánchez-Roselló M, Díaz-Oltra S, del Pozo C. Synthesis of 3,4-Dihydropyrimidin(thio)one Containing Scaffold: Biginelli-like Reactions. Pharmaceuticals (Basel) 2022; 15:ph15080948. [PMID: 36015096 PMCID: PMC9413519 DOI: 10.3390/ph15080948] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/24/2022] [Accepted: 07/27/2022] [Indexed: 02/01/2023] Open
Abstract
The interest in 3,4-dihydropyrimidine-2(1H)-(thio)ones is increasing every day, mainly due to their paramount biological relevance. The Biginelli reaction is the classical approach to reaching these scaffolds, although the product diversity suffers from some limitations. In order to overcome these restrictions, two main approaches have been devised. The first one involves the modification of the conventional components of the Biginelli reaction and the second one refers to the postmodification of the Biginelli products. Both strategies have been extensively revised in this manuscript. Regarding the first one, initially, the modification of one of the components was covered. Although examples of modifications of the three of them were described, by far the modification of the keto ester counterpart was the most popular approach, and a wide variety of different enolizable carbonylic compounds were used; moreover, changes in two or the three components were also described, broadening the substitution of the final dihydropyrimidines. Together with these modifications, the use of Biginelli adducts as a starting point for further modification was also a very useful strategy to decorate the final heterocyclic structure.
Collapse
Affiliation(s)
| | - Marcos Escolano
- Departamento de Química Orgánica, University of Valencia, Avda Vicente Andrés Estellés s/n, 46100 Valencia, Spain; (M.E.); (D.G.); (M.S.-R.)
| | - Daniel Gaviña
- Departamento de Química Orgánica, University of Valencia, Avda Vicente Andrés Estellés s/n, 46100 Valencia, Spain; (M.E.); (D.G.); (M.S.-R.)
| | - Aurelio G. Csáky
- Instituto Pluridisciplinar, Universidad Complutense, Campus de Excelencia Internacional Moncloa, Paseo de Juan XXIII, 1, 28040 Madrid, Spain;
| | - María Sánchez-Roselló
- Departamento de Química Orgánica, University of Valencia, Avda Vicente Andrés Estellés s/n, 46100 Valencia, Spain; (M.E.); (D.G.); (M.S.-R.)
| | - Santiago Díaz-Oltra
- Departamento de Química Orgánica, University of Valencia, Avda Vicente Andrés Estellés s/n, 46100 Valencia, Spain; (M.E.); (D.G.); (M.S.-R.)
- Correspondence: (S.D.-O.); (C.d.P.)
| | - Carlos del Pozo
- Departamento de Química Orgánica, University of Valencia, Avda Vicente Andrés Estellés s/n, 46100 Valencia, Spain; (M.E.); (D.G.); (M.S.-R.)
- Correspondence: (S.D.-O.); (C.d.P.)
| |
Collapse
|
6
|
Shiri P, Niknam E, Aboonajmi J, Khalafi-Nezhad A, Amani AM. A Quick Access to Structurally Diverse Triazoloquinazoline Heterocycles via the MIL-101(Cr)-Catalyzed One-Pot Multi-Component Reaction of a Series of Benzaldehydes, Dimedone, and 1H-1,2,4-Triazol-3-Amine Under Green Conditions. Front Chem 2022; 10:898658. [PMID: 35958232 PMCID: PMC9357931 DOI: 10.3389/fchem.2022.898658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
A one-pot multicomponent reaction of a variety of benzaldehydes, dimedone, and 1H-1,2,4-triazol-3-amine for the efficient synthesis of quinazolinone derivatives under green conditions is reported. It was proved that MIL-101(Cr) could carry out successfully this multicomponent strategy to afford target products in high yields. The scope and limitation of this catalytic system concerning the aldehyde substrates were explored. Different aldehydes could be conveniently delivered to quinazolinones at room temperature with short reaction times in an atom-economy way. Notably, MIL-101(Cr) was also characterized by different analytic methods such as FT-IR, SEM, and EDX. The outstanding benefits of this methodology are the availability of substrates, using green conditions, excellent functional group compatibility, and reusability of catalysts, therefore providing easy access to a range of products of interest in organic and medicinal chemistry.
