1
|
Kumar RN, Prasanth D, Midthuri PG, Ahmad SF, Badarinath AV, Karumanchi SK, Seemaladinne R, Nalluri R, Pasala PK. Unveiling the Cardioprotective Power: Liquid Chromatography-Mass Spectrometry (LC-MS)-Analyzed Neolamarckia cadamba (Roxb.) Bosser Leaf Ethanolic Extract against Myocardial Infarction in Rats and In Silico Support Analysis. PLANTS (BASEL, SWITZERLAND) 2023; 12:3722. [PMID: 37960078 PMCID: PMC10650531 DOI: 10.3390/plants12213722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023]
Abstract
Neolamarckia cadamba (Roxb.) Bosser, a member of the Rubiaceae family, is a botanical species with recognized therapeutic properties. It is commonly used in traditional medicine to treat cardiac ailments and other disorders. However, the precise active constituents and the potential mechanisms by which they manage cardiovascular disorders remain unclear. Therefore, this study aimed to ascertain the bioactive components and investigate their underlying mechanisms of action. N. cadamba is used to treat cardiovascular disorders using the integrated metabolomic methodology. An HPLC-QTOF-MS/MS analysis determined the potential chemicals in the N. cadamba leaf ethanol extract (NCEE). A thorough investigation of the NCEE samples used in this study led to the identification of 32 phytoconstituents. Of the 32 compounds, 19 obeyed Lipinski's rule of five (RO5). A molecular docking study directed towards HMG-CoA reductase used 19 molecules. The reference drug atorvastatin indicated a binding energy of -3.9 kcal/mol, while the other substances, Cinchonain Ib and Dukunolide B, revealed binding energies of -5.7 and -5.3 kcal/mol, respectively. Both phytocompounds showed no toxicity and exhibited favorable pharmacokinetic properties. In vivo study results concluded that treatment with NCEE significantly reduced the cardiac myocardial infarction (MI) marker CK-MB and atherogenic risk indices, such as the atherogenic index plasma (AIP), cardiac risk ratio (CRR), and atherogenic coefficient (AC) in isoproterenol-induced MI rats. In MI rats, NCEE therapy significantly improved the antioxidant system of the heart tissue, as evidenced by the increased levels of GSH and SOD, lower levels of the oxidative stress marker MDA, and significantly decreased HMG-CoA activity. Additionally, electrocardiogram (ECG) signals from rats treated with NCEE resembled those treated with traditional atorvastatin to treat myocardial infarction. This study used H&E staining to show that administering NCEE before treatment reduced cardiac myocyte degeneration in rats with myocardial infarction, increased the presence of intact nuclei, and increased myocardial fiber strength. The potential cardioprotective effect observed in myocardial infarction (MI) rats treated with NCEE can be extrapolated from computational data to be caused by Cinchonain Ib.
Collapse
Affiliation(s)
- Raghupathi Niranjan Kumar
- Department of Pharmacology, Santhiram College of Pharmacy, JNTUA, Nandyal 518112, Andhra Pradesh, India; (R.N.K.); (P.G.M.)
| | - Dsnbk Prasanth
- Department of Pharmacognosy, KVSR Siddhartha College of Pharmaceutical Sciences, Vijayawada 520010, Andhra Pradesh, India;
| | - Praisy Gladys Midthuri
- Department of Pharmacology, Santhiram College of Pharmacy, JNTUA, Nandyal 518112, Andhra Pradesh, India; (R.N.K.); (P.G.M.)
| | - Sheikh F. Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | | | - Srikanth Kumar Karumanchi
- Department of Pharmaceutical Chemistry, DKSS Institute of Pharmaceutical Science & Research (for Girls), Swami-Chincholi, Bhigwan 413130, Maharashtra, India;
| | | | - Rahul Nalluri
- Department of Pharmacy, Texas A&M University, Kingsville, TX 78363, USA;
| | - Praveen Kumar Pasala
- Department of Pharmacology, Raghavendra Institute of Pharmaceutical Education and Research, JNTUA, Anantapuramu 515721, Andhra Pradesh, India
| |
Collapse
|
2
|
Esmer Yİ, Çınar E, Başaran E. Design, Docking, Synthesis and Biological Evaluation of Novel Nicotinohydrazone Derivatives as Potential Butyrylcholinesterase Enzyme Inhibitor. ChemistrySelect 2022. [DOI: 10.1002/slct.202202771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yusuf İslam Esmer
- Department of Chemistry Graduate Education Institute Batman University 72060 Batman Turkey
| | - Ercan Çınar
- Department of Nursing, Faculty of Health Sciences Batman University 72060 Batman Turkey
| | - Eyüp Başaran
- Department of Chemistry and Chemical Processing Technologies, Vocational School of Technical Sciences Batman University 72060 Batman Turkey
| |
Collapse
|
3
|
Pak VV, Khojimatov OK, Pak AV, Sagdullaev SS, Yun L. Design of Tetrapeptides as a Competitive Inhibitor for HMG-CoA Reductase and Modeling Recognized Sequence as a β-Turn Structure. Int J Pept Res Ther 2022. [DOI: 10.1007/s10989-022-10455-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
4
|
Pak VV, Khojimatov OK, Pak AV, Sh. Sagdullaev S. Design of competitive inhibitory peptides for HMG-CoA reductase and modeling structural preference for short linear peptides. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Pak VV, Kwon DY, Khojimatov OK, Pak AV, Sagdullaev SS. Design of Tripeptides as a Competitive Inhibitor for HMG-CoA Reductase. Int J Pept Res Ther 2021. [DOI: 10.1007/s10989-021-10221-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
A molecular docking study of potential inhibitors and repurposed drugs against SARS-CoV-2 main protease enzyme. J INDIAN CHEM SOC 2021. [PMCID: PMC8056978 DOI: 10.1016/j.jics.2021.100041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
COVID-19 has affected millions of people. Although many drugs are in use to combat disease, there is not any sufficient treatment yet. Having critical role in propagation of the novel coronavirus (SARS-CoV-2) works Main Protease up into a significant drug target. We have performed a molecular docking study to define possible inhibitor candidates against SARS-CoV-2 Main Protease enzyme. Besides docking Remdesivir, Ribavirin, Chloroquine and 28 other antiviral inhibitors (totally 31 inhibitors) to Main Protease enzyme, we have also performed a molecular docking study of 2177 ligands, which are used against Main Protease for the first time by using molecular docking program Autodock4. All ligands were successfully docked into Main Protease enzyme binding site. Among all ligands, EY16 coded ligand which previously used as EBNA1-DNA binding blocker candidate showed the best score for Main Protease with a binding free energy of −10.83 kcal/mol which was also lower than re-docking score of N3 ligand (−10.72 kcal/mol) contained in crystal structure of Main Protease. After analyzing the docking modes and docking scores we have found that our ligands have better binding free energy values than the inhibitors in use of treatment. We believe that further studies such as molecular dynamics or Molecular Mechanic Poisson Boltzmann Surface Area studies can make contribution that is more exhaustive to the docking results.
Collapse
|