Collapse
Affiliation(s)
- Pezhman Shiri
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- *Correspondence: Pezhman Shiri, ;, ; Ali Mohammad Amani,
| | - Esmaeil Niknam
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz, Iran
| | - Jasem Aboonajmi
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz, Iran
| | - Ali Khalafi-Nezhad
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz, Iran
| | - Ali Mohammad Amani
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- *Correspondence: Pezhman Shiri, ;, ; Ali Mohammad Amani,
| |
Collapse
|
7
|
Kamali F, Shirini F, Ardaki MS. Fe 3O 4@SiO 2-Supported Ionic Liquid as an Efficient Catalyst for the One-Pot Synthesis of Benzimidazolo-Quinazolinone Derivatives under Solvent-Free Conditions. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2094970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Fatemeh Kamali
- Department of Chemistry, College of Science, University of Guilan, Rasht, Iran
| | - Farhad Shirini
- Department of Chemistry, College of Science, University of Guilan, Rasht, Iran
| | | |
Collapse
|
8
|
Wang Y, Li W, Du C. One-pot Synthesis of Tetrahydrobenzo[4,5]imidazo[2, 1-b]quinazolin-1(2H)-ones Using β-Cyclodextrin-SO3H as a Biocompatible and Recoverable Catalyst in Water. ORG PREP PROCED INT 2021. [DOI: 10.1080/00304948.2021.1994816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Yinglei Wang
- School of Biological and Chemical Engineering, Nanyang Institute of Technology, Nanyang, China
| | - Wenhuan Li
- School of Biological and Chemical Engineering, Nanyang Institute of Technology, Nanyang, China
| | - Chaojun Du
- School of Biological and Chemical Engineering, Nanyang Institute of Technology, Nanyang, China
| |
Collapse
|
9
|
Longo LS, Siqueira FA, Anjos NS, Santos GFD. Scandium(III)‐Triflate‐Catalyzed Multicomponent Reactions for the Synthesis of Nitrogen Heterocycles. ChemistrySelect 2021. [DOI: 10.1002/slct.202101032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Luiz S. Longo
- Department of Pharmaceutical Sciences Federal University of São Paulo - UNIFESP Rua São Nicolau 210 09913-030 Diadema SP Brazil
| | - Fernanda A. Siqueira
- Department of Chemistry Federal University of São Paulo - UNIFESP Rua Prof. Arthur Riedel 275 09972-270 Diadema SP Brazil
| | - Nicolas S. Anjos
- Department of Pharmaceutical Sciences Federal University of São Paulo - UNIFESP Rua São Nicolau 210 09913-030 Diadema SP Brazil
| | - Gabriela F. D. Santos
- Department of Pharmaceutical Sciences Federal University of São Paulo - UNIFESP Rua São Nicolau 210 09913-030 Diadema SP Brazil
| |
Collapse
|
10
|
Fedotov VV, Rusinov VL, Ulomsky EN, Mukhin EM, Gorbunov EB, Chupakhin ON. Pyrimido[1,2- a]benzimidazoles: synthesis and perspective of their pharmacological use. Chem Heterocycl Compd (N Y) 2021; 57:383-409. [PMID: 34024913 PMCID: PMC8121645 DOI: 10.1007/s10593-021-02916-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/12/2021] [Indexed: 01/26/2023]
Abstract
The review presents data on the synthesis as well as studies of biological activity of new derivatives of pyrimido[1,2-a]benzimidazoles published over the last decade. The bibliography of the review includes 136 sources.
Collapse
Affiliation(s)
- Victor V. Fedotov
- Ural Federal University named after the first President of Russia B. N. Yeltsin, 19 Mira St, Yekaterinburg, 620002 Russia
| | - Vladimir L. Rusinov
- Ural Federal University named after the first President of Russia B. N. Yeltsin, 19 Mira St, Yekaterinburg, 620002 Russia
- Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, 22/20 Sofyi Kovalevskoi St, Yekaterinburg, 620108 Russia
| | - Evgeny N. Ulomsky
- Ural Federal University named after the first President of Russia B. N. Yeltsin, 19 Mira St, Yekaterinburg, 620002 Russia
- Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, 22/20 Sofyi Kovalevskoi St, Yekaterinburg, 620108 Russia
| | - Evgeny M. Mukhin
- Ural Federal University named after the first President of Russia B. N. Yeltsin, 19 Mira St, Yekaterinburg, 620002 Russia
| | - Evgeny B. Gorbunov
- Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, 22/20 Sofyi Kovalevskoi St, Yekaterinburg, 620108 Russia
| | - Oleg N. Chupakhin
- Ural Federal University named after the first President of Russia B. N. Yeltsin, 19 Mira St, Yekaterinburg, 620002 Russia
- Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, 22/20 Sofyi Kovalevskoi St, Yekaterinburg, 620108 Russia
| |
Collapse
|
11
|
Zhilitskaya LV, Yarosh NО. Synthesis of biologically active derivatives of 2-aminobenzothiazole. Chem Heterocycl Compd (N Y) 2021; 57:369-373. [PMID: 33994555 PMCID: PMC8113786 DOI: 10.1007/s10593-021-02914-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 02/17/2021] [Indexed: 10/31/2022]
Abstract
The minireview considers the current trends in the synthesis of some biologically active compounds based on 2-aminobenzothiazole. The presented information covers publications of the last five years.
Collapse
Affiliation(s)
- Larisa V. Zhilitskaya
- Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky St, Irkutsk, 664033 Russia
| | - Nina О. Yarosh
- Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky St, Irkutsk, 664033 Russia
| |
Collapse
|
12
|
Gulati S, John SE, Shankaraiah N. Microwave-assisted multicomponent reactions in heterocyclic chemistry and mechanistic aspects. Beilstein J Org Chem 2021; 17:819-865. [PMID: 33968258 PMCID: PMC8077743 DOI: 10.3762/bjoc.17.71] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 04/01/2021] [Indexed: 12/13/2022] Open
Abstract
Microwave-assisted (MWA) multicomponent reactions (MCRs) have successfully emerged as one of the useful tools in the synthesis of biologically relevant heterocycles. These reactions are strategically employed for the generation of a variety of heterocycles along with multiple point diversifications. Over the last few decades classical MCRs such as Ugi, Biginelli, etc. have witnessed enhanced yield and efficiency with microwave assistance. The highlights of MWA-MCRs are high yields, reduced reaction time, selectivity, atom economy and simpler purification techniques, such an approach can accelerate the drug discovery process. The present review focuses on the recent advances in MWA-MCRs and their mechanistic insights over the past decade and shed light on its advantage over the conventional approach.
Collapse
Affiliation(s)
- Shivani Gulati
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India
| | - Stephy Elza John
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India
| | - Nagula Shankaraiah
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India
| |
Collapse
|
13
|
Zhilitskaya LV, Shainyan BA, Yarosh NO. Modern Approaches to the Synthesis and Transformations of Practically Valuable Benzothiazole Derivatives. Molecules 2021; 26:2190. [PMID: 33920281 PMCID: PMC8070523 DOI: 10.3390/molecules26082190] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/04/2021] [Accepted: 04/09/2021] [Indexed: 01/07/2023] Open
Abstract
The review is devoted to modern trends in the chemistry of 2-amino and 2-mercapto substituted benzothiazoles covering the literature since 2015. The reviewed heterocycles belong to biologically active and industrially demanded compounds. Newly developed synthesis methods can be divided into conventional multistep processes and one-pot, atom economy procedures, realized using green chemistry principles and simple reagents. The easy functionalization of the 2-NH2 and 2-SH groups and the benzene ring of the benzothiazole moiety allows considering them as highly reactive building blocks for organic and organoelement synthesis, including the synthesis of pharmacologically active heterocycles. The review provides a summary of findings, which may be useful for developing new drugs and materials and new synthetic approaches and patterns of reactivity.
Collapse
Affiliation(s)
| | - Bagrat A. Shainyan
- E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky Street, 664033 Irkutsk, Russia; (L.V.Z.); (N.O.Y.)
| | | |
Collapse
|
14
|
Imtiaz S, Ahmad War J, Banoo S, Khan S. α-Aminoazoles/azines: key reaction partners for multicomponent reactions. RSC Adv 2021; 11:11083-11165. [PMID: 35423648 PMCID: PMC8695948 DOI: 10.1039/d1ra00392e] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 02/23/2021] [Indexed: 12/28/2022] Open
Abstract
Aromatic α-aminoazaheterocycles are the focus of significant investigations and exploration by researchers owing to their key role in diverse biological and physiological processes. The existence of their derivatives in numerous drugs and alkaloids is due to their heterocyclic nitrogenous nature. Therefore, the synthesis of a structurally diverse range of their derivatives through simple and convenient methods represents a vital field of synthetic organic chemistry. Multicomponent reactions (MCRs) provide a platform to introduce desirable structure diversity and complexity into a molecule in a single operation with a significant reduction in the use of harmful organic waste, and hence have attracted particular attention as an excellent tool to access these derivatives. This review covers the advances made from 2010 to the beginning of 2020 in terms of the utilization of α-aminoazaheterocycles as synthetic precursors in MCRs.
Collapse
Affiliation(s)
- Shah Imtiaz
- Department of Chemistry, Aligarh Muslim University Aligarh India-202002
| | - Jahangir Ahmad War
- Department of Chemistry, National Institute of Technology Kashmir India-190006
| | - Syqa Banoo
- Department of Chemistry, Mangalayatan University Beswan Aligarh India-202146
| | - Sarfaraz Khan
- Department of Chemistry, Aligarh Muslim University Aligarh India-202002
| |
Collapse
|
15
|
Manne MR, Panicker RR, Sivaramakrishna A. Iodine catalysed first synthesis of 2-Quinolone-Benzothiazolo-Quinazolinone derivatives. SYNTHETIC COMMUN 2021. [DOI: 10.1080/00397911.2020.1821221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Madhava Reddy Manne
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore, India
| | - Rakesh R Panicker
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore, India
| | - Akella Sivaramakrishna
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore, India
| |
Collapse
|
16
|
Mohammadi Ziarani G, Mohajer F, Moradi R. Green Reactions Under Solvent-Free Conditions. MATERIALS HORIZONS: FROM NATURE TO NANOMATERIALS 2021:63-83. [DOI: 10.1007/978-981-33-6897-2_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
|
17
|
Moussa A, Rahmati A. Synthesis and characterization of silica‐coated Fe
3
O
4
nanoparticle@silylpropyl triethylammonium polyoxometalate as an organic–inorganic hybrid heterogeneous catalyst for the one‐pot synthesis of tetrahydrobenzimidazo[2,1‐
b
]quinazolin‐1(2
H
)‐ones. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5894] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
| | - Abbas Rahmati
- Department of Chemistry University of Isfahan Isfahan Iran
| |
Collapse
|
18
|
Synthesis, characterization and catalytic application of tributyl(carboxymethyl)phosphonium bromotrichloroferrate as a new magnetic ionic liquid for the preparation of 2,3-dihydroquinazolin-4(1H)-ones and 4H-pyrimidobenzothiazoles. RESEARCH ON CHEMICAL INTERMEDIATES 2020. [DOI: 10.1007/s11164-020-04183-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
19
|
Green synthesis of benzimidazoloquinazolines and 1,4-dihydropyridines using magnetic cyanoguanidine-modified chitosan as an efficient heterogeneous nanocatalyst under various conditions. MONATSHEFTE FUR CHEMIE 2020. [DOI: 10.1007/s00706-019-02542-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